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Abstract— Sequential Convex Programming (SCP) has re-
cently seen a surge of interest as a tool for trajectory optimiza-
tion. Yet, most available methods lack rigorous performance
guarantees and are often tailored to specific optimal control se-
tups. In this paper, we present GuSTO (Guaranteed Sequential
Trajectory Optimization), an algorithmic framework to solve
trajectory optimization problems for control-affine systems
with drift. GuSTO generalizes earlier SCP-based methods for
trajectory optimization (by addressing, for example, goal region
constraints and problems with either fixed or free final time),
and enjoys theoretical convergence guarantees in terms of con-
vergence to, at least, a stationary point. The theoretical analysis
is further leveraged to devise an accelerated implementation of
GuSTO, which originally infuses ideas from indirect optimal
control into an SCP context. Numerical experiments on a
variety of trajectory optimization setups show that GuSTO
generally outperforms current state-of-the-art approaches in
terms of success rates, solution quality, and computation times.

I. INTRODUCTION

Trajectory optimization algorithms play a key role in
robot motion planning, either applied directly to solve mo-
tion planning problems or used to refine coarse trajectories
generated by other methods. A wide variety of algorithmic
frameworks have been proposed [1]–[8], and though they
have had success on a broad class of robotic systems, a large
gap remains in establishing practical guidelines for applying
trajectory optimization to new systems and problem setups,
placing guarantees on their behavior, and fully exploiting
optimal control theory to improve performance.

In particular, additional work is required to achieve more
general, well-analyzed frameworks for trajectory optimiza-
tion algorithms which meet the following key desiderata:

1) High computational speed: Even on high-dimensional
systems having complex dynamics and constraints, tra-
jectory optimization algorithms should converge rapidly,
allowing quick reactions to commands and rapid replan-
ning in uncertain or changing environments.

2) Theoretical guarantees: A reliable framework hinges on
strong theoretical guarantees. Specifically, trajectory op-
timization algorithms should (i) guarantee initialization-
independent convergence to, at least, a stationary point,
(ii) ensure hard enforcement of dynamical constraints,
especially as many robotic systems are nonholonomic,
and (iii) provide that these guarantees are discretization-
independent, since some robotic systems may call for
specific numerical schemes.

3) Generality: Trajectory optimization frameworks should
be broadly applicable to different robot motion planning
problems, including involving complex robotic systems
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Fig. 1: Using the proposed algorithm to generate a dynamically-
feasible, collision-free trajectory for the Astrobee free-flying space-
craft robot using a simple straight-line initialization [9].

(e.g., nonconvex, nonholonomic dynamics, drift sys-
tems, etc.), flexible problem setups (e.g., free final time,
goal sets, etc.), and diverse initialization strategies.

Related work: The trajectory optimization spectrum can be
divided into global search methods and local methods. Global
search methods include motion planning techniques, such
as asymptotically optimal sampling-based motion planning
(SBP) algorithms (e.g., RRT∗, PRM∗, and FMT∗) [10]–[12].
Though these require no initialization, they scale poorly to
high-dimensional systems with kinodynamic constraints. For
such systems, they require enormous computational time and
are thus instead used in practice to initialize other trajectory
optimization algorithms.

Local methods include indirect methods, in particular
including shooting methods [8]. Built on an efficient coupling
of necessary conditions of optimality, such as the Pontryagin
Maximum Principle [13], and Newton’s methods, these have
the fastest convergence rate, but they are highly sensitive to
initialization and are thus difficult to apply to different tasks.
Another class of efficient local procedures is direct methods.
One of these, and the focus of this paper, is sequential convex
programming (SCP), a framework which has been quite
successful in the robotics community [1]–[3], [14]–[16].
SCP successively convexifies the costs and constraints of a
nonconvex optimal control problem, seeking a solution to the
original problem through a series of convex problems [17],
[18]. Examples include TrajOpt [1], Liu, et al. [2], and Mao,
et al. [3]. However, these suffer a number of deficiencies, as
summarized in Table I. For example, TrajOpt provides high
speed and broad applicability to robotic systems, but the pe-
nalization of dynamical constraints and missing development
of convergence guarantees preclude exact feasibility and
numerical robustness, respectively. Similarly, [2] only holds
for a particular time-discretization, and though the approach
in [3] is discretization-indepedent, it cannot ensure hard
enforcement of dynamics. Further, its convergence analysis
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This Work • • • • • •

TABLE I: Comparison with existing trajectory optimization schemes.

relies on complex Lagrange multipliers from which it is hard
to extract numerically useful information, a key capability
exploited in part in our work. Finally, in most of these works,
extensions to free final time and goal set constraints are not
addressed.

One last family of widespread procedures in trajectory
optimization are variational methods. These include deter-
ministic covariant approaches such as CHOMP [6] and
probabilistic gradient descent approaches such as STOMP
[7]. Similar to SCP, these do not necessarily require high-
quality initializations, but theoretical guarantees are not easy
to provide. Indeed, CHOMP does not incorporate the dynam-
ical evolution of a system, while STOMP can only account
for constraints through direct penalization, preventing hard
enforcement of dynamics. Moreover, both approaches do not
provide convergence guarantees.

Statement of Contributions: To begin to fill these gaps,
our main contributions in this paper are as follows: First,
we introduce Guaranteed Sequential Trajectory Optimization
(GuSTO), an SCP-based algorithmic framework for trajec-
tory optimization. More precisely, we provide a generalized
continuous-time SCP scheme applied to drift control-affine
nonlinear dynamical systems subject to control and state
constraints (including collision-avoidance) and goal region
constraints, with either fixed or free final time, and guaran-
teeing dynamic feasibility. Second, we provide a theoretical
analysis for this framework, proving that that the limiting
solution of our continuous-time scheme is a stationary point
in the sense of the Pontryagin Maximum Principle [13]. This
generalizes the work in [3] for control-affine systems and
introducing stronger theoretical guarantees than the current
state-of-the-art. Moreover, the generality of our framework
allows that these guarantees are independent of the chosen
time discretization scheme and the method used to find a
solution at each SCP iteration. In addition, the framework
is broadly applicable and the guarantees extend to many
different robot motion planning and trajectory optimization
problems. This analysis is further leveraged to accelerate
convergence by initializing shooting methods with the dual
solutions of SCP iterations. Third, we provide practical
guidelines based on our analysis, including proper handling
of constraints and initialization strategies. Moreover, we
demonstrate the framework through numerical and hardware
experiments, comparing with other approaches, and we pro-
vide a Julia library for our trajectory optimization framework.

To the best of our knowledge, our framework uniquely
meets all three aforementioned desiderata, rapidly provid-
ing theoretically desirable trajectories for a broad range
of robotic systems and problem setups (see Table I for a
comparison with existing approaches).

II. PROBLEM FORMULATION AND OVERVIEW OF SCP
We begin by reviewing the optimal control problem of

interest in Section II-A and provide an overview of an SCP
framework for trajectory optimization in II-B.

A. Trajectory Optimization as an Optimal Control Problem
Given a fixed initial point x0 ∈ Rn and a final goal set

Mf ⊆ Rn, for every final time tf > 0, we model our
dynamics as a drift control-affine system in Rn of the form
ẋ(t) = f(x(t), u(t)) = f0(x(t)) +

m∑
i=1

ui(t)fi(x(t))

x(0) = x0 , x(tf ) ∈Mf

(
dist(x0,Mf ) > 0

) (1)

where fi : Rn → Rn, i = 0, . . . ,m are C1 vector fields.
In this context, we design trajectory optimization as an

optimal control problem with penalized state constraints.
More specifically, we consider the Optimal Control Problem
(OCP) consisting of minimizing the integral cost

J(tf ,x, u) =

∫ tf

0

f0(x(t), u(t)) dt =∫ tf

0

(
‖u(t)‖2R + u(t) · f0(x(t)) + g(x(t))

)
dt

(2)

under dynamics (1), among all the controls u ∈
L∞([0, tf ],Rm) satisfying u(t) ∈ U almost everywhere in
[0, tf ]. Here, f0 : Rn → Rm, g : Rn → R are C1, ‖ · ‖R
represents the norm that is given by a constant positive-
definite matrix R ∈ Rm×m, and U ⊆ Rm provides control
constraints. The final time tf may be free or fixed, and
hard enforcement of dynamical and goal set constraints are
naturally imposed by (1). Function g = g1 + ωg2 sums up
the contributions of original state-depending terms g1 of the
cost and of every state constraint violation g2 (including
collision-avoidance constraints), where ω ≥ 1 is some penal-
ization weight. We stress that penalizing state constraints is
fundamental to obtaining theoretical guarantees in the sense
of the classical Pontryagin Maximum Principle [13] (see
Theorem III.1), stronger than standard Lagrange multiplier
rules. However, in Sec. III, we provide an algorithm under
this formulation which can still enforce hard state constraints
up to some chosen tolerance ε ≥ 0.

B. Sequential Convex Programming
We proceed by applying sequential convex programming

to solve our optimal control problem. Under the assumption
that U is convex, SCP consists of iteratively linearizing the
nonlinear contributions of (OCP) around local solutions,



thus recursively defining a sequence of simplified problems.
More specifically, for a given t0f > 0, assume we have
some continuous curve x0 : [0, t0f ] → Rn and some control
law u0 : [0, t0f ] → Rm, continuously extended in the
interval (0,+∞). Defined inductively, at iteration k+ 1, the
Linearized Optimal Control Problem (LOCP)k+1 consists of
minimizing the new integral cost

Jk+1(tf , x, u) =

∫ tf

0
f0
k+1(t, x(t), u(t)) dt =∫ tf

0

(
‖u(t)‖2R + hk

(
‖x(t)− xk(t)‖2 −∆k

))
dt+∫ tf

0
u(t) ·

(
f0(xk(t)) +

∂f0

∂x
(xk(t)) · (x(t)− xk(t))

)
dt+∫ tf

0

(
gk(xk(t)) +

∂gk

∂x
(xk(t)) · (x(t)− xk(t))

)
dt

(3)

where gk = g1 +ωkg2, hk(s) =

{
0 s ≤ 0

ωke
−1/s s > 0

, under

the new dynamics

ẋ(t) = fk+1(t, x(t), u(t)) =(
f0(xk(t)) +

m∑
i=1

ui(t)fi(xk(t))

)
+

(
∂f0

∂x
(xk(t)) +

m∑
i=1

ui
k(t)

∂fi

∂x
(xk(t))

)
· (x(t)− xk(t))

x(0) = x0 , x(tf ) ∈Mf

(4)

coming from the linearization of nonlinear vector fields,
among all controls u ∈ L∞([0, tf ],Rm) satisfying u(t) ∈ U
almost everywhere in [0, tf ], where (tkf , xk, uk) is a solution
for the linearized problem at the previous iteration, i.e.
(LOCP)k, continuously extended in the interval (0,+∞).
As a result of the functions hk ∈ C∞, we can provide trust-
region-type constraints on state trajectories using uniformly
bounded scalars 0 ≤ ∆k ≤ ∆0 and weights 1 ≤ ω0 ≤ ωk ≤
ωmax (no such bounds are considered on controls because
u appears linearly), which at the same time penalize state
constraints g2. Here, the user may make vary ∆k and ωk at
each iteration — these are used merely to ease the search for
a solution of (LOCP)k+1. Problem (LOCP)1 is linearized
around an initializing couple (x0, u0), and this initialization
curve should be as close as possible to a feasible or even
optimal curve for (LOCP)1, although we do not require that
(x0, u0) is feasible for (OCP).
Remark II.1. In formulations (LOCP)k, we linearize the
terms depending on the state. However, in the case that
convex functions of the state appear within the cost, both
our numerical scheme and our theoretical result still hold
even if these convex terms are not linearized (the proof of
this fact exactly retraces the proof of our convergence result).

The sequence of problems (LOCP)k is correctly defined
if, for each iteration k ≥ 1, an optimal solution for (LOCP)k
exists. For this, we consider the following assumptions:
(A1) The set U is compact and convex, while the set Mf is a

compact submanifold (either with or without boundary).
(A2) Mappings f0, g, vector fields fi, i = 0, . . . ,m and

their differentials have compact supports.
(A3) At every iteration k ≥ 1, problem (LOCP)k is feasible.

Moreover, for free final time problems, there exists a
constant b > 0 such that, every feasible tuple (tf , x, u)
for (LOCP)k satisfies tf ≤ b, for every iteration k ≥ 1.

Under these assumptions, classical existence Filippov-type
arguments [19], [20] show that, at each iteration k ≥ 1, the
problem (LOCP)k has at least one optimal solution. Here,
some comments are in order. Assumption (A2) is not limiting
and can be easily satisfied by multiplying all noncompliant
maps by some smooth cut-off functions having supports
contained in the working space. Moreover, it is standard
in control theory to assume time-bounded strategies, and
we can satisfy Assumption (A3) by simply considering the
notion of virtual control [3]. Indeed, we stress the fact that
most trajectory optimization applications effortlessly satisfy
Assumptions (A1)-(A3).

III. GUSTO: ALGORITHM OVERVIEW
AND THEORETICAL ANALYSIS

In this section, we present the algorithmic details for
GuSTO in III-A and discuss its theoretical convergence
guarantees to a stationary point in III-B.

A. Generalized SCP Algorithm
SCP aims to solve (OCP) by iteratively seeking solutions

for (LOCP)k. For this, a careful approach to progressing
through iterations is crucial to obtaining efficiency and fast
computation. Supported by classical approaches [21] and
more recent results in SCP for robot trajectory optimization
[1], [3], we propose a new general SCP scheme, named
GuSTO (Guaranteed Sequential Trajectory Optimization), to
solve (OCP), as reported in Algorithm 1. Our main novelties
are: 1) a time-continuous, system-independent setup ensuring
convergence to a stationary point in the sense of the Pontrya-
gin Maximum Principle [13] (see Corollary III.1), 2) hard
enforcement of dynamical constraints and ease in considering
free final time and goal set frameworks, 3) a refined trust-
region radius adaptation step based on a new model accuracy
ratio which provides a definition of relative error between
iterations and prevents to become stuck within the loops of
the algorithm, 4) a theoretically justified stopping criterion
based on proximity between iterated solutions and not on the
achievement of a local optimal solution.

Once, at some given iteration k, (LOCP)k+1 is solved
(line 4), we first check whether hard trust-region constraints
are satisfied. In a positive case, we evaluate the ratio

ρ(k) = Nk/Dk =

(
|J(tk+1

f , xk+1, uk+1)− Jk+1(t
k+1
f , xk+1, uk+1)|+∫ t

k+1
f

0

‖f(xk+1(t), uk+1(t))− fk+1(t, xk+1(t), uk+1(t))‖ dt

)/
(
|Jk+1(t

k+1
f , xk+1, uk+1)|+

∫ t
k+1
f

0

‖fk+1(t, xk+1(t), uk+1(t))‖ dt

)
(5)

which represents the relative error between the original
cost/dynamics and their linearized versions. If this error is
greater than some given tolerance, the linear approximation is
too coarse and we reject the new solution, shrinking the trust
region (lines 7-9). Otherwise, we accept and update the trust
region radius (lines 11-12 [3]). Moreover, in the case that
hard-penalized state constraints are not satisfied, we increase
the value of the weight ωk (line 13), pushing the solver to
seek constraint satisfaction (up to some threshold ε ≥ 0) at
the next iteration. On the other hand, when only soft trust-
region constraints are satisfied, we increase the weight ωk
by maintaining the same radius ∆k (lines 15-16), pushing
the solver to look for solutions that enforce hard trust-region
constraints. The algorithm ends when successive iterations



Algorithm 1: GuSTO
Input : Trajectory x0 and control u0 defined in (0,∞).
Output: Solution (xk, uk) for (LOCP)k at iteration k.
Data : State constraints data ∆0 > 0, ω0 ≥ 1, ε ≥ 0;

Trust region scaling parameters 0 < βfail < 1,
βsucc > 1, 0 < ρ0 < ρ1 < 1, γfail > 1.

1 begin
2 k = 0
3 while (tk+1

f , xk+1, uk+1) 6= (tkf , xk, uk) and
ωk+1 ≤ ωmax do

4 Solve (LOCP)k+1 for (tk+1
f , xk+1, uk+1)

5 if ‖xk+1 − xk‖2(·) ≤ ∆k then
6 Calculate model accuracy ratio ρ(k) in (5)
7 if ρ(k) > ρ1 then
8 Reject solution (tk+1

f , xk+1, uk+1)
9 ∆k+1 ← βfail∆k , ωk+1 ← ωk

10 else
11 Accept solution (tk+1

f , xk+1, uk+1)

12 ∆k+1 ←
{

min{βsucc∆k,∆0} ρ(k) < ρ0
∆k ρ(k) ≥ ρ0

13 ωk+1 ←
{
ω0 g2(xk+1(·)) ≤ ε
γfailωk g2(xk+1(·)) > ε

14 else
15 Reject solution (tk+1

f , xk+1, uk+1)
16 ∆k+1 ← ∆k , ωk+1 ← γfailωk

17 k ← k + 1

18 return (tkf , xk, uk)

reach some identical solution or when the state constraints
weight is greater than the maximal value ωmax.
Remark III.1. As a result of Assumptions (A1)-(A3), we
have Nk ≤ ωkC̃‖xk+1 − xk‖C0 , where C̃ ≥ 0 is some
constant depending only on quantities defining (OCP). More-
over, since every solution (tkf , xk, uk) satisfies the initial and
final conditions for (1), it holds that 0 < dist(x0,Mf ) ≤
‖xk+1(tk+1

f )−xk+1(0)‖ ≤ Dk. Therefore, since ωk ≤ ωmax,
it is easily seen that Algorithm 1 never becomes stuck in the
rejection step provided by lines 7-9.

No assumption on the initializing strategy (x0, u0) is
taken. From a practical point of view, this allows us to
initialize GuSTO with simple, even infeasible, guesses for
solutions of (OCP), such as a straight line in the state space.
In this case, a suitable choice of the maximal value of the
trust region radius ∆0 could be crucial to allow the method
to correctly explore the space, given that the provided initial-
ization is far from any optimal strategy. Finally, increasing
the value of weights ωk at line 3 of GuSTO empirically eases
the search for final solutions satisfying hard penalized state
constraints (depending on the value of ε).

B. Theoretical Convergence Guarantees

In this section, we prove that GuSTO has the property of
guaranteed convergence to an extremal solution. This result is
achieved by leveraging techniques from indirect methods in a
direct method context, which is a contribution of independent
interest discussed further in Section III-C.

The convergence of GuSTO can be inferred by adopting
one further regularity assumption concerning (LOCP)k:

(A4) At every iteration k ≥ 1 of SCP, every optimal control
uk of (LOCP)k is continuous.

We stress the fact that, even if Assumption (A4) seems to
be a limiting requirement, many control systems in trajectory
optimization applications naturally satisfy it. Moreover, the
normality of Pontryagin extremals is sufficient (under minor
assumptions) to ensure that Assumption (A4) holds [22].
In addition, from the transversality conditions, only normal
Pontryagin extremals exist for (OCP) whenever the final
constraint is of type x(tf ) = xf and penalized in the cost
(we suggest classical references [20], [23] for detail).

In view of the Pontryagin Maximum Principle [13], our
main theoretical result for SCP is the following:
Theorem III.1. Suppose that Assumptions (A1)-(A4) hold.
Given any sequence of trust region radius and weights
((∆k, ωk))k∈N ⊆ [0,∆0]× [ω0, ωmax], let ((tkf , xk, uk))k∈N
be any sequence such that, for every k ≥ 1, (xk, uk) is
optimal for (LOCP)k in [0, tkf ]. Up to some subsequence:

• tkf → t̃f ∈ [0, b], for the strong topology of R
• xk→ x̃ ∈ C0([0, t̃f ],Rn), for the strong topology of C0

• uk → ũ ∈ L∞([0, t̃f ], U), for the weak topology of L2

as k tends to infinity, such that, (x̃, ũ) is feasible for (OCP) in
[0, t̃f ]. Moreover, there exists a nontrivial couple (p̃, p̃0) such
that the tuple (x̃, p̃, p̃0, ũ) represents a Pontryagin extremal
for (OCP) in [0, t̃f ]. In particular, as k tends to infinity, up
to some subsequence:
• (pk, p

0
k)→ (p̃, p̃0) for the strong topology of C0 × R

where (xk, pk, p
0
k, uk) is a Pontryagin extremal of (LOCP)k.

Finally, for fixed final time tf problems, we have t̃ = tf .
For sake of concision and continuity in the exposition,

we report the proof of Theorem III.1 in the Appendix. The
convergence of GuSTO to a stationary point, in the sense
of the Pontryagin Maximum Principle, for (OCP) is quickly
obtained as a corollary.
Corollary III.1. Under (A1)-(A4), in solving (OCP) by
Algorithm 1, only three mutually exclusive situations arise:

1) There exists an iteration k ≥ 1 for which ωk > ωmax.
Then, Algorithm 1 terminates, providing a solution for
(LOCP)k satisfying only soft state constraints.

2) There exists an iteration k ≥ 0 for which
(tk+1
f , xk+1, uk+1) = (tkf , xk, uk). Then, Algorithm 1

terminates, providing a stationary point, in the sense of
the Pontryagin Maximum Principle, for (OCP).

3) We have (tk+1
f , xk+1, uk+1) 6= (tkf , xk, uk), for every

iteration k ≥ 0. Then, Algorithm 1 builds a sequence of
optimal solutions for (LOCP)k that has a subsequence
converging (with respect to appropriate topologies) to
a stationary point, in the sense of the Pontryagin Max-
imum Principle, for the original problem (OCP).

Proof. Thanks to Remark III.1, it is clear that only these
three cases may happen and that they are mutually exclusive.
Then, we only need to consider cases 2) and 3). The latter
follows from Theorem III.1. If Algorithm 1 falls into case
2), then, by applying the Pontryagin Maximum Principle [13]
to (LOCP)k+1, we have that (xk+1, pk+1, p

0
k+1, uk+1) is the

desired (Pontryagin) stationary point for (OCP).

Case 1) of Corollary III.1 represents a failure and means
that we are no longer able to compute useful optimal feasible
strategies. The same occurs when considering TrajOpt [1].



(a) Using controller-tracked straight-line initialization (b) Using SOS planning initialization

Fig. 2: Comparing initialization strategies on an 8D airplane model for three different SCP algorithms.

On the other hand, both cases 2) and 3) represent success.
However, it is important to remark that, from a practical
point of view, because of numerical errors, when we begin
satisfying some convergence criterion on ((tkf , xk, uk))k∈N
(which is up to the user) while solving (OCP) by GuSTO,
we usually fall into case 3) and rarely fall into case 2) of
Corollary III.1. At this point, Theorem III.1 becomes crucial
to ensure that we are actually converging to a stationary
point, in the sense of the Pontryagin Maximum Principle,
for (OCP). This holds for the whole sequence of solutions
(tkf , xk, uk), since it is itself a converging subsequence.

Notice that a similar framework is considered in [3], in
which, for an infinite number of iterations, one can only
provide weak convergence up to some subsequence if the
control constraint set U ⊆ Rm is convex and compact. In-
deed, this last assumption does not imply that L∞([0, tf ], U)
is compact (e.g., take U to be the closed unit ball [24]).
In any case, the result provided by Theorem III.1 remains
stronger because, unlike [3], we obtain strong convergence
of both trajectories and Pontryagin extremals. This feature
can be exploited to provide convergence acceleration.

C. Accelerating Convergence using Shooting Methods

An important result provided by Theorem III.1 is the
convergence of Pontryagin extremals related to the sequence
of solutions of problem (LOCP)k towards a Pontryagin
extremal related to the solution of (OCP) found by GuSTO.
In particular, we can use this result to accelerate convergence
by warm-starting shooting methods [8] using dual solutions
from each SCP iteration.

This can be shown as follows. Assuming that GuSTO is
converging, the Lagrange multipliers λ0k related to the initial
condition x(0) = x0 for the finite dimensional discretization
of problems (LOCP)k approximate the initial values pk(0)
of the adjoint vectors related to each (LOCP)k [25]. Then,
up to some subsequence, for every small δ > 0, there exists
an iteration kδ ≥ 1 for which, for every iteration k ≥ kδ , one
has ‖p̃(0) − λ0k‖ < δ, where p̃ is an adjoint vector related
to the solution of (OCP) found by SCP. This means that,
starting from some iteration k ≥ kδ , we are allowed to run
a shooting method to solve (OCP), initializing it by λ0k. At
each iteration of GuSTO, we use the λ0k provided by the
solver to initialize the shooting method until convergence.
In practice, this method provides a principled approach to
facilitate fast convergence of sequential convex programming
towards a more precise solution.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, we provide implementation details and
examples to demonstrate various facets of our approach.

A. Implementation Details
We implemented the examples in this section in a new

trajectory optimization library written in Julia [26] called
GuSTO.jl, which is available at https://github.com/
StanfordASL/GuSTO.jl. Computation times reported
are from an Ubuntu 16.04 system equipped with a 4.3GHz
Intel i7 processor. For each system and compared algo-
rithm, we discretized the continuous time optimal control
problem using a trapezoidal approximation of the dynamics,
assuming a zero-order hold for the control. The discrete
time cost considered for each simulation is the minimum
energy min

∑N−1
k=1 ||uk||22∆t, where N is the number of

discretization points for the trajectory (set to 30-40 in the
presented results). An SCP trial is marked as successful if the
algorithm converges and the resulting solution is collision-
free. We used the Bullet Physics engine to calculate signed
distance fields used for obstacle avoidance constraints or
penalties [27], [28]. In comparisons with, Mao, et al. [3], as
their approach does not address nonconvex state inequality
constraints (e.g. collision avoidance), we chose to enforce
linearized collision-avoidance constraints in their algorithm
as hard inequality constraints.

B. Batch Comparison using a Simple Initialization Scheme
In this section, we compared the GuSTO algorithm with

previous SCP algorithms, TrajOpt [1] and Mao, et al. [3],
for a 12D free-flying spacecraft robot model, within a clut-
tered mock-up of the International Space Station. For these
dynamics, the state consists of position r ∈ R3, velocity
v ∈ R3, the Modified Rodrigues parameters representation
of attitude p ∈ R3, and angular velocity ω ∈ R3 [29]. State
constraints for this system included norm bounds on speed,
angular velocity, and control. We modeled the free-flyer robot
parameters after the Astrobee robot [9], details of which can
be found at [30].

We ran 100 experiments with different start and goal states
in the environment shown in Figure 1. Each trajectory was
initialized with a simple straight line in position space and a
geodesic path in rotation space and no control initialization.
The results of our simulations are presented in Figure 3. For
the set of simulations, both GuSTO and TrajOpt successfully
returned solutions for 97% of the trials, though GuSTO
on average performed faster and returned higher-quality

https://github.com/StanfordASL/GuSTO.jl
https://github.com/StanfordASL/GuSTO.jl


(a) Success
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(b) Optimal cost (on
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Fig. 3: Normalized simulation results for the 3D free-flying robot simulation.

solutions. Due to the simple initialization often being deep
in collision, Mao, et al. had a high failure rate, and failure
cases sometimes led to high computation times.

C. Initialization Strategies
In practice, when a high-quality initialization trajectory

(e.g. dynamically feasible, collision-free, close to a global
optimal, etc.) is readily available, it should be used. However,
an initial planner (even a coarse one) is often not available
and may be expensive to design or time-consuming to run.
Thus, we investigate the sensitivity of our approach to
initialization, including very simple initialization schemes,
again comparing with TrajOpt [1] and Mao, et al. [3].

In this section, we ran simulations on an 8D airplane
model, having dynamics as in [31]. To explore different
initialization strategies, we leveraged recent results from
[32]. This approach uses a lower-dimensional 4D planning
model to generate a path to the goal, which is tracked by
a controller to generate a dynamically-feasible trajectory
for the full-dimensional system. By planning with tubes
that account for model mismatch, the full 8D trajectory is
guaranteed to be collision-free.

Using this work, we tested three initialization strategies
of increasing quality for the 8D airplane: (1) a simple
straight line in the 8D state space, (2) an 8D dynamically-
feasible (but possibly in collision) trajectory generated using
a controller to track a straight-line initialization in 4D, and
(3) an 8D dynamically-feasible and collision-free trajectory
recovered from running the full motion planning with model-
mismatch tubes in 4D. As illustrated in Figure 2, the problem
scenario consists of guiding the airplane to a terminal goal
region across a cluttered environment.

For this system, due to the complex coupling in the dy-
namics, initialization (1) resulted in failure for all three SCP
algorithms. The results of initialization (2) can be seen in Fig.
2a, where GuSTO found a feasible solution, whereas Mao,
et. al. returned a trajectory without satisfying convergence
criteria, and TrajOpt resulted in collision. For the highest-
quality initialization (3), Mao, et al. did not return a solution,
wheras GuSTO and TrajOpt returned feasible trajectories,
with run times of 0.55s and 2.67s and cost improvements
over the initialization of 55% and 49%, respectively.

D. Shooting Method Acceleration
To investigate using dual solutions from our SCP iterations

to warm-start shooting methods and accelerate convergence,
we ran simulations on a simple 3D Dubin’s car and the
12D free-flyer robot, where the free-flyer was placed in an
obstacle-filled environment.

The acceleration technique gave very promising results,
as shown in Table II. In practice, running a shooting method
to completion, whether to convergence or to a maximum
number of iterations, required negligible computation time
compared to an SCP iteration (< 1 ms). Thus, we attempted
a shooting method at every iteration of SCP. As shown,
using SCP to complete refinement was very time-consuming,
whereas the shooting method would converge after just a few
SCP iterations, thus reducing computation time for the car
and free-flyer models by 52% and 74%, respectively.

Dubin’s Car Free-flyer Spacecraft

Only
SCP

Shooting
SCP +

Only
SCP

Shooting
SCP +

SCP Iterations 12 6 11 3
Reported Cost 19.8 19.8 6.2 6.2
Running Time 94 ms 45 ms 570 ms 146 ms

TABLE II: Results accelerating convergence by using SCP dual
solution to warm-start a shooting method. SCP iterations report are
the number required for convergence.

V. CONCLUSIONS

In this paper, we provided a new generalized approach
to solve trajectory optimization problems, based on sequen-
tial convex programming. We showed strong theoretical
guarantees to ensure broad applicability to many different
frameworks in motion planning and trajectory optimization.
GuSTO was tested with numerical simulations and exper-
iments showing that more accurate solutions are achieved
faster than using some recent state-of-the-art SCP solvers.

Future contributions will focus on additional theoretical
guarantees. More precisely, we will study higher-order condi-
tions that GuSTO should naturally provide, showing its con-
vergence to more informative points than stationary points.
Moreover, we will study approaches to speed up GuSTO for
free final time problems. Finally, GuSTO will be tested on
high-DOF systems, such as robot arms and humanoid robots,
and we will use the algorithm for hardware experiments on
a free-flyer robot in a full SE(3) microgravity environment.
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APPENDIX: PROOF OF THEOREM III.1

A. Pontryagin Maximum Principle

Our theoretical result provides convergence of SCP proce-
dures towards a quantity satisfying first-order necessary op-
timality conditions under the Pontryagin Maximum Principle
[13]. Below, we report the Pontryagin Maximum Principle
for time-varying problems, which is useful hereafter.
Theorem V.1 (Pontryagin Maximum Principle). Let x be an
optimal trajectory for (OCP), associated with the control u in
[0, tf ]. There exist a nonpositive scalar p0 and an absolutely
continuous function p : [0, tf ] → Rn, called an adjoint
vector, with (p, p0) 6= 0, and such that, almost everywhere
in [0, tf ], the following relations hold:

• Adjoint Equations
ẋ(t) =

∂H

∂p
(t, x(t), p(t), p0, u(t))

ṗ(t) = −∂H
∂x

(t, x(t), p(t), p0, u(t))

(6)

• Maximality Condition

H(t, x(t), p(t), p0, u(t)) = max
v∈U

H(t, x(t), p(t), p0, v)

(7)
• Transversality Conditions

If Mf is a submanifold of M , locally around x(tf ),
then the adjoint vector can be built in order to satisfy

p(tf ) ⊥ Tx(tf )Mf (8)

and, in addition, if the final time tf is free, one has

max
v∈U

H(tf , x(tf ), p(tf ), p0, v) = 0 . (9)

Here, H(t, x, p, p0, u) = p · f(t, x, u) + p0f0(t, x, u) de-
notes the Hamiltonian related to (OCP) and the quantity
(x, p, p0, u) is called (Pontryagin) extremal. We say that an
extremal is normal if p0 6= 0 and is abnormal otherwise.

It is important to remark that Theorem V.1 provides more
informative multipliers than those given by the Lagrange
multiplier rule, because control constraints do not need to be
penalized within the cost, the related Hamiltonian is globally
maximized, and (p, p0) are only continuous functions.
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B. Pontryagin Cone Analysis
We provide the proof of Theorem III.1 for the case of

free final time problems, since, for fixed final time problems,
the proof is similar but simpler (and quite straightforward,
see below). The proof is based on the properties related
to Pontryagin cones [13]. Therefore, we start by providing
useful definitions and statements concerning these quantities.

Let x be a feasible trajectory for (OCP), with associated
control u in [0, tf ]. Throughout the proof, we assume that
tf is a Lebesgue point of u. Otherwise, one proceeds using
limiting cones as done in [20]. For every Lebesgue point
s ∈ [0, tf ] of u and every v ∈ U , we define local variations
as

ψs,vx,u =

(
f(x(s), v)− f(x(s), u(s))
f0(x(s), v)− f0(x(s), u(s))

)
. (10)

The variation vector ws,vx,u : [0, tf ]→ Rn+1 for (OCP) is the
solution of the following variational system

ψ̇(t) = ψ(t)

 ∂f

∂x
(x(t), u(t))

∂f0

∂x
(x(t), u(t))


ψ(s) = ψs,vx,u

. (11)

At this step, for every t ∈ [0, tf ], we define the Pontryagin
cone Kx,u(t) at t for (x, u) related to (OCP) to be the
smallest closed convex cone containing ws,vx,u(t) for every
0 < s < t Lebesgue point of u and every v ∈ U . Arguing by
contradiction [23], [33], the Pontryagin Maximum Principle
states that, if (tf , x, u) is optimal for (OCP), then there exists
a nontrivial couple (pf , p

0) ∈ Rn+1 satisfying
pf ⊥ Tx(tf )Mf , p0 ≤ 0

(pf , p
0) · w ≤ 0 , ∀ w ∈ Kx,u(tf )

max
v∈U

H(x(tf ), pf , p
0, v) = 0

. (12)

Relations (6)-(9) derive from (12). In particular, a tuple
(x, p, p0, u) is a Pontryagin extremal for (OCP) iff the non-
trivial couple (p(tf ), p0) ∈ Rn+1 satisfies (12). However, a
Pontryagin extremal is not necessarily a solution for (OCP).

Now, consider controls uk and uk+1, solutions of
(LOCP)k and of (LOCP)k+1 with final times tkf and tk+1

f ,
respectively. If necessary and without loss of generality,
thanks to Assumption (A3) we can continuously extend these
controls to be constant in [tkf , b] and [tk+1

f , b], respectively.
We apply the same procedure to trajectories xk and xk+1.
Therefore, for every iteration k ≥ 1, uk, uk+1 are continuous
functions in [0, b] and for every s ∈ [0, b] and every v ∈ U ,
we are able to define local variations for (LOCP)k+1 as

ψs,v
k+1 =

(
fk+1(s, xk+1(s), v)− fk+1(s, xk+1(s), uk+1(s))
f0
k+1(s, xk+1(s), v)− f0

k+1(s, xk+1(s), uk+1(s))

)
(13)

and related variation vectors ws,vk+1 : [0, b] → Rn+1 as the
solutions of the following variational system:

ψ̇(t) = ψ(t)

 ∂fk+1

∂x
(t, xk+1(t), uk+1(t))

∂f0k+1

∂x
(t, xk+1(t), uk+1(t))


ψ(s) = ψs,vk+1

. (14)

Thus, from the above and due to the optimality of
(tk+1
f , xk+1, uk+1), the Pontryagin Maximum Principle

states that, for every iteration k of SCP, there exists a non-
trivial couple (pk+1, p

0
k+1) ∈ C0([0, b],Rn)× R satisfying

pk+1(tk+1
f ) ⊥ T

xk+1(t
k+1
f

)
Mf , p0k+1 ≤ 0

(pk+1(tk+1
f ), p0k+1) · w ≤ 0 , ∀ w ∈ Kk+1(tk+1

f )

max
v∈U

Hk+1(tk+1
f , xk+1(tk+1

f ), pk+1(tk+1
f ), p0k+1, v) = 0

(15)

where the Pontryagin cone Kk+1(t) at t for (LOCP)k+1

is defined as above, by substituting (10)-(11) with (13)-(14),
and Hk+1 is the Hamiltonian related to problem (LOCP)k+1.

We now prove Theorem III.1 in two main steps:
1) Convergence of Trajectories and Controls: First, con-

sider the sequence of final times (tkf )k∈N. Thanks to As-
sumption (A3), there exists t̃f ∈ [0, b] such that, up to
some subsequence, (tkf )k∈N converges to t̃f . As discussed
previously, from now on, we consider every couple (xk, uk)
to be continuously defined in the time interval [0, b].

Next, consider the sequence (uk)k∈N ⊆ L∞([0, b], U).
Thanks to Assumption (A1), (uk)k∈N is bounded in
L2([0, b],Rm). Moreover, the subset L2([0, b], U) is closed
and convex in L2([0, b],Rm) for the strong topology, and
then also for the weak topology [24]. Thanks to Assumption
(A1) and reflexive properties for L2, there exists ũ ∈
L∞([0, b], U) such that, up to some subsequence, (uk)k∈N
converges to ũ for the weak topology of L2 [24].

Finally, we focus on the sequence (xk)k∈N ⊆
C0([0, b],Rn). It is clear that Assumptions (A1) and (A2)
provide that both (xk)k∈N and (ẋk)k∈N are bounded in
L2([0, b],Rn). Therefore, (xk)k∈N is bounded in the Sobolev
space H1([0, b],Rn). From reflexive properties, it follows
that there exists x̃ ∈ H1([0, b],Rn) such that, up to some
subsequence, (xk)k∈N converges to x̃ for the weak topology
of H1. Furthermore, since the inclusion H1 ↪−→ C0 is
compact, (xk)k∈N converges to x̃ ∈ C0([0, b],Rn) for the
strong topology of C0 [24]

For every integer k, (xk+1, uk+1) is feasible for
(LOCP)k+1, and therefore (after the obvious extensions),

xk+1(t) = x0+

∫ t

0

fk+1(s, xk+1(s), uk+1(s)) ds , t ∈ [0, b].

From this, by exploiting Assumptions (A1), (A2), and the
previous convergences, it follows that (x̃, ũ) is feasible for
problem (OCP) (note that x̃(t̃f ) = lim

k→∞
xk(tkf ) ∈Mf , since,

up to some subsequence, the limit lim
k→∞

xk(tkf ) exists thanks
to the compactness of Mf , see Assumption (A1)).

2) Convergence of Multipliers: We now discuss the con-
vergence to a Pontryagin extremal for (OCP). Assumption
(A4) proves crucial to establishing the following Lemma:
Lemma V.1. Suppose that Assumption (A4) holds. For every
s ∈ (0, t̃f ) Lebesgue point of ũ, there exists a sequence
(sk)k∈N ⊆ [s, t̃f ), for which sk is a Lebesgue point of uk
and of uk+1, such that

uk(sk)→ ũ(s) , uk+1(sk)→ ũ(s) , sk → s

as k tends to infinity.

Proof. We denote

hk(t) = (uk(t), uk+1(t)) , h(t) = (u(t), u(t)).



Let us prove that, for every s ∈ (0, t̃f ) Lebesgue point of
h(·) and for every β > 0, αs > 0 (such that s + αs < t̃f ),
there exists γs,αs,β > 0 such that, for every k ∈ N satisfying
1/k ∈ (0, γs,αs,β), there exists a sk ∈ [s, s + αs] Lebesgue
point of hk(·) for which ‖hk(sk)− h(s)‖ < β.

By contradiction, suppose that there exists s ∈ (0, t̃f ), a
Lebesgue point of h(·), and β > 0, αs > 0 (with s+αs < t̃f )
such that, for every γ > 0, there exists k ∈ N with 1/k ∈
(0, γ) and ik ∈ {1, . . . ,m} for which, for t ∈ [s, s + αs]
Lebesgue point of hk(·), it holds that |hikk (t)− hik(s)| ≥ β.

From the previous convergence results, the family
(hk(·))k∈N converges to h(·) in L2 for the weak topology.
Therefore, for every 0 < δ ≤ 1, there exists an integer kδ
such that, for every k ≥ kδ , it holds that

1

δαs

∣∣∣ ∫ s+δαs

s

hik(t) dt−
∫ s+δαs

s

hi(t) dt
∣∣∣ < β

3

for every i ∈ {1, . . . ,m}. We exploit this fact to bound
|hikk (t)− hik(s)| by β. First, since s is a Lebesgue point of
h(·), there exists 0 < δs,αs ≤ 1 such that∣∣∣hi(s)− 1

δs,αsαs

∫ s+δs,αsαs

s

hi(t) dt
∣∣∣ < β

3

for every i ∈ {1, . . . ,m}. On the other hand, from what was
said previously, there exists an integer kδs,αs such that

1

δs,αsαs

∣∣∣ ∫ s+δs,αsαs

s

hik(t) dt−
∫ s+δs,αsαs

s

hi(t) dt
∣∣∣ < β

3

for every k ≥ kδs,αs and every i ∈ {1, . . . ,m}. Finally, by
Assumption (A4), we have that hk(·) is continuous for k ∈
N, and then, for every k ≥ kδs,αs and every i ∈ {1, . . . ,m},
there exists tk,i ∈ [s, s+ δs,αsαs] ⊆ [s, s+ αs] such that∣∣∣hik(tk,i)−

1

δs,αsαs

∫ s+δs,αsαs

s

hik(t) dt
∣∣∣ < β

3
.

Resuming, for every k ≥ kδs,αs and i ∈ {1, . . . ,m} there
exists a tk,i ∈ [s, s+αs] Lebesgue point of hk(·) (by conti-
nuity) such that |hik(tk,i)− hi(s)| < β, a contradiction.

Lemma V.1 represents the main tool to prove the conver-
gence of Pontryagin cones, provided by the following lemma:
Lemma V.2. For every w ∈ Kx̃,ũ(t̃f ), k ∈ N, there exists
wk ∈ Kk(tkf ) such that wk → w as k tends to infinity.

Proof. Without loss of generality, we may assume that w =
ws,vx̃,ũ(t̃f ), where v ∈ U and 0 < s < t̃f is a Lebesgue point
of ũ (see [34, Lemma 7.8] for technical details).

From Lemma V.1, there exists a family (sk)k∈N ⊆ [s, t̃f ),
which are Lebesgue points of uk and of uk+1, such that

uk(sk)→ ũ(s) , uk+1(sk)→ ũ(s) , sk → s

as soon as k tends to infinity. This allows us to consider
wsk,vk+1 , solutions of system (14) with initial state given by
(13) at sk.

From the previous convergences, it is clear that (ψsk,vk+1)k∈N
converges to ψs,vx̃,ũ = ws,vx̃,ũ(s) as soon as k tends to infinity.
Moreover, since (∆k, ωk)k∈N ⊆ [0,∆0] × [ω0, ωmax] is
bounded, we have that up to some subsequence, it converges
to some point (∆̃, ω̃) ∈ [0,∆0]× [ω0, ωmax] satisfying either
∆̃ = 0 or ∆̃ > 0. In both cases, again from the previous
convergences, the dynamics of system (14) converge to the
dynamics of system (11) for the weak topology of L2.
Summing up, by the continuous dependence w.r.t. initial
state and weakly w.r.t. controls for dynamical systems ,
the sequence (wk+1)k∈N = (wsk,vk+1(tkf ))k∈N satisfies wk ∈
Kk(tkf ) and converges to w as k tends to infinity.

We are now able to conclude the proof of Theorem III.1.
For every integer k ≥ 1, consider the nontrivial couple

(pk, p
0
k) ∈ C0([0, tkf ],Rn) × R, provided by Theorem V.1,

related to some optimal solution (tkf , xk, uk) for (LOCP)k.
In particular, (pk(tkf ), p0k) 6= 0. Therefore, up to normal-
ization, we can assume that ‖(pk(tkf ), p0k)‖ = 1, for every
k ∈ N \ {0}. We infer that, up to some subsequence, there
exists a point (p̃f , p̃

0) ∈ Sn (in particular, (p̃f , p̃
0) 6= 0)

satisfying (pk(tkf ), p0k)→ (p̃f , p̃
0) as k tends to infinity.

Now, take any w ∈ Kx̃,ũ(t̃f ). Thanks to Lemma V.2, there
exists a sequence (wk)k∈N, such that wk ∈ Kk(tkf ), which
converges to w as soon as k tends to infinity. By continuity,
from (15) it follows that p̃f ⊥ Tx̃(t̃f )Mf and (p̃f , p̃

0)·w ≤ 0.
Moreover, since ((∆k, ωk))k∈N ⊆ [0,∆0] × [ω0, ωmax] is
bounded, up to some subsequence, it converges to some point
(∆̃, ω̃) ∈ [0,∆0] × [ω0, ωmax] satisfying either ∆̃ = 0 or
∆̃ > 0. In both cases, it is not difficult to prove that

lim
k→∞

|H(x̃(t̃f ), p̃(t̃f ), p̃0, v)−Hk(tkf , xk(tfk), pk(tkf ), p0k, v)| = 0

uniformly with respect to v ∈ U . Therefore, since w ∈
Kx̃,ũ(tf ) is arbitrary, (p̃f , p̃

0) satisfies relations (12) for
(x, u) = (x̃, ũ), and then, denoting by p̃ the solution of

ṗ(t) = −(p(t), p̃0)

 ∂f

∂x
(x̃(t), ũ(t))

∂f0

∂x
(x̃(t), ũ(t))


p(tf ) = p̃f

the quantity (x̃, p̃, p̃0, ũ) represents a Pontryagin extremal
for problem (OCP). In particular, thanks to the previous
convergences and the continuous dependence w.r.t. initial
state and weakly w.r.t. controls for dynamical systems, we
have that up to some subsequence, (pk)k∈N converges to p̃
for the strong topology of C0, as k →∞.

This concludes the proof of Theorem III.1.
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