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ABSTRACT

Small, assistive free-flying robots have received increased
attention in recent years as a platform for furthering robotic
technologies and capabilities for operations inside and out-
side of spacecraft. This work seeks to develop a trajectory
refinement method that considers six degree-of-freedom
motion for a free-flying robot while satisfying the group
structure constraints for a rigid body evolving on S E(3).
Simulation results are presented for a sequential convex
programming based approach for generating locally opti-
mal trajectories that refine and improve the quality of an
initially dynamically feasible solution.

1 INTRODUCTION

Robotic spacecraft have gathered significant interest in re-
cent years, due to advances in robotic technologies and in-
creasing accessibility to testing opportunities in space. De-
spite the tremendous and growing need for major space-
craft operations such as satellite servicing (e.g. repair and
refueling) or management of large orbital debris [1]], such
operations are rare and in many cases undemonstrated due
to the excessive cost and expense of crewed missions for
such tasks, as well as limited validation examples on the
robotic side. Small, assistive free-flying robots (AFFs),
such as the Astrobee shown in Figure [I] have emerged as
a promising platform for demonstrating such autonomous
capabilities. These robots could work both alongside astro-
nauts or independent of astronaut supervision, performing
various logistics, monitoring, and maintenance tasks, and
saving valuable crew time on-board the International Space
Station (ISS).

A key enabler for such operational capabilities is safe, au-
tonomous navigation. Simple tasks such as retrieving tools
from different modules on the ISS or repositioning cameras
to record astronaut activities require the ability to plan dy-
namically feasible trajectories in real-time while avoiding
collisions.

Of special interest for AFFs is planning across full six
degree-of-freedom (DoF) motion on the special Euclidean
group S E(3):
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Elements of S E(3) represent rigid body poses using the
combination of translation r and a rotation R. The spe-
cial orthogonal group of S O(3) rotation matrices poses a
particular challenge to planning, as it results in non-convex
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Figure 1 Example operations of an AFF on the ISS [2].

dynamics, on a manifold having a geometric structure that
cannot be neglected.

In this work, we present a trajectory refinement approach
using sequential convex programming to locally improve
the quality of plans generated by a sampling-based motion
planning algorithm. We expect this tool to be used as a
part of a short-range motion planning algorithm in which
rotational degrees-of-freedom must be considered in order
to increase the likelihood of finding a solution in a cluttered
environment.

Paper contribution: The key contribution of this paper is a
sequential convex programming-based approach for gener-
ating locally optimal trajectories (for any convex cost func-
tion) given an initially dynamically feasible trajectory. A
convexification method is presented that allows for the op-
timization to adhere to the geometric structure of S E(3)
while using linearized models to successively satisfy the
non-convex dynamics constraints.

Paper organization: In Sec. [2} we review relevant work
in the field of AFF motion planning and sequential convex
programming. Then in Sec. 3} we present our proposed
methodology of using sequential convex programming for
trajectory refinement. Simulation results are shown in Sec.
[ Finally, Sec. [5] summarizes our contributions and pro-
poses future areas of investigation.

2 PRELIMINARIES
2.1 Related Works

Sampling-based motion planning is a promising technique
for generating trajectories for free-flying robots, and its ef-
ficacy has been demonstrated on high-dimensional robotic
systems with complex constraints [3]. Early works on mo-
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tion planning for the SPHERES free-flying robots com-
bined sampling-based approaches with trajectory refine-
ment to enforce nonlinear dynamics constraints, but these
methods were either not amenable to real-time applications
or lacked a notion of optimality [4, 5]]. Recently, [6] high-
lighted the importance of considering rotational motions to
return solutions that would otherwise fail if only transla-
tional trajectories were considered with the robot radius in-
flated.

The advantages of using sampling-based approaches to ad-
dress challenging pointing constraints have been illustrated
in [[7, 18, 9]. However, sampling-based planners can return
solutions that are jagged and of poor quality, so they are of-
ten used in conjuction with a post-processing step to refine
and improve the quality of the trajectory. Traditional re-
finement approaches such as polynomial shortcuts or elas-
tic banding [10] methods available for flat Euclidean spaces
cannot be directly applied for rotational motions on S O(3).

Planning on the S £(3) manifold requires that resulting tra-
jectories satisfy group structure constraints associated with
the rotational Lie group S O(3). Lie group variational inte-
grators [[11]] have been used in planning and optimization
problems, but the discrete state update equations used to
satisfy group constraints remain nonlinear. For quaternion
parameterizations of the attitude, solutions must lie on the
3-sphere S°, a non-convex domain. A common approach
simply normalizes the quaternion solutions, resulting in de-
partures from §3 which offers no guarantees of accuracy.
In [12], a big-M integer formulation is used to constrain
decision variables to one surface of an R* polytope approx-
imation of S, but this approach scales exponentially with
the number of binary variables.

2.2 Sequential Convex Programming

Recently, sequential convex programming (SCP) has
emerged as a promising tool for solving problems with
nonlinear dynamics and equality constraints in a principled
manner, and it has been demonstrated on a class of chal-
lenging aerospace and robotics problems [13}[14}[15]. SCP
provides real-time techniques for tackling the associated
non-convexity of a problem without resorting to nonlinear
programming methods such as simulated annealing or ge-
netic programming. Unlike for these latter methods that
lack convergence guarantees and often require well-tuned
warm starts to find a solution, casting a non-convex prob-
lem in a convex framework through or constraint relaxation
provides global convergence guarantees and polynomial-
time complexity for each SCP iteration.

Convex optimization has demonstrated its effectiveness for
applications requiring onboard autonomous guidance and
control and advances in interior point solvers have made
it even more amenable for real-time applications. SCP is
a paradigm in which non-convex optimization problems
are convexified and a series of convex optimization prob-
lems are solved. For dynamical systems, the constraints
that render a problem non-convex are usually related the
nonlinear equality constraints for the dynamics. SCP al-
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Figure 2 Trust regions about reference trajectory.

lows these non-convex dynamical equality constraints to be
satisfied using a successive convexification approach while
maintaining a trust region over which a local minimum is
searched for.

2.3 Notation

The kth vector in a trajectory is denoted with a subscript,
and the iteration number n of the trajectory is denoted with
the superscript in parentheses, e.g. X,(C").

3 TECHNICAL APPROACH
3.1 Problem Statement

The optimal control problem being approximately solved
by the planning algorithm has the form:

1f
min Cx,u,1) = ¢(Xﬁnal’ Ifinal) + f J(x,u, t)dt ()
0

subject to:
X(tinit) = Xinit Initial condition
X(Zfina1) € Xgoal
x(1) = f(x(1), u(1), 1)
X(1) € Xree

u) e U

Terminal condition
System dynamics
Obstacle avoidance
Actuator constraints

The problem of interest is to guide the robot from an initial
state Xiyj¢ to a goal region Xgoal. J(X, 0, 1) and ¢(Xgnat, final)
are the cost functional over the state trajectory and termi-
nal cost penalty, respectively. The solution to this problem
is the control input u(¢) that satisfies the listed constraints
while also minimizing J. The problem in Equation (2) is
non-convex due to the system dynamics constraints evolv-
ing as a nonlinear function f(x(#),u(z),?) and the obstacle
avoidance constraints X(7) € Xfree.

Our proposed methodology for solving (2) entails a two-
step approach:

1. Use a sampling-based planner to generate a
dynamically-feasible, collision-free solution of a
particular homotopy class (3.3)



2. Refine the trajectory using SCP to find a locally opti-
mum solution (3.4)

3.2 Dynamics

We explicitly incorporate the rotational motion of the robot
by including orientations and angular velocity in the con-
figuration space used for sampling:

x = (r,v,q0)" 3)

r,v € R? are the robot position and velocity, respectively,
expressed in a locally fixed inertial frame. w € R? is the
angular velocity also expressed in the inertial frame. From
(I), the pose of a rigid body is given by its position and
orientation. In this work, we choose to represent the ori-
entation using the quaternion parameterization of attitude
q € S°. The set of unit quaternions is:

S* ={qer*|liql, = 1}

The local geometry of S O(3) is identical to that of S* and
it should be noted that there exists a two-to-one mapping
between antipodal unit quaternions q and —q to the corre-
sponding orientation R € S O(3) [16].

The translational dynamics are given by a simple double
integrator system:

MR MR AL

m is the robot mass and F € R? is the force. The nonlinear
rotational dynamics are:

1
q= Eﬂ(w)q ®)
0=J"'M-wxJo) (6)

Q(w) is the skew-symmetric matrix representation of the
cross-product operation. M € R? is the moment applied
and J is the inertia tensor.

3.3 Initial Trajectory Generation

Sampling-based planning techniques search for feasible
and approximately-optimal paths for a system by draw-
ing samples from the system’s configuration space and
attempting edge connections between them. Provided a
“black-box” collision checker, samples and edge connec-
tions can be checked for constraint satisfaction and thrown
out if in violation, thus avoiding an explicit geometric
construction of valid (i.e. collision-free) regions of the
configuration space. This implicit description of the free
configuration space is key to enabling scalability to high-
dimensional problems. In this work, the initial collision-
free trajectory is solved for using an implementation of the
kinodynamic rapidly-exploring random trees (kino-RRT)
[3]. We use the control-sampling-based approach from
kino-RRT to ensure that the initial seed for the trajectory
optimization is dynamically feasible. The output of the
planner is a tree (V, E, U), where V is a set of vertices in
the configuration space and the controls U corresponding
to the edges E connecting the vertices.

3.4 Trajectory Refinement

Solutions of sampling-based planners may be of poor qual-
ity in the sense that they appear too unnatural or jerky for
the robot to carry out even when dynamically feasible. SCP
is an optimization-based method for smoothing the trajec-
tory using a notion of smoothness in the objective function.
Each iteration of SCP consists of convexifying the objec-
tive and constraints around a reference trajectory (x*, u™)
and solving for a step (Ax", Au™) that leads to improve-
ments in the objective function and constraint satisfaction.

Because convex approximations of the problem are only
valid within a region close to the nominal trajectory, SCP
keeps track of a trust region A” near the previous solu-
tion x}(”_l) that the new solution x}{”) must lie within. The
trust region constraint determines whether the trust region
should shrink or grow based upon the accuracy of the local

approximation of the non-convex constraint.

3.4.1 Trust Region Updates

The trust region size A" is updated by calculating the ratio:

Iy - Ix™)

) _ Bl e
Iy = Jx™)

0 (7N

Here, J is the convexified model of the problem at hand.
The numerator and denominator in (7)) represent the actual
and predicted improvements in cost, respectively, between
iterations n — 1 and n. A value of p™ close to 1 then in-
dicates a good matchup between the nonlinear and convex
models and the trust region expands by a preset factor Sgycc-
Correspondingly, a low or possibly negative value of p™
indicates a poor local model of the problem and A™ shrinks
by preset factor B

On R”, the trust region constraint is typically the Euclidean
distance between the decision variables at the current iter-
ation n and the previous one n — 1:

) -1)
I — "D, < A®

For planning on S E(3), we use the notion of a minimum
swept volume to define the trust region in which refine-
ments to the trajectory must lie within.

Because the Riemannian distance metric is more difficult to
compute on S E(3), we instead treat (r,q) € M = R3 x 83,
such that S E(3) is strictly contained in M. M is equipped
with the Riemannian metric gy = gr3 + g3, Where ggs i
the flat metric of R? and g is the metric induced by the flat
metric of R* and the pull-back operator, i.e. gg = i*ggs,
where i : 8> — R* is the canonical immersion.

By standard arguments of Riemannian geometry [17], we
know that the Riemannian distance dp(Xg,X;) of two
points X and x; in M can be evaluated as

1
dr(x0,x1) = f o (Ol
0
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Figure 3 Quadratic approximation of
arccos?(x) for x € [-1, 1].

where oy : [0,1] — M is a geodesic with respect to the
Levi-Civita connection related to g ¢, joining Xo to X;. Sim-
ilar arguments provide that o5 has the form

(try + (1 = Org, s3(1)

where og:(7) : [0,1] — S? is a geodesic in S* joining qq

to q;. Thus,

1
dpi(x0, 1) = fo iy =l + 0 () - e

Here, 0'193 (t)-o-j93 (¢) is the standard inner product on R*, and
it can be shown that this expression reduces to arccos>(qp -
q). Thus, the Riemannian distance on M is given by:

dp(o0,x1) = liry = Toll* + arccos2(qo - q1)  (8)

This arccos?(qq - q;) term cannot be used in a disciplined
convex programming framework [18]] and must be approx-
imated before being used as a trust region constraint on
M. As shown in Fig. for arguments x in the range
—1 < x < 1, arccos?(x) is lower bounded by:

T 2
(Ea(l - x)) <arccos’(x) xe[-1,1] 9)

A derivation of this constraint and the constant value « are
given in [19]. The quadratic approximation of the con-
straint in (8] can then be written as:

N (e | R

Because a quaternion on S* has a unity norm constraint
llgell, = 1, the argument of qq - q; is automatically guaran-
teed to lie in the valid range x € [—1, 1] for Equation (9),
so the quadratic approximation will always be valid. The
nonlinear unity norm constraint is satisfied iteratively in the

convex optimization using the following two constraints:

lall <1 (1D

ol "I -1+ V(g "I @ -q/""")=0 (12

Further, we also constrain the scalar component of the
quaternion g,, to one hemisphere of S* by canonicalizing
all quaternion decision variables with a non-negativity con-
straint to avoid wildly spinning steering solutions:

Gk 20 13)

The trust region constraints for the velocity and angular ve-
locity are simply the Euclidean norm:

Ve — v D)2 < AP (14)
-1
lof” - w1l < AY (15)

3.4.2 Convexification of Nonlinear Equality
Constraints

Equation (2) includes two nonlinear equality constraints
that must be satisfied, the nonlinear dynamics over S3 and
the quaternion norm constraint ||q|l, = 1. We linearize the
nonlinear rotational dynamics, denoted fs3, using a trape-
zoidal approximation:

(n) — <
S k+1 Sk

At (n-1) (n=1) (o) o)
?[fs“(xﬁ )t Ag i Kot ~ X )t

+

1 1
B, = M) + fss oxGr )+

A(” 1)(X(”) ("l 1)) +B (M(n) M](gn_l))] (16)

()

3k
the dynamics q; € S* and w, € R3. The step size At is
(tf —1to)/N where N + 1 is the total number of discretization
nodes. As the translational and rotational control for AFFs
are decoupled, only the torque M is considered for refining
the rotational trajectory. Ag’}_’kl) is the local linearization of

(n=1)
S3.k

Here, x; , refers strictly to the rotational components of

fs3 about x and Bg: is a constant matrix:

ofs O

- s =
oxg,, oM

(1) _
AS3,k -

The discretized double integrator dynamics for (4) are:

ol = (FBxFY (7

(At _(3APL
Aps ‘(0 I ) By ‘( Atls

X = ARsx

xgs € RS includes the position r and velocity v. Ags and
Bgs are the discrete state update matrices.

3.4.3 Thruster Constraint Satisfaction

The cost function to be minimized for the problem may
be any convex cost function. AFFs such as Astrobee and
SPHERES typically use two thrusters on each face, for a



total of 12 for translational and rotational control. The cho-
sen cost function for this configuration seeks to minimize
chatter in the individual thruster commands f € R1%:

N-2

JOu, 1) = 3 s = ly
k=0

This objective must be accomplished while satisfying con-
trol allocation and individual thruster limits as well:

F
(M) = R(q)Gf (18)
o<t (19)

G € R®12 s the control allocation matrix. Note that the
individual thruster commands must be converted from the
body to inertial frame using the rotation matrix R(q). As
this conversion is a non-convex constraint, we approximate
the R using the previous quaternion solution R(q("_l)).

k
3.4.4 SCP Algorithm

We model the control inputs F; and M, as zero-order holds.
The decision variables for the convex optimization are the
pose (r,q), twist (v, w), and controls (F,M). The convex
optimization problem to be solved at each iteration is given
as:

N-2
min > llfe £l (20)
k=0

subject to:

X0 = Xinit XN = Xfinal

”Vk||2 < Vimaxs k = 0,...,N
”wk”Z < Wmax» k:O,...,N
”Fk”ZSFmax, k=0,...,N—1
IMklly € Miax, k=0,...,N-1

(10), (T1), (12), (13), (4, (@15) k=0,...,N
@@, (@7 k=0,....N-1
(@), k=0,....N-2

3.5 Planning Algorithm

In this work, we implemented kino-RRT detailed in [3]], but
we note that the trajectory refinement algorithm below can
be integrated into any planner that outputs a set of edges £
that form a dynamically-feasible trajectory to the goal. Al-
gorithm|[T|shows the steps in the SCP approach to trajectory
refinement.

4 SIMULATIONS
4.1 Implementation

The planning algorithm was implemented in the Julia lan-
guage and was run on a Linux system equipped with a

Algorithm 1 Sequential Convex Programming

Require: solution edges E, vertices V, and controls U
from kino-RRT [3]l, Beuces Braits A?, 0 < p@ < pM <
o? <1

1: for Convexifylterationn = 1,2,... do

2 Solve optimization problem in

3 Calculate true and modeled improvements in cost

4: Calculate model accuracy ratio p™ in

5: if p® < p© then

6 Reject solution (x™, u™)

7 AMD — By AW

8

9

else
Accept solution (x™, u™)
10: Update trust region size
BratA™  p™ < p
11: AED — J A p(n) c [p(l),p(z))
ﬁSUCCA(n) p(n) 2 p(Z)
12: end if
13: end for

Parameter | Value |

N 51
50 0.10
o 0.25
P 0.90
Bsuce 1.2
Brail 0.5
Asey | 0.80
A, 0.20
Ay 0.25

Table 1 SCP simulation parameters.

2.80GHz Intel i7 processor with 32GB memory. For the
convex optimization problems, we used Convex.jl [18]] as
the solver interface and Gurobi [20] as the solver. Initial
simulation parameters for the SCP iterations are given in
Table (T) and the constraint values for Equation (20) corre-
spond to the Astrobee robot constraints from [2]].

4.2 Results

The planning scenario shown in Figure[d]involves the robot
moving across an ISS module to reach a goal region in po-
sition and orientation. The initial trajectory used for re-
finement was generated using kino-RRT such that the con-
straints in (20) were initially satisfied, resulting in a trajec-
tory that was 28s long. In order to keep the number of dis-
cretization nodes low, the trajectory refinement is carried
out in a receding horizon fashion where the first few way-
points from the kino-RRT output is sampled at a Ar = 0.01
to retain an accurate approximation of the nonlinear rota-
tional dynamics. Points further along in the trajectory are
sampled at intervals of Az = 1s and this initial trajectory
is used as (x,u”). Each trajectory refinement iteration re-
quires 0.35s to solve for a total of approximately 2.1s for
six iterations of SCP.



Figure 4 Translational trajectory of robot in
workspace.

S CONCLUSIONS

In this work, we presented results on using sequental con-
vex programming as a means of refining dynamically free
trajectories for free-flying robots while satisfying group
constraints on S E(3). The approach seeks to leverage
the collision-free trajectory returned by the sampling-based
planner and construct a locally optimal trajectory about this
homotopy class.

Future areas of exploration include theoretical guarantees
on (1) the convergence properties of the SCP optimizer to
a solution and that (2) this solution satisfies the necessary
conditions for the nonlinear optimal control problem in (2).
We seek to demonstrate the efficacy of this approach via
implementation of a planar air-bearing free-flying robot test
bed. We would also like to investigate a free-final time
formulation in which SCP solves for the optimal time step
At from Equations (5) and while accurately satisfying
the non-linear dynamics constraints.

Real-time, kinodynamic motion planning remains a chal-
lenge with the dynamics in consideration for AFFs. As a
part of our future work, we expect to leverage recent contri-
butions from the fields of robotics, optimization, and con-
trol to develop a tractable algorithmic framework that can
be deployed in space.
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