
Signal Temporal Logic meets Hamilton-Jacobi
Reachability: Connections and Applications

Mo Chen1, Qizhan Tam1, Scott C. Livingston2, and Marco Pavone1?

1 Dept. of Aeronautics and Astronautics, Stanford University
{mochen72, qtam, pavone}@stanford.edu

2 rerobots, Inc.
scott@rerobots.net

Abstract. Signal temporal logic (STL) and Hamilton-Jacobi (HJ) reachability
analysis are effective mathematical tools for formally analyzing the behavior of
robotic systems. STL is a specification language that uses a combination of logic
and temporal operators to precisely express real-valued and time-dependent re-
quirements on system behaviors. While recursively defined STL specifications
are extremely expressive and controller synthesis methods exist, so far there has
not been work that quantifies the set of states from which STL formulas can
be satisfied. HJ reachability, on the other hand, is a method for computing the
reachable set, that is the set of states from which a system is able to reach a
goal while satisfying state and control constraints. While reasoning about sys-
tem requirements through sets of states is useful for predetermining whether it is
possible to satisfy desired system properties as well as obtaining state feedback
controllers, so far the applicability of HJ reachability has been limited to relatively
simple reach-avoid specifications. In this paper, we merge STL and HJ reachabil-
ity into a single framework that combines the key advantage of both methods –
expressiveness of specifications and set quantification. To do this, we establish a
correspondence between temporal and reachability operators, and utilize the idea
of least-restrictive feasible controller sets (LRFCSs) to break down controller syn-
thesis for complex STL formulas into a sequence of reachability and elementary
set operations. LRFCSs are crucial for avoiding controller conflicts among the
different reachability operations. In addition, the synthesized state feedback con-
trollers are guaranteed to satisfy STL specifications if determined to be possible
by our framework, and violate specifications minimally if not. We demonstrate
our method through numerical simulations and robotic experiments.

1 Introduction

In recent years the number of safety-critical applications of robotics has grown quickly,
for example with autonomous urban vehicles and surgical robots, where system failures
can lead to loss of human life or large costs. In fact, safety analysis can be considered one
of the key bottlenecks for the pace of development and more widespread deployment of
autonomous systems. In safety-critical systems, formal guarantees are needed to ensure
that the system behaves as expected, under the appropriate modelling assumptions
such as actuation limits, external disturbances, and dynamic model. State-of-the-art
? This work was supported by the Office of Naval Research YIP program (Grant N00014-17-1-
2433) and by DARPA under the Assured Autonomy program. M. Chen and Q. Tam contributed
equally to this work.

classes of methodsmaking such guarantees include robust planning [16,24], reachability
analysis [3, 6], and temporal logic-based model checking and synthesis [1, 4, 14].

In particular, Signal Temporal Logic (STL) has gained popularity recently [8, 10]
due to a number of key advantages. For instance, it explicitly treats real-valued variables
and dense-time requirements [18] both of which are essential in practical robotics. Also,
in addition to the usual Boolean semantics, STL has quantitative semantics that provide
robustness estimates of satisfaction by system trajectories [8, 10]. The robustness esti-
mate, a real-valued function, indicates satisfaction of an STL formula in terms of zero
superlevel sets, which allows the specifications to represent subsets of the continuous
state space. Checking the satisfaction of a specification amounts to evaluating a state
on such a function [8]. This function representation of specifications allows modern
optimization-based techniques to be used for controller synthesis [21,22]. Viewed from
the perspective of reachability analysis and other verification techniques, STL provides
a rich language for precisely describing complex system requirements through recur-
sive application of logical and temporal operators. However, without reasoning about
behaviors of sets of states as is done in reachability analysis, synthesizing state feedback
controllers, as well as efficiently quantifying whether it is possible for any given state to
satisfy a specification is challenging, especially for general nonlinear systems.

Reachability analysis provides a complementary perspective in system verification.
Here, one is concerned with computing the reachable set (RS), defined as the set of states
from which a system, with a given dynamics model, can reach some target set of states
while satisfying state and control constraints. Reachability has also been extensively
studied in the past couple of decades, with a large variety of methods for computing
RSs [9,11,12,15,19] and many application domains [5,13,17]. In particular, Hamilton-
Jacobi (HJ) reachability provides the globally optimal RS and feedback controller for
general nonlinear systems through numerically solving an HJ variational inequality [20],
as long as the system dimensionality is low [3, 6, 12]. Viewed from the perspective of
STL, reachability methods, including HJ reachability, are concerned with just the reach,
avoid, or reach-avoid operators. All of these operators can be expressed as simple STL
formulas. Crucially, the notion of recursively constructing complex specifications from
simpler ones and the associated nuances in controller synthesis have not been explored
in the context of reachability.

𝜇1

Always 𝜇1
⇔

States that can
avoid ¬𝜇1

𝜇2

𝜇3

Not 𝜇3 until 𝜇2
⇔

States that can reach 𝜇2
while avoiding 𝜇3

Fig. 1. STL meets HJ reachability and equivalence of temporal and reachability operators. The
“Always” operator in STL corresponds to the avoidance operator in HJ reachability, and the “until”
operator corresponds to the reach-avoid operator. The gray area in the middle of the illustration
indicates that the logical conjunction corresponds to set intersection.

Contributions: In this paper, we connect STL and HJ reachability to take advantage
of the features of both methods. From the perspective of STL, our proposed method
moves beyond current controller synthesis methods, and provides the set of states,
represented by value functions, from which any STL formula can be satisfied. From the
perspective of HJ reachability, our method looks beyond single reachability problems,
and takes advantage of the expressiveness of STL to define sequences of reachability
problems; this is enabled by the least-restrictive feasible controller set (LRFCS), which
is the set of controllers that guarantees the satisfaction of an STL formula, and the
key concept that both provides a new controller synthesis method for STL formulas,
and allows reachability to take advantage of the richness of specification description
in STL. We also interpret value functions in the context of minimum violation, a
particularly useful concept in many real-world scenarios such as autonomous driving
[23]. We demonstrate our method in numerical simulations and robotic experiments
in representative autonomous driving scenarios. A simple illustrative summary of the
main features of our framework is shown in Fig. 1. Collectively, the results of this paper
provide a single framework that quantifies the set of states from which STL formulas
can be satisfied and breaks down controller synthesis of complex STL formulas into a
sequence of reachability computations in using existing numerical tools.

Organization: In Sec. 2, we briefly introduce notation, background material on STL
and HJ reachability, and our problem statement. In Sec. 3, we establish the equivalence
among STL formulas, value functions, and the reachability operators. In particular,
through reachability, we quantify set of states from which an STL formula can be
satisfied. In Sec. 4, we discuss controller synthesis, with an emphasis on avoiding
control conflicts in complex STL formulas. Sec. 5 provides a summary of the results
of this paper, and allows the reader to compute the set of states satisfying any STL
formula, as well as feedback controller synthesis. We present our numerical and robotic
experiments on two representative autonomous driving scenarios in Sec. 6. Finally, we
conclude and suggest future work in Sec. 7

2 Preliminaries

2.1 System Dynamics and Trajectories

Consider a dynamical system with an ordinary differential equation (ODE) model:
dx
ds

:= Ûx = f (s, x,u,d), u ∈ U,d ∈ D, (1)

where x ∈ X is the system state, u the control restricted to a compact set U, and d
the disturbance restricted to a compact set D. We assume the control function u(·) is
measurable, and if for all t, u(t) ∈U, we alsowrite u(·) ∈U, whereU is the function space
containing all admissible controls. In the analogous fashion, we also write d(·) ∈ D.

The system dynamics f are assumed to be uniformly continuous, bounded, and
Lipschitz continuous in x for fixed u and d; given a measurable control and disturbance
functions u(·) and d(·), there exists a unique trajectory solving (1) [7]. The system in
(1) can model not only a single robot, but also the joint dynamics of multiple robots.
Besides modeling unknown, bounded disturbances, d is also very useful for representing
the control action of a different robot, as shown in our experiments in Sec. 6.

We denote trajectories satisfying (1) starting from state x at time t under control u(·)
and disturbance d(·) as ξu(·),d(·)x,t (·). The trajectory ξ satisfies (1) with an initial condition
almost everywhere: Ûξu(·),d(·)x,t (s) = f (s, ξu(·),d(·)x,t (s),u(s),d(s)), ξ

u(·),d(·)
x,t (t) = x.

Remark 1. We make explicit the dependence of the system trajectory ξu(·),d(·)x,t (·) on the
control and disturbance so that the presentation of the material in the rest of the paper
can be made clearer. Under this slightly more cumbersome notation, the state at any
given time s is written as ξu(·),d(·)x,t (s), instead of the usual x(s). In addition, we use t to
denote the initial time, and s ≥ t to denote a time instant at or after t.

2.2 Signal Temporal Logic

We focus in this paper on STL, a specification language that expresses requirements
directly for real-valued and dense-time signals [18]. STL admits a notion of robustness
[8, 10], and recent work has used it for analyzing performance and safety properties of
robotic systems. A brief overview of STL is given in this section, mostly following the
development in [8]. An introduction to basic concepts can be found in [1].

The syntax of STL formulas is defined recursively by the grammar production

ϕ ::= True | µ(·) ≥ 0 | ¬ϕ | ϕ∧ψ | ϕUIψ, (2)

where I is a closed interval ofR of the form [s1, s2] or [s1,∞)with 0 ≤ s1 < s2, and where
µ : X → R is a function that maps states to real values. In this paper, we sometimes
assume that the STL formula is in Negation Normal Form, i.e., negation (¬) can only
operate on predicates µ(·) ≥ 0. Note that this is done without loss of generality because
every STL formula has an equivalent formula in Negation Normal Form, which can be
constructively obtained by the syntactic translation rules of Def. 11 in [10].

In temporal logics that only have Boolean semantics, e.g., LTL, the syntax has atomic
propositions instead of real-valued functions (µ in the grammar above). Thus, to apply
LTL formulas to the dynamical system (1), some relation between atomic propositions
and states must be defined to decide whether a state trajectory satisfies a formula. In
contrast, STL formulas can include predicates µ(·) ≥ 0 that directly express the relation
between states and Boolean semantics. For example, a convex polytope, defined by a set
of linear inequalities of the form Hx ≤ K , for H ∈ Rm×n, K ∈ Rm, can be equivalently
encoded by the STL formula µ1(x) ≥ 0∧ · · · ∧ µm(x) ≥ 0, where µi(x) = ki − hi x for
i = 1, . . .,m, and hi is the i-th row of H.

STL is defined with two kinds of semantics. First, the Boolean semantics is defined
as follows. Let ξu(·),d(·)x,t (·) be the trajectory of (1) starting from state x at time t under
control u(·) and disturbance d(·), as defined in the previous section. Then, ξu(·),d(·)x,t (·) at
time s satisfies an STL formula ϕ according to the inductive definition:

(ξ
u(·),d(·)
x,t (·), s) |= µ(·) ≥ 0 ⇔ µ(ξ

u(·),d(·)
x,t (s)) ≥ 0, (3a)

(ξ
u(·),d(·)
x,t (·), s) |= ϕ∧ψ ⇔ (ξ

u(·),d(·)
x,t (·), s) |= ϕ∧(ξu(·),d(·)xt (·), s) |= ψ, (3b)

(ξ
u(·),d(·)
x,t (·), s) |= ¬ϕ ⇔ ¬(ξ

u(·),d(·)
x,t (·), s) |= ϕ), (3c)

(ξ
u(·),d(·)
x,t (·), s) |= ϕU[s1,s2]ψ ⇔ ∃s′ ∈ [s+ s1, s+ s2]

such that (ξu(·),d(·)x,t (·), s′) |= ψ

∧∀τ ∈ [s, s′], (ξu(·),d(·)x,t (·), τ) |= ϕ.

(3d)

From the syntax and Boolean semantics, we can derive other commonly used operators,
e.g., ¬ϕ∨¬ψ ≡ ¬(ϕ∧ψ) and, of particular interest:

– the operator “eventually” is denoted ^[s1,s2]ϕ and defined by TrueU[s1,s2]ϕ; and
– the operator “always” is denoted �[s1,s2]ϕ and defined by ¬^[s1,s2]¬ϕ.
Perhaps the most practically useful aspect of STL is its quantitative semantics,

represented by a function g that is defined inductively as follows:

g(µ(·) ≥ 0, s, ξu(·),d(·)x,t (·)) = µ(ξ
u(·),d(·)
x,t (s)), (4a)

g(¬ϕ, s, ξu(·),d(·)x,t (·)) = −g(ϕ, s, ξu(·),d(·)x,t (·)), (4b)

g(ϕ∧ψ, s, ξu(·),d(·)x,t (·)) =min{g(ϕ, s, ξu(·),d(·)x,t (·)),g(ψ, s, ξu(·),d(·)x,t (·))}, (4c)

g(ϕU[s1,s2]ψ, s, ξ
u(·),d(·)
x,t (·)) = sup

s′∈[s+s1,s+s2]
min{g(ψ, s′, ξu(·),d(·)x,t (·)),

inf
τ∈[s,s′]

g(ϕ, s′, ξu(·),d(·)x,t (·))}. (4d)

As shown in [8], the function g has the property that its sign implies satisfaction, i.e.,
if g(ϕ, s, ξu(·),d(·)x,t (·)) is positive, then the trajectory satisfies STL formula ϕ from time s;
similarly, it does not satisfy ϕ if g is negative at time s. Because of its other fundamental
property (correctness), the authors of [8] also refer to g as the robustness estimate.

As with the Boolean semantics, additional operators like� (“always”) can be derived
for the quantitative semantics [8]. Finally, if s = 0, then the notation can be abbreviated
by omitting s. In this paper, the notation for the quantitative semantics is made more
concise by writing the STL formula (i.e., the first parameter of g) as a subscript; e.g.,
g¬ϕ is the robustness estimate for the STL formula ¬ϕ. This way, we can concisely refer
to multiple STL formulas and their corresponding robustness estimates of a trajectory.

In this paper, we will use g(·) (defined above) to denote functions whose zero
superlevel sets represent satisfaction of an STL formula, and h(·) to denote functions
whose zero sublevel sets represent sets used in HJ reachability as in (7) and (9). Also,
whenever a function gϕ or its negation satisfies the HJ VI (8) or (11), introduced in Sec.
2.3, we will refer to gϕ as a “value function associated with the STL formula ϕ”.
2.3 Time-Varying Reachability
To draw a connection between temporal logic and reachability, one must consider
time-varying formulations of reachability, to capture the temporal aspects of logical
specifications. In general, many (time-invariant) reachability methods can be used for
solving time-varying reachability problems by augmenting the state space with time.

In this paper, we focus on HJ reachability [12], the most general reachability method
in terms of system dynamics and set representation, and one which incorporates time
without state space augmentation. We now provide a brief overview of [12] and adapt
it to this paper. It is interesting to note the following parallel between STL and HJ
reachability: reachable sets are solutions to a “game of kind” in which one is interested
in determiningwhether or not the target set can be reached, and their computation is done
by solving a “game of degree” in which one minimizes a cost function representing the
target sets and constraints; this is analogous to the Boolean semantics and quantitative
semantics, respectively, of STL described in Sec. 2.2.

Given target and constraint sets T(s),C(s) as a function of time s, the maximal
reachable set (RS) RAM(t,T ;T(·),C(·)) is defined as follows:

RAM(t,T ;T(·),C(·)) = {x :∃u(·) ∈ U,∀d(·) ∈ D,∃s ∈ [t,T], ξu(·),d(·)x,t (s) ∈ T (s), (5)

∀τ ∈ [t, s], ξu(·),d(·)x,t (τ) ∈ C(τ)}

Informally, RAM(t,T ;T(·),C(·)) is the set of states from which there exists a control
function u(·) that, despite all possible non-anticipative [19] disturbance functions3 d(·),
drives the system to the target set at some time s ∈ [t,T] while satisfying constraints
prior to reaching the target. In the HJ convention, a set S is represented by the zero
sublevel set of some function: S = {x : hS(x) < 0}. Such a function always exists, and
can be defined as the signed distance function [12].

Given hT(t, x) and hC(x), define

hRAM (t, x) = inf
u(·)∈U

sup
d(·)∈D

min
s∈[t,T]

max
{
hT(t, ξ

u(·),d(·)
x,t (s)), max

τ∈[t,s]
hC(ξ

u(·),d(·)
x,t (τ))

}
, (6)

and we have that the zero sublevel set of hRAM (t, x) represents the maximal RS:

RAM(t,T ;T(·),C(·)) = {x : hRAM (t, x) < 0}. (7)

The value function hRAM (t, x), t ∈ [0,T], can be computed by solving the following
HJ VI, which is derived from dynamic programming:

max
{

min
{ ∂
∂t

hRAM (t, x)+min
u∈U

max
d∈D
∇hRAM (t, x) · f (t, x,u,d), hT(t, x)− hRAM (t, x)

}
,

hC(x)− hRAM (t, x)
}
= 0, hRAM (T, x) =max{hT(T, x), hC(x)}. (8)

In addition, we also define the minimal RS as

Rm(t,T ;T(·)) = {x : ∀u(·) ∈ U,∃d(·) ∈ D,∃s ∈ [t,T], ξu(·),d(·)x,t (s) ∈ T (s)}. (9)

Intuitively, the minimal RS Rm(t,T ;T(·)) is the set of states from which no matter
what control function u(·) is applied, there exists a disturbance function d(·) that drives
the system into the target set within some time horizon. Given hT(t, x), define

hRm (t, x) = sup
u(·)∈U

inf
d(·)∈D

min
s∈[t,T]

hT(t, ξ
u(·),d(·)
x,t (s)), (10)

and we have that the zero sublevel set of the solution hRm (t, x) represents the minimal
RS. The value function hRm (t, x) can be computed by solving the following HJ VI:

min
{
∂

∂t
hRm (t, x)+max

u∈U
min
d∈D
∇hRm (t, x) · f (x,u,d), hT(x)− hRm (t, x)

}}
, t ∈ [0,T],

hRm (T, x) = hT(T, x). (11)

The main differences between (8) and (11) are a lack of the outer maximum in (11)
due to a lack of constraints in the minimal RS, and reversed optimization over u and d.

2.4 Problem Formulation

The goal of this paper is to achieve the following objectives within a single framework:

3 With a slight abuse of notation, we will useD to denote non-anticipative disturbance functions.
For the definition of non-anticipative strategies, we encourage the reader to refer to [19].

1. Establish a correspondence between STL operators and reachability operators. This
is done by recognizing that logical operators in STL are equivalent to elementary set
operations, and that STL temporal operators are equivalent to reachability operators.

2. Leverage HJ reachability in the context of STL to compute value functions that
represent the set of states from which any STL formula can be satisfied.

3. Leverage the formalism of STL, along with our proposed notion of the LRFCS
to perform controller synthesis through a sequence of reachability computations
without introducing any controller conflicts.

4. Recognize the minimum violation interpretation of value functions.

We demonstrate our framework through simulations and experiments that are rep-
resentative of autonomous driving scenarios.

3 STL Specifications in the HJI context

In this section, we go through the STL semantics and present how HJ reachability can
be used to compute value functions that represent the set of states from which STL
formulas can be satisfied. Sec. 3.1 describes the connection between logical operators
and elementary set operations and provides a correspondence between function repre-
sentations of specifications in the STL convention and of sets in HJ reachability. Sec.
3.2 describes the connection between temporal operators in STL – the until and always
operators – and the maximal and minimal reachability operators in HJ reachability.

3.1 STL logical and elementary set operations, and functional representations

First given an atomic proposition µ, we define a set Sµ := {x : gµ(x) > 0}. In addition,
given an STL formula, for example one denoted ϕ or ψ, we define Sϕ and Sψ to denote
the set of states that satisfy ϕ or ψ, respectively.

(ξ
u(·),d(·)
x,t (·), s) |= µ ⇔ ξ

u(·),d(·)
x,t (s) ∈ Sµ (12a)

(ξ
u(·),d(·)
x,t (·), s) |= ϕ ⇔ ξ

u(·),d(·)
x,t (s) ∈ Sϕ (12b)

(ξ
u(·),d(·)
x,t (·), s) |= ψ ⇔ ξ

u(·),d(·)
x,t (s) ∈ Sψ (12c)

Then, we have the following correspondence in terms of functions that represent
satisfaction of STL formulas and functions that represent sets used in HJ reachability.
gµ(x) > 0⇔ hSµ (x) < 0, gϕ(x) > 0⇔ hSϕ (x) < 0, gψ(x) > 0⇔ hSψ (x) < 0, (13)

Based on the set definitions above, the logical conjunction, disjunction, and negation
are equivalent to set intersection, union, and complement, respectively:

(ξ
u(·),d(·)
x,t (·), s) |= ϕ∧ψ ⇔ ξ

u(·),d(·)
x,t (s) ∈ Sϕ ∩Sψ (14a)

(ξ
u(·),d(·)
x,t (·), s) |= ϕ∨ψ ⇔ ξ

u(·),d(·)
x,t (s) ∈ Sϕ ∪Sψ (14b)

(ξ
u(·),d(·)
x,t (·), s) |= ¬ϕ ⇔ ξ

u(·),d(·)
x,t (s) ∈ S{ϕ (14c)

In terms of the functional representation of formulas and sets, we have
gϕ∧ψ(x) =min

(
gϕ(x),gψ(x)

)
, hϕ∧ψ(x) =max

(
hSϕ (x), hSψ (x)

)
(15a)

gϕ∨ψ(x) =max
(
gϕ(x),gψ(x)

)
, hϕ∨ψ(x) =min

(
hSϕ (x), hSψ (x)

)
(15b)

g¬ϕ(x) = −gϕ(x), h
S
{
ϕ
(x) = −hSϕ (x) (15c)

3.2 “Until” and “always” as reachability operators
We now look at the important connections between the until and always operators
and reachability. The until operator, defined in Equation (3d), can be interpreted as a
constrained reachability operator. For example, in ϕUIψ, one is interested in reaching
states that satisfy ψ within some time horizon, while satisfying the constraints ϕ. We
now formally state this reachability interpretation.
Proposition 1 (The until operator and constrained reachability).

Define T = t + s2 and the sets Tψ(·) and Cϕ:

Tψ(s) =
{
{x : (x(·), s) |= ψ}, if s ∈ [t + s1, t + s2],

∅, otherwise,
Cϕ = {x : (x(·), s) |= ϕ}. (16)

Then, we have

∃u(·) ∈ U, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) |= ϕU[s1,s2]ψ ⇔ x ∈ RAM(t,T ;Tψ(·),Cϕ). (17)
In addition, define gϕU[s1,s2]ψ

(t, x) = −hRAM (t, x), where hRAM (t, x) is such that
RAM(t, t + τ2;Tψ(·),Cϕ) = {x : hRAM (t, x) < 0}. Then, we have

∃u(·) ∈ U, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) |= ϕU[s1,s2]ψ ⇔ gϕU[s1,s2]ψ
(t, x) > 0. (18)

Note that −gϕU[s1,s2]ψ
(t, x) satisfies the HJ VI (8), so gϕU[s1,s2]ψ

is a value function
associated with ϕU[s1,s2]ψ.

Prop. 1 follows from the definition of the until operator and the maximal RS, and
establishes an equivalence between the until operator and the maximal reachability
operator. It also provides a single function gϕU[s1,s2]ψ

(s, x) that captures the set of states
from which there exists a controller to guarantee the satisfaction of ϕU[s1,s2]ψ regardless
of disturbances. Controller synthesis will be discussed in Sec. 4 in Lem. 1.

Note that the eventually operator corresponds to an unconstrained reachability prob-
lem, which is the one presented in Prop. 1 with ϕ = True, or equivalently, Cϕ = ∅.

The always operator can be indirectly interpreted as an unconstrained reachability
operator. For example, in �[s1,s2]ϕ, one is interested in staying in states that satisfy ϕ. In
the language of reachability, one would equivalently stay out of states that may lead to
a violation of ϕ. We now formally state this reachability interpretation.
Proposition 2 (Reachability interpretation of the always operator).

Define T = s+ s2, and

Tϕ(s) =
{
{x : (x(·), s) 2 ϕ}, if s ∈ [s+ s1, s+ s2],

∅, otherwise.
(19)

Then, we have

∃u(·) ∈ U, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), s) |= �[s1,s2]ϕ ⇔ x < Rm(s,T ;Tϕ(·)). (20)
In addition, define g�[s1,s2]ϕ

(s, x)= hRm (s, x), where hRm (s, x) is such thatRm(s,T ;Tϕ(·))=
{x : hRm (s, x) < 0}. Then, we have

∃u(·) ∈ U, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), s) |= �[s1,s2]ϕ ⇔ g�[s1,s2]ϕ
(s, x) > 0. (21)

Note that g�[s1,s2]ϕ
(s, x) satisfies the HJ VI (8), so g�[s1,s2]ϕ

is a value function
associated with �[s1,s2].

Prop. 2 follows from the definition of the always operator andminimal RS. Controller
synthesis will be discussed in Sec. 4 in Lem. 1.

4 Controller Synthesis

In this section, we provide a controller synthesis technique that is different from the
optimal controller synthesis typically found in works related to HJ reachability. Instead
of computing the optimal control, we propose to consider the set of controllers that
satisfy a given STL formula by viewing the value function as a Lyapunov-like function.
We call this set of controllers the least-restrictive feasible controller set (LRFCS),
which ensures the value function does not decrease along trajectories, an idea that is
core to many reachability methods other than HJ [15, 16].

In the context of STL, the key benefit of considering the LRFCS is that a single con-
troller synthesis procedure can be repeatedly used for satisfying recursively defined STL
formulas. Thus, the LRFCS is what allows HJ reachability to leverage the complexity
of specifications in the STL framework. The following lemma formalizes the LRFCS:

Lemma 1 (Least-restrictive feasible controller set (LRFCS) for satisfying an STL
formula). Let ϕ be any STL formula, and gϕ be a value function associated with ϕ.
Suppose at time s, the system (1) is at a state x such that gϕ(t, x) ≥ c. Define

Uϕ := {u(·) : ∀s ≥ t,u(s) ∈ Ũϕ(s, x)}, where (22a)

Ũϕ(s, x) =
{
Uϕ(s, x), if gϕ(s, x) ≤ c,
U, otherwise,

(22b)

Uϕ(s, x) = {u :
∂

∂s
gϕ(s, x)+ min

d∈D
∇gϕ(s, x) · f (s, x,u,d) ≥ 0}. (22c)

Then, u(·) ∈ Uϕ implies ∀s ≥ t,∀d(·) ∈ D,gϕ(s, ξ
u(·),d(·)
x,t (s)) ≥ c.

Proof: We start with the expression in (22c):

0 ≤
∂

∂s
gϕ(s, x)+ min

d∈D
∇gϕ(s, x) · f (s, x,u,d) (23a)

= min
d∈D

∂

∂s
gϕ(s, x)+∇gϕ(s, x) · f (s, x,u,d) = min

d∈D
Ûgϕ(s, x) (23b)

Theminimization of d corresponds to the disturbance behaving adversarially to drive
the system away from the satisfaction of ϕ. Therefore, for all d, we have Ûgϕ(s, x) ≥ 0. In
addition, since for all s ≥ t, we have u(s) ∈ Uϕ(s)whenever gϕ(s, x) ≤ c and in particular
when gϕ(s, x) = c, we must have that ∀s ≥ t,∀d(·),gϕ(s, ξ

u(·),d(·)
x,t (s)) ≥ c. �

Corollary 1. If c > 0, then Lem. 1 is equivalent to

u(·) ∈ Uϕ⇒ ∀d(·), (ξu(·),d(·)x,t (·), s) |= ϕ. (24)

Remark 2. Lem. 1 provides a set of controllers for satisfying ϕU[s1,s2]ψ using the value
function gϕU[s1,s2]ψ

in Prop. 1 and for �[s1,s2]ϕ using g�[s1,s2]ϕ
in Prop. 2.

Note that since gϕ is a value function associated with ϕ, the expression in (22c) is
always non-empty. This is true by construction of the value function in either (8) or
(11), in which the optimal controller is selected in a dynamic programming framework.
The associated optimal controller, which we have omitted in this paper, guarantees
the existence of a feasible controller; for a more thorough discussion of the optimal
controller, please see one of [2, 6, 12].

We now continue our discussion of repeated controller synthesis via the LRFCS
for recursively defined STL formulas. We first considering cases which do not involve
control conflicts in Sec. 4.1; here, we provide a simple additional control logic to tie
together multiple controllers from STL formulas that make up a more complex STL
formula. Next, in 4.2, we address the cases involving control conflicts by describing why
control conflicts arise, and how they can be resolved.

4.1 Negation, logical disjunction, and “always”: no control conflicts

In this section we consider ¬, ∨, and �[s1,s2], for which the discussion of controller
synthesis is relatively straight forward. We first note that to synthesize a controller that
guarantees the satisfaction of ¬ϕ, one would simply first negate ϕ, and then perform
controller synthesis recursively. This can be considered a “pre-processing step” when
STL formulas are in Negation Normal Form (cf. Sec. 2.2).

Next, we provide a joint controller for satisfying ϕ∨ψ, given two controllers that
respectively guarantee the satisfaction of ϕ and ψ. Intuitively, Prop. 3 first states that
applying a controller (in Uϕ) that satisfies ϕ also implies satisfaction of ϕ∨ψ. On the
other hand, if ϕ cannot be satisfied, then by assumption ψ can be satisfied using a
controller drawn from Uψ , thereby also satisfying ϕ∨ψ.

Proposition 3 (Joint controller for logical disjunction). Suppose (24) holds, and
u(·) ∈ Uψ⇒ ∀d(·), (ξu(·),d(·)x,t (·), s) |= ψ. Then (ξuϕ∨ψ (·),d(·)x,t (·), s) |= ϕ∨ψ, where

uϕ∨ψ(·) ∈
{
Uϕ, if (24) holds with ϕ = ϕ,
Uψ, otherwise.

(25)

Finally, given a set of controllers Uϕ that guarantees satisfaction of ϕ, and a set
of controllers U�[s1,s2]ϕ

that guarantees satisfaction of �[s1,s2]ϕ, we provide the set of
controllers that first drives the system into a position in which ϕ can be satisfied using a
controller in U�[s1,s2]ϕ

, and then drives the system to satisfy ϕ using a controller in Uϕ .

Proposition 4 (Compound controller for the always operator).Define some s′ ∈ [s+
s1, s+ s2]. Suppose (24) holds, and u(·) ∈ U�[s1,s2]ϕ

⇒ ∀d(·), (ξu(·),d(·)x,t (·), s) |= �[s1,s2]ϕ.

Then, (ξ ū(·),d(·)x,t (·), s) |= ϕ, where ū(·) ∈

{
U�[s1,s2]ϕ

, if s < s′,

Uϕ, if s ≥ s′.

The reasoning behind Prop. 4 is as follows: If one applies the controller drawn from
U�[s1,s2]ϕ

, until some time s′ between s+ s1 and s+ s2, the system is then in a position
to satisfy ϕ. The satisfaction of ϕ is guaranteed by applying a controller drawn from Uϕ
at and after time s′.

4.2 Logical conjunction and “until”: avoiding control conflicts

In this section, we consider the operators ∧ and U, which require more careful treatment
due to the possibility of control conflicts. For example, even if controllers drawn from
Uϕ and Uψ allow the system to independently satisfy ϕ and ψ respectively, there may
not exist a controller that leads to the satisfaction of ϕ∧ψ. This is because the system
may only use a single control at any given time, and if Uϕ and Uψ do not intersect, then

there would not be a controller that guarantees simultaneous satisfaction of ϕ and ψ. An
analogous argument also applies for ϕU[s1,s2]ψ.

Therefore, controller synthesis for satisfaction of ψ in the expressions ϕ∧ ψ or
ϕU[s1,s2]ψ must use the LRFCS with respect to ϕ so the satisfaction of ϕ is guaranteed.
This requirement can be formalized by restating Prop. 1 and 2 with the modified control
constraint u(·) ∈ Uϕ instead of u(·) ∈ U. The full restatements can be found in the
appendix. Here, we highlight that optimizing over a restricted function set u(·) ∈ Uϕ ,
or equivalently, over a restricted control signal set Ũϕ , does not significantly increase
the computation burden for control and disturbance affine systems. To see this, let the
dynamics (1) be Ûx = fx(t, x)+ fu(t, x)u+ fd(t, x)d. Then, expression in (22c) becomes

∂

∂s
gϕ(s, x)+∇gϕ(s, x) · fx(t, x)+min

d∈D
∇gϕ(s, x) fd(t, x)d+∇gϕ(s, x) fu(t, x)u ≥ 0, (26)

which is a single affine control constraint. When solving the HJ VIs (8) and (11), the
optimization u ∈ U becomes u ∈ Ũϕ , which, according to (26), at most involves adding
an affine constraint. In typical scenarios in which u ∈ U is a box constraint, adding (26)
would result in a polytopic constraint, and therefore the optimization u ∈ Ũϕ does not
involve significantly more computation than the optimization u ∈ U.

5 Practical Summary of Theoretical Results

In this section, we compile all the theory in this paper into a list of corresponding STL
and reachability operators. Given this list, one would be able to recursively compute the
set of states that satisfies an arbitrary STL formula, and to synthesize the corresponding
feedback controller. We also provide an illustrative example and brief discussion on
minimum violation.

5.1 List of corresponding STL, set, and reachability operators

Using Table 1, a value function representing any STL formula ϕ can be computed
through a sequence of reachability computations as well as point-wise negation, min-
imization, and maximization of functions. The number of reachability computations
required is the number of until and always operators in the STL formula ϕ, and each
individual reachability computation scales according to the reachability method. In the
case of the HJ method, computational complexity of a single reachability computation
is exponential with the number of system dimensions in (1). Practically speaking, this
means that systems with up to 5D can be tractably analyzed.

In theory, any controller in the LRFCS can be used to satisfy gϕ , as long as the state
x(s) is such that g(s, x) > 0. In practice, additional criteria can be used for choosing
the controller within the LRFCS. One simple choice, which is typically used in HJ
reachability, is to choose the controller that maximizes Ûgϕ in Eq. (22c).

5.2 Illustrative Example

As a concrete example, consider the formula ϕ = �I1^I2 µ1 ∧ (µ2UI3 µ3), for functions
µ1, µ2, µ3 representing atomic propositions, and time intervals I1, I2, I3. Using Table 1,
one could perform the following steps, which involve three reachability computations
in total, to obtain a value function representing the set of states from which ϕ can be
satisfied, and the corresponding LRFCS:

Formula Value function computation Controller Details
ϕ∨ψ Set gϕ∧ψ =max

(
gϕ, gψ

)
u(·) ∈ Uϕ∨ψ in (25) Eq. (15b), Prop. 3

ϕ∧ψ Given Uϕ ,

1. compute gψ with constraint u(·) ∈ Uϕ ,
2. set gϕ∧ψ =min

(
gϕ, gψ

)
.

u(·) ∈Uϕ in (22) withϕ =ψ, gϕ =
gψ, c ≥ 0

Eq. (15a), Sec.4.2

¬ϕ Set g¬ϕ (x) = −gϕ (x) Synthesized recursively from
negated formula

Eq. (15c), Sec. 4

ϕU[s1,s2]ψ Given Uϕ, gψ ,

1. solve the HJ VI (8) with Tψ, Cϕ given in (16)
and constraint u(·) ∈ Uϕ to obtain the RS
represented by h

RAM ,
2. set gϕU[s1,s2]

ψ = −hRAM

u(·) ∈ Uϕ in (22) with
ϕ = ϕU[s1,s2]ψ, gϕ =

gϕU[s1,s2]
ψ, c ≥ 0

Prop. 1, Sec. 4.2

�[s1,s2]ϕ

1. solve the HJ VI (11) with Tϕ given in (19)
and constraint u(·) ∈ Uϕ to obtain the RS
represented by hRm

2. gϕU[s1,s2]
ψ = hRm

– Use u(·) ∈ Uϕ in (22)
with ϕ = �[s1,s2]ϕ, gϕ =
g�[s1,s2]

ϕ, c ≥ 0 to satisfy
�[s1,s2]ϕ

– Use u(·) ∈ Uϕ when s ∈ [s+
s1, s+ s2] to satisfy ϕ

Prop. 2, Sec. 4.1

Table 1. Summary of theoretical results. Given any STL formula ϕ, this table can be used to
identify the sequence of reachability computations, and point-wise negation, minimization, and
maximization of functions that produces a value function gϕ and the corresponding LRFCS Uϕ .

1. Compute g^I2µ1 with the control constraint u(·) ∈ U (no control constraints other
than that given by the dynamical system) according to the fifth row of Table 1.

2. Compute g�I1^I2µ1 and U�I1^I2µ1 with the control constraint u(·) ∈ U (no control
constraints other than that given by the dynamical system) according to the sixth
row of Table 1.

3. Compute gµ2UI3µ3 and Uµ2UI3µ3 with the control constraint u(·) ∈ U�I1^I2µ1 (extra
control constraint to ensure satisfaction of �I1^I2 µ1) according to the fifth row of
Table 1. Note that this is also step 1 in the third row of Table 1).

4. Set gϕ =min(g�I1^I2µ1,gµ2UI3µ3). The set of states from which ϕ can be satisfied is
then given by {x : gϕ > 0} (step 2 in the third row of Table 1.

5. The LRFCS for satisfying ϕ is given by Uµ2UI3µ3 , (which already accounts for the
satisfaction of �I1^I2 µ1).

5.3 Minimum violation interpretation

Lem. 1 and Cor. 1 establish the condition to guarantee the continued satisfaction of an
STL formula ϕ using the LRFCS in (22), as long as the formula is satisfied at some state
x and time s. However, in some situations, the system may be in a situation in which
a desired STL formula ϕ cannot be satisfied. Mathematically, this is characterized by
gϕ(s, x) ≤ 0. Such a situation could occur if the controller in (22) is not used, or if there
is a sudden change in the STL formula the system needs to satisfy, perhaps as a result
of a sudden change in the objective of the system.

Since Lem. 1 holds for any value of c, the controller in (22) is also the “minimum
violation controller” in the situation inwhich gϕ(s, x) ≤ 0. By using the controller in (22),
one can guarantee that gϕ(s, x) never decreases, which is interpreted as “the situation is
guaranteed to not become worse, even under the worst-case disturbance”. On the other
hand, if the disturbance does not behave in worst-case fashion, Ûgϕ(s, x)may be positive,

and gϕ(s, x) may evolve to become positive so that ϕ is satisfied at a later time. An
example of a system “recovering” from a state that initially does not satisfy a desired
STL formula is shown in the appendix.

6 Simulations and Experiments

In this section, we demonstrate our methodology on an example representative of a
common autonomous driving scenario. We will consider a car overtaking maneuver in
a 2-lane highway. As this example involves the logical conjunction of compound STL
formulas, we will use the notion of LRFCS in Sec. 4.2 to avoid control conflicts.

In addition to this example, a toy numerical example, and a different numerical exam-
ple and robotic experiment related to autonomous driving are presented in the appendix.
The toy numerical example validates the notion of LRFCS. In the example involving
autonomous driving in the appendix, we considered an autonomous car attempting to
make a left turn in a four-way intersection just after the traffic light has transitioned
to yellow. We performed the control synthesis described in Sec. 5. Here, the desired
outcome is either making a successful left turn or stopping in initial lane, depending on
the behavior of another car travelling in the opposite direction. We also demonstrated
the notion of minimum violation introduced in Sec. 5.3 when the desired outcome is
not initially guaranteed. For all examples, after obtaining the LRFCS that guarantees the
satisfaction of the desired STL formula, we simply chose the controller that maximizes
the gϕ expression in (22c).

6.1 Hardware Setup

We performed all computations4 on a laptop with a Intel Core i5-6300HQ CPU and
8GB of RAM. Reachability computations which produced the value functions were done
using the beacls toolbox5. Numerical simulations for both examples were performed in
MATLABusing the helperOC6 andLevel SetMethods7 [20] toolboxes. For the hardware
experiments8, we used TurtleBots in place of cars and tracked their positions using a
Vicon motion capture system. With the exception of using MATLAB for the real-
time evaluation of the optimal controller, all other processes including message-passing
between devices and low-level controls were implemented in ROS using Python.

6.2 Highway example

We now consider a highway overtaking scenario. Initially, the autonomous car is behind
a “slow car” which moves at a constant speed v3. The autonomous car attempts to
overtake the slow car while avoiding a collision with an “adjacent car” which travels in
the left lane with a possible range of velocities. In addition to avoiding collisions with
both cars, the autonomous car will also have to be able to re-enter the right lane within
a short duration of time. This additional safety constraint is to plan for situations such
as when emergency vehicles require passage through the left lane.

4 The code used in this paper is available at https://github.com/StanfordASL/stlhj
5 https://github.com/HJReachability/beacls
6 https://github.com/HJReachability/helperOC
7 http://www.cs.ubc.ca/ mitchell/ToolboxLS/
8 The videos can be viewed at

https://www.youtube.com/playlist?list=PL8-2mtIlFIJoNkhcGI7slWX2W3kEW-9Pb

The adjacent car, which acts as the disturbance as described in Sec. 2.3, has its
position represented by y2. Since the slow car travels at a constant speed, we express the
joint dynamics of the three vehicles in the reference frame of the slow car:

ÛxR = vR cosθR, ÛyR = vR sinθR − v3, ÛθR = ωR, ÛvR = aR, Ûy2 = v2− v3. (27)

The autonomous car’s primary objective is to overtake the slow car, which is captured
by the proposition ψpass. It needs to adhere to the traffic laws and avoid colliding with
either the slow car or the adjacent car. This constraint is represented by ϕ. If such a
collision is possible or the overtaking maneuver cannot be achieved within the specified
time frame, the autonomous car will then have the secondary objective of remaining
behind the slow car, ψstay.We also include an additional recurrence requirement for the
autonomous car to always be within 5 seconds of re-entering the right lane, represented
by ψlane. The function representations of the STL propositions can be found in the
appendix. Overall, the robot must satisfy the following STL formula:

�[0,25]^[0,5]ψ
lane∧

(
ϕU[0,25]ψ

pass∨ϕU[0,25]ψ
stay), ϕ = ϕoff-road∧ϕon-road∧ϕavoid (28)

The results from numerical simulations and experiments with TurtleBots are shown
in Fig. 2 and Fig. 3. After obtaining the value function and LRFCS for �[0,25]^[0,5]ψ

lane,
the LRFCS is used as an additional constraint for the reachability computations associ-
ated with ϕU[0,25]ψ

pass∨ϕU[0,25]ψ
stay to avoid control conflicts as discussed in Sec. 4.2.

This process is described in greater detail in the appendix. The white circle represents
the autonomous car, while the red and green car represents the adjacent car and slow
car respectively. The colors represent the values of max(gϕU[0,25]ψpass,gϕU[0,25]ψstay). In
Fig. 2, the autonomous car has sufficient time to pass the slow car as the adjacent car
passes by quickly. It waits until the adjacent car crosses a threshold position, determined
automatically from the reachability computations, before committing to the overtaking
maneuver. This takes into account the possibility that the adjacent car may slow down
drastically at any time. We can observe that the value at the autonomous car’s position
increases from t = 0s to 8s just as the car begins the overtaking maneuver; this is a result
of the adjacent car not behaving in the worst-case manner.

In Fig. 3, the autonomous car is unable to pass the slow car within the time horizon
and stops behind the slow car due to the adjacent car moving too slowly to reach the
time-specific threshold position. The value at the autonomous car’s position remains low.
Computation of the value function took approximately 8 hours. The erratic movement
seen in Fig. 3 is caused by the coarse state discretization coupled with the bang-bang
controller; this numerical artifact can potentially be alleviated using a finer resolution
grid along with GPU parallelization to offset additional computational burden.

7 Conclusions and Future Work

In this paper, we presented the combination of Signal Temporal Logic (STL) and
Hamilton-Jacobi (HJ) reachability as a versatile verification technique that inherits the
strengths of both. From the perspective of STL, our method moves beyond controller
synthesis methods that generate single trajectories; instead, we provide guarantees in
terms of sets of states, and produce state feedback controllers. From the perspective
of HJ reachability, our method looks beyond single reachability problems, and takes
advantage of the expressiveness of STL to define sequences of reachability problems. In
terms of computational complexity, the number of reachability computations required

t = 0s

0

0

0

0

-0.2

0

0.2

-0.500.5

t = 8s

0

0

0

-0.2

0

0.2

-0.500.5

t = 17s

0

0

0

-0.2

0

0.2
x
 (

m
)

-0.500.5
y (m)

t = 25s

0

0

0

0

-0.2

0

0.2

-0.500.5

-3

-2

-1

0

1

2

3

Fig. 2. The autonomous car (white) successfully overtakes the slow car (green) as the adjacent car
(red) moves quickly past the threshold position that guarantees the autonomous car can complete
the overtaking maneuver within the time horizon. Left: Contour plot of the value function.Right:
Time-lapse of the experiment.

t = 0s

0

0

0

0

-0.2

0

0.2

-0.500.5

t = 8s

0

0

0

0

-0.2

0

0.2

-0.500.5
t = 17s

0

0

0

-0.2

0

0.2

x
 (

m
)

-0.500.5
y (m)

t = 25s

0

0

0
-0.2

0

0.2

-0.500.5

-3

-2

-1

0

1

2

3

Fig. 3. The autonomous car (white) remains behind the slow car (green) as the adjacent car (red)
moves too slowly to reach the threshold position. Left: Contour plot of the value function. Right:
Time-lapse of the experiment.

for set computation and controller synthesis is the same as the number of temporal
operators in the STL formula; for any individual reachability computation, our method
inherits the same computational complexity as the reachability method. Our approach
has been validated in three numerical examples and two robotic experiments.

Our work spawns a number of future research directions. For example, one could
attempt to alleviate the effects of bang-bang control by using the LRFCS in conjunction
with a different controller synthesis framework such as model predictive control. Also,
in general, there may be many different orderings of reachability operators that produce
LRFCS for an STL formula; thus, it is important to investigate the effect of different
prioritization of STL formulas when using the LRFCS. Lastly, the ideas in this paper,
although presented in the context of STL and HJ reachability, are transferrable to other
temporal logics and reachability methods; exploring other formulations of temporal
logic and reachability would help make trade-offs among computational scalability,
conservatism, generality of system dynamics, and expressivness of logical formulas.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bansal, S., Chen, M., Fisac, J.F., Tomlin, C.J.: Safe sequential path planning of multi-vehicle

systems under presence of disturbances and imperfect information. In: American Control
Conference (2017)

3. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton-Jacobi reachability: A brief
overview and recent advances. In: Proc. IEEE Conf. on Decision and Control (2017)

4. Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.J.: Symbolic planning
and control of robot motion: Finding the missing pieces of current methods and ideas. IEEE
Robotics & Automation Magazine pp. 61–70 (March 2007)

5. Chen, M., Hu, Q., Fisac, J., Akametalu, K., Mackin, C., Tomlin, C.: Reachability-based
safety and goal satisfaction of unmanned aerial platoons on air highways. AIAA Journal of
Guidance, Control, and Dynamics 40(6), 1360 – 1373 (2017)

6. Chen, M., Tomlin, C.J.: Hamilton-Jacobi Reachability: Some Recent Theoretical Advances
and Applications in Unmanned Airspace Management. Annual Review of Control, Robotics,
and Autonomous Systems 1(1), 333–358 (May 2018)

7. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill
(1955)

8. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Proceedings of
Computer Aided Verification (CAV) (2013)

9. Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reachability. In: Hybrid
Systems: Computation and Control (2016)

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time
signals. Theoretical Computer Science 410, 4262–4291 (2009)

11. Feng, X., Villanueva, M.E., Chachuat, B., Houska, B.: Branch-and-lift algorithm for obstacle
avoidance control. In: Proc. IEEE Conf. on Decision and Control (2017)

12. Fisac, J.F., Chen, M., Tomlin, C.J., Sastry, S.S.: Reach-avoid problems with time-varying
dynamics, targets and constraints. In: Hybrid Systems: Computation and Control (2015)

13. Gattami, A., Al Alam, A., Johansson, K.H., Tomlin, C.J.: Establishing safety for heavy duty
vehicle platooning: A game theoretical approach. IFAC World Congress 44(1), 3818–3823
(Jan 2011)

14. Kress-Gazit, H., Lahijanian,M., Raman, V.: Synthesis for robots: Guarantees and feedback for
robot behavior. Annual Review of Control, Robotics, and Autonomous Systems 1, 211–236
(2018)

15. Landry, B., Chen, M., Hemley, S., Pavone, M.: Reach-avoid problems via sum-of-squares
optimization and dynamic programming. In: IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (2018), submitted

16. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning
(2016), Available at https://arxiv.org/abs/1601.04037

17. Majumdar,A.,Vasudevan,R., Tobenkin,M.M., Tedrake,R.: Convex optimization of nonlinear
feedback controllers via occupation measures. Int. Journal of Robotics Research 33(9), 1209–
1230 (Aug 2014)

18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FOR-
MATS/FTRTFT. pp. 152–166 (2004)

19. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation
of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control
50(7), 947–957 (2005)

20. Mitchell, I.M.: The Flexible, Extensible and Efficient Toolbox of Level Set Methods. SIAM
Journal on Scientific Computing 35(2-3), 300–329 (Jun 2008)

21. Raman, V., Donze, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A., Seshia,
S.A.: Model predictive control with signal temporal logic specifications. In: Proc. IEEE Conf.
on Decision and Control (2014)

22. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis from signal
temporal logic specifications. In: Hybrid Systems: Computation and Control. pp. 239–248
(2015)

23. Reyes Castro, L.I., Chaudhari, P., Tumova, J., Karaman, S., Frazzoli, E., Rus, D.: Incremental
sampling-based algorithm for minimum-violation motion planning. In: Proc. IEEE Conf. on
Decision and Control (2013)

24. Singh, S., Majumdar, A., Slotine, J.J.E., Pavone, M.: Robust online motion planning via
contraction theory and convex optimization. In: Proc. IEEE Conf. on Robotics and Au-
tomation (2017), ExtendedVersion,Available at http://asl.stanford.edu/wp-content/papercite-
data/pdf/Singh.Majumdar.Slotine.Pavone.ICRA17.pdf

A Formal presentation of Sec. 4.2

Proposition 5 (Reachability interpretation of the until operator with LRFCS).
Define T = t + s2 and the sets

Tψ(s) =
{
{x : (x(·), s) � ψ}, if s ∈ [t + s1, t + s2],

∅, otherwise,
Cϕ = {x : (x(·), t) � ϕ}. (A-1)

Furthermore, assume (24) holds, and define Uϕ and Ũϕ according to (22). Then,

∃u(·) ∈ Uϕ, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) � ϕU[s1,s2]ψ ⇔ x ∈ RAM(t,T ;Tψ(·),Cϕ).
(A-2)

In addition, define gϕU[s1,s2]ψ
(t, x) = −hRAM (t, x), where hRAM (t, x) is such that

RAM(t, t + s2;Tψ(·),Cϕ) = {x : hRAM (t, x) < 0}. Then, we have

∃u(·) ∈ Uϕ, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) � ϕU[s1,s2]ψ ⇔ gϕU[s1,s2]ψ
(t, x) > 0. (A-3)

Proposition 6 (Reachability interpretation of the always operator with LRFCS).
Define T = t + s2, and

Tϕ(s) =
{
{x : (x(·), s) 2 ϕ}, if s ∈ [t + s1, t + s2]

∅, otherwise
(A-4)

Furthermore, assume (24) holds, and define Uϕ and Ũϕ according to (22). Then,

∃u(·) ∈ Uϕ, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) � �[s1,s2]ϕ ⇔ x < Rm(t,T ;Tϕ(·)) (A-5)

In addition, define g�[s1,s2]ϕ
(t, x)= hRm (t, x), where hRm (t, x) is such thatRm(t,T ;Tϕ(·))=

{x : hRm (t, x) < 0}. Then, we have

∃u(·) ∈ Uϕ, ∀d(·) ∈ D, (ξu(·),d(·)x,t (·), t) � �[s1,s2]ϕ ⇔ g�[s1,s2]ϕ
(t, x) > 0. (A-6)

B Additional numerical examples and experiments, and
implementation details

B.1 Double integrator toy example

The double integrator has state components x representing position and v representing
speed, and dynamics given by

Ûx = v, Ûv = u, |u| ≤ 0.5, (A-7)

where the acceleration u is the control input, and there is no disturbance.
This simple example is used to validate the use of the LRFCS for satisfying an STL

formula, discussed in Lem. 1, to determine the set of states that satisfies ϕ∧ψ according
to the discussion in Section 4.2.

Here, we chose ϕ = ^[5,5]µ1, ψ = ^[5,5]µ2, where µ1 = {(x,v) : |x | ≤ 0.5} and µ2 =
{(x,v) : |v | ≤ 0.2}. The time horizon consisting of a single time instant is chosen so that
the computation result can be compared with the ground-truth optimal solution, since
^[5,5]µ1 ∧^[5,5]µ2 and ^[5,5](µ1 ∧ µ2) are equivalent, if the optimal control is used. If
the time horizon contains more than a single time instant, then one cannot factor out the
eventually operator, since it is unclear at which exact time each of µ1 and µ2 is satisfied,
and the conjunction is only satisfied when both µ1 and µ2 are satisfied at the same time.

Fig. 1 shows the computation results. On the left andmiddle plots, the region between
the dashed lines represent µ1 and µ2 respectively, and the region between solid black
curves represent the states that satisfy ^[5,5]µ1 and ^[5,5]µ2 respectively. For computing
the set of states satisfying ^[5,5]µ1, the optimal controller, the one that maximizes Ûgµ1 ,
is used, and for ^[5,5]µ2, the controller that maximizes Ûgµ1 but also satisfies (22) is
used. In the right plot, the region inside the dashed blue curve represents µ1 ∧ µ2, and
the region inside the solid blue curve represents the states that satisfy ^[5,5](µ1 ∧ µ2)
under the (joint) optimal control. The region inside the black curve represents the states
that satisfy ^[5,5]µ1∧^[5,5]µ2 when the computation of ^[5,5]µ2 involves the controller
being restricted to feasible controllers for ^[5,5]µ1.

Here, one can see that the region inside the black curve is contained inside the blue
curve, which must be true theoretically as well, since the blue curve is computed with
the joint optimal control for satisfying ^[5,5](µ1∧ µ2).

-20 -10 0 10 20

-6

-4

-2

0

2

4

6
t = 5 s

-20 -10 0 10 20

-6

-4

-2

0

2

4

6
t = 5 s

-20 -10 0 10 20

-6

-4

-2

0

2

4

6
t = 5 s

Fig. 4. Validation of least-restrictive controller set.

B.2 Traffic light example

For this example, we consider an autonomous car attempting a left turn at an intersection
just as the traffic light turns yellow. At the same time, a second car approaches from the
opposing direction. This scenario is depicted in Fig. 5. The temporal elements of STL
are useful in encoding the transition of the traffic light to red after remaining in yellow
for a fixed duration.

The joint dynamical system representing the two-car system is as follows:

ÛxR = vR cosθR, ÛyR = vR sinθR, ÛθR = ωR, ÛvR = aR, Ûy2 = v2. (A-8)

The first four state components (xR, yR, θR,vR), represent the x and y positions,
heading, and speed of the autonomous car. It is a dynamically-extended Dubins car that
controls its turn rate, ωR and its linear acceleration, aR. The last state component, y2
represents the y position of the second car, which changes according to its initial position
and its speed, v2.

The autonomous car’s primary objective is to make a left turn before the light turns
red without colliding with the second car. This specification is captured by the STL
proposition ψturn. Alternatively, if it is not possible make the left turn, the autonomous
car will simply stop before the intersection. This specification is captured by the STL
proposition ψstop. The autonomous car must also follow traffic rules based on the layout
of the road. These are captured by ϕoff-road, which stipulates that the autonomous carmust
traveling in the proper direction in lane, ϕon-road, which ensures that the autonomous
car stays on the road, and ϕavoid, which states that collisions must be avoided with the
second car.

The STL proposition formulas are as follows:

ψturn = (xturn ≤ x ≤ x̄turn)∧ (yturn ≤ y ≤ ȳturn)∧ (θturn ≤ θ ≤ θ̄turn)∧ (vturn ≤ v ≤ v̄turn)

(B-1a)
ψstop = (xstop ≤ x ≤ x̄stop)∧ (ystop ≤ y ≤ ȳstop)∧ (θstop ≤ θ ≤ θ̄stop)∧ (vstop ≤ v ≤ v̄stop)

(B-1b)
ϕoff-road = ¬

(
(xlane ≤ x ≤ x̄lane)∧ (ylane ≤ y ≤ ȳlane)

)
(B-1c)

ϕon-road = (xlane ≤ x ≤ x̄lane)∧ (ylane ≤ y ≤ ȳlane)∧ (θlane ≤ θ ≤ θ̄lane)∧ (vlane ≤ v ≤ v̄lane)

(B-1d)
ϕavoid = ¬

(
(y

2
≤ y ≤ ȳ2)∧ (x2 ≤ x ≤ x̄2)

)
(B-1e)

From the propositions, we construct the STL formula that the autonomous car must
satisfy

ϕU[0,12]ψ
turn∨ϕU[11,12]ψ

stop, ϕ = ϕoff-road∧ϕon-road∧ϕavoid (B-2)

where the detailed functional representations of the ϕ,ψstop, ϕoff-road, ϕon-road, ϕavoid for
on-road states are

gψturn = bturn1
(
1− bturn2 (x− xoffset)2− bturn3 (y− yturn)

2− bturn4 (θ − θoffset)
2) (B-3a)

gψstop = bstop1
(
1− bstop2 (x− xstop)

2− bstop3 (y− yoffset)
2− bstop4 (θ − θoffset)

2) (B-3b)

gϕ =

{
< 0 , if car 2’s position
a1

(
1− a2(x− xoffset)2− a3(y− yoffset)

2− a4(θ − θoffset)
2) , otherwise

(B-3c)

The functional representations for off-road states are more straightforward:

gψturn = gψstop = gϕ < 0 (B-4)

Deviations from the desired states are penalized according to their weights specified
as coefficients. In addition to off-road states, other lanes except for the top left and bottom
right are set to have negative values in gψturn and gψturn respectively. The offset parameters
xoffset, yoffset and θoffset represent the desired states of the car. The goal parameters xturn
and ystop represent the two desired final positions of the car. Deviations from the desired
states are penalized through weights parameterized by the coefficients bturni , bstopi and
ai for i = 2,3,4. The coefficients bturn1 , bstop1 determine the relative magnitude of the
target propositions’ formulas and hence their relative importance. For this example, we
set bstop1 ≤ bturn1 to make the car take the turn whenever the constraints can be satisfied
and only stop when it is unable to do so. We set a1 to be larger than bturn1 and bstop1
such that the reachable target sets’ values are the minimum in the set of feasible state
trajectories. This is because as defined in (6), the maximal reachable set’s value is the
state trajectory’s minimum value. Thus, when satisfied, a target set’s values are required
to be greater than the constraint set’s values along the feasible state trajectory for the
relative magnitudes of values in the target set to be observable in the maximal reachable
set.

The numerical simulations and experiments involving TurtleBots are shown in Fig. 5,
6, and 7. The left plots of Fig. 5 show four time snapshots of the numerical simulation. The
image of the blue car represents the autonomous car, and the image of the orange car rep-
resents the second car. The colors represent the values of max(gϕU[0,12]ψturn,gϕU[11,12]ψstop),
which can be used to synthesize the optimal controller without considering any controller
restrictions, as discussed in Sec. 4.1 and summarized in Table 1. From the contours in
the left top subplot, one can see that the maximum value of the value functions at the
given state is positive; therefore, there exists a controller for the autonomous car to
either complete the left turn, or stop before the intersection. The rest of the subplots
show how the value functions change with time, and the trajectory the autonomous car
takes to complete the turn. The right plot of Fig. 5 shows the robot experiment, with
the final position of the TurtleBots shown in solid black, initial position shown in solid
blue, and intermediate positions shown in translucent colors. The blue portions of the
trajectory represent the first half of the trajectory, and the black portions represent the
second half; this is done for added clarity, so that it is easier to see the joint positions
of the TurtleBots at any given time snapshot. Fig. 6 shows the same scenario, but with
the TurtleBot representing the autonomous car stop at the intersection because its initial
position is further from the intersection and the other TurtleBot is moving very slowly
across the intersection, blocking the way for a left turn. There is a small drift velocity
caused by the coarse discretization of the state space and the bang-bang controller. This
resulted in the autonomous car crossing slightly into the intersection.

In Fig. 7, we explore the notion of minimum violation by starting the autonomous
car in a state that has negative value, as shown by the initial state of the autonomous car
being outside the zero superlevel set. In fact, the autonomous car is even in the wrong
lane initially on a collision course with the second car. Under the optimal disturbance,
which in this case is the action of the second car, satisfaction of the STL formula is
not possible; this may happen, for example, if the other travels slowly to block the
autonomous car’s way for making a left turn. However, in practical situations, it is
unlikely for the second car to behave adversarially. Thus, by using a controller that
maximizes the value function, the autonomous car soon moves into states with positive
value, and completes the left turn on time.

Computation of the value function took approximately 3 hours.

Fig. 5. The autonomous car (blue) successfully makes the left turn as the other car (red) moves
quickly past the lane’s entrance. Left: Contour plot of value function. Right: Time-lapse of the
experiment.

Fig. 6. The autonomous car (blue) stops in its initial lane due to a combination of its initial position
being further back in the lane and the other car (red) moving slowly, blocking the lane’s entrance.
Left: Contour plot of the value function. Right: Time-lapse of the experiment.

B.3 Implementation Details of The Highway Example

Fig. 7. The autonomous car (blue) minimizes violation of the STL formula. It successfully makes
the left turn as the other car (red) did not behave adversarially. Left: Contour plot of the value
function. Right: Time-lapse of the experiment.

STL Formulas

ψlane = (xlane ≤ x ≤ x̄lane)∧ (ylane ≤ y ≤ ȳlane)∧ (θlane ≤ θ ≤ θ̄lane)∧ (vlane ≤ v ≤ v̄lane)

(B-5a)
ψpass = (xpass ≤ x ≤ x̄pass)∧ (ypass ≤ y ≤ ȳpass)∧ (θpass ≤ θ ≤ θ̄pass)∧ (vpass ≤ v ≤ v̄pass)

(B-5b)
ψstay = (xstay ≤ x ≤ x̄stay)∧ (ystay ≤ y ≤ ȳstay)∧ (θstay ≤ θ ≤ θ̄stay)∧ (vstay ≤ v ≤ v̄stay)

(B-5c)
ϕoff-road = ¬

(
(xlane ≤ x ≤ x̄lane)∧ (ylane ≤ y ≤ ȳlane)

)
(B-5d)

ϕon-road = (xlane ≤ x ≤ x̄lane)∧ (ylane ≤ y ≤ ȳlane)∧ (θlane ≤ θ ≤ θ̄lane)∧ (vlane ≤ v ≤ v̄lane)

(B-5e)
ϕavoid = ¬

(
(y

2
≤ y ≤ ȳ2)∧ (x2 ≤ x ≤ x̄2)∧ (y3

≤ y ≤ ȳ3)∧ (x3 ≤ x ≤ x̄3)
)

(B-5f)

Function Representations

For on-road states:

gψlane = blane1
(
1− blane2 (x− xoffset)2− blane3 (θ − θoffset)

2) (B-6a)

gψpass = bpass1
(
1− bpass2 (x− xoffset)2− bpass3 (y− ypass)

2− bpass4 (θ − θoffset)
2) (B-6b)

gψstay = bstay1
(
1− bstay2 (x− xoffset)

2− bstay3 (y− ystay)
2− bstay4 (θ − θoffset)

2) (B-6c)

gϕ =

{
< 0 , if car 2’s or 3’s position
a1

(
1− a2(x− xoffset)2− a3(θ − θoffset)

2) , otherwise
(B-6d)

For off-road states:
gψlane = gψpass = gψstop = gϕ < 0 (B-7)

Similar to the traffic light example, the offset variables are the desired states of the
car. Deviations are penalized according to the coefficients which function as weights.
The goal positions are represented by ypass and ystay for the top and bottom halves of
the right lane. For all gψ functions, only the right lane has non-negative values. For the
same reason given in the traffic light example, bpass1 < blane1 < a.

