
Mapping High-level Semantic Regions
in Indoor Environments without Object Recognition

Roberto Bigazzi1, Lorenzo Baraldi1, Shreyas Kousik2, Rita Cucchiara1, and Marco Pavone3

Abstract— Robots require a semantic understanding of their
surroundings to operate in an efficient and explainable way
in human environments. In the literature, there has been
an extensive focus on object labeling and exhaustive scene
graph generation; less effort has been focused on the task of
purely identifying and mapping large semantic regions. The
present work proposes a method for semantic region mapping
via embodied navigation in indoor environments, generating
a high-level representation of the knowledge of the agent.
To enable region identification, the method uses a vision-to-
language model to provide scene information for mapping. By
projecting egocentric scene understanding into the global frame,
the proposed method generates a semantic map as a distribution
over possible region labels at each location. This mapping
procedure is paired with a trained navigation policy to enable
autonomous map generation. The proposed method significantly
outperforms a variety of baselines, including an object-based
system and a pretrained scene classifier, in experiments in a
photorealistic simulator.

I. INTRODUCTION

A critical ingredient in robot autonomy is semantic region
mapping, or the capability to recognize high-level semantics
of a robot’s surroundings while creating a spatial map. In this
work, we aim to recognize semantic areas at the region-level
of an indoor environment such as a house or an office; e.g.,
understanding if the robot is in a bedroom, a living room, etc.
This task, which we call Indoor Semantic Region Mapping
(ISRM), is often addressed by leveraging object detection to
classify a region [1]–[5]. However, such an approach may
fail when an object appears in multiple regions (e.g. a fridge
in a garage), when regions are not easily delineated (e.g. an
open kitchen attached to a living room), or when regions
do not contain many objects (e.g. a hallway). Instead, we
explore how to endow robots with a semantic recognition of
their surroundings by processing sensor inputs holistically.

We note that semantic region recognition could be consid-
ered an instance of the well-defined Computer Vision task
of Scene Recognition. However, directly adapting methods
suited to this task is impractical because scene recognition
methods are trained on large-scale offline datasets of every-
day pictures, which differ significantly from the observa-
tions taken from the point of view of a robotic agent [6].
Furthermore, the category labels in scene-specific datasets
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Fig. 1. We address the task of indoor semantic region mapping for
Embodied Navigation, which requires an agent to build a global semantic
understanding of the large-scale regions in an environment. Our approach
conditions a learned neural mapper with visual features extracted using
a general region classifier to produce a geometric region map of the
environment.

are usually very specific and do not contain samples with
occlusion or multiple categories.

To enable solving ISRM without relying on object recog-
nition, we design a region classification module powered
by CLIP [7], a finetuned, general image-text model. As
CLIP has been trained on a large-scale image-text pair
dataset containing natural images, it is generalizable, but
it also shows poor performance when dealing with photo-
realistic indoor images taken from a simulator. Therefore,
we devise a finetuning strategy with a multi-modal variant of
the supervised contrastive loss [8], which allows us to obtain
an effective region classifier, even with scarce training data.
Further, we design a region mapping architecture that can
predict egocentric and global occupancy and region maps,
and a navigation module that can exploit the learned region
semantics. We perform an extensive experimental analysis to
compare different approaches to tackle the ISRM task. Over-
all, we see this research as a basic step for the next generation
of personalized robotics autonomous systems, equipped with
vision abilities for moving in complex environments and
reasoning at a semantic level to make them suitable for new
forms of interaction and cooperation with humans.

Contributions. In summary, we make three contributions.
First, we propose a region classification module that gen-
erates grounded language-visual features, suitable for down-
stream mapping, by using an RGB-D camera and a finetuned
CLIP model. Second, we propose an approach to fusing
our region classification features into a global grid map
by leveraging an exploration-focused navigation policy [9].
Third, we provide an extensive set of ablations and baselines
to understand the utility and capability of our method, and
find that it outperforms an object-based mapping system.
That is, we show that grounding high-level region labels
conveys an advantage in robotic semantic mapping.



II. RELATED WORK

We now review relevant work on learning-based mapping,
semantic mapping, and scene recognition.

Learning-Based Mapping. A variety of approaches lever-
age learning to overcome shortcomings in classical SLAM
(Simultaneous Localization and Mapping) (c.f., [10]–[12]).
For example, one can learn to generate classical SLAM-
style maps [13], [14], topological maps [15], [16], multi-task
deep memory representations [17], [18], and inferences over
unseen regions [19]. In this work, we propose a learning-
based approach to mapping semantic regions.

Semantic Mapping. Semantic mapping approaches can be
grouped into two main categories based on generating either
low-level or high-level semantic maps.

Low-level semantic maps represent object information and
relations, often using scene graphs. Much of prior work
focuses on learning-based methods using preexisting scene
graphs [20]–[22]. Works that build a scene graph usually
ignore the interactive robotic setting, instead restricting to
single observations [23], [24] or predetermined observation
sequences [25]–[27]. However, recently, Li et al. [28] built
scene graphs with an exploration agent; we similarly build
our map online during exploration. Other approaches to low-
level semantic mapping produce metric maps capturing ob-
ject information [29], [30]. Most similar to our method, a va-
riety of approaches begin by performing low-level mapping
(labeling objects), then back out high-level region categories
[1]–[5]. In this work, we instead generate a region map online
without explicitly representing low-level information.

High-level maps depict relations between regions or lo-
cations, which is less well-explored in the literature than
low-level mapping. One key recent approach has been to
generate hierarchical 3D scene graphs that can also capture
room relations [31], [32]. Other approaches focus only on
top-down semantic understanding for mobile robot navi-
gation [33]. Most similar to our work, Sunderhauf et al.
[34] used an external classifier to assign labels to RGB-
D observations, then fused these into a semantic map. In
contrast, our approach directly produces the semantic region
map end-to-end, and can ground multiple labels spatially
within a single observation. Thus, our work is also similar to
the outdoor-focused work of Gan et al. [35], except that we
leverage a vision-language model that enables more gener-
alizable semantic mapping, instead of a pretrained semantic
segmentation method with a fixed set of classes. We also
note that such vision-language embeddings show promise
for translating language commands into robot navigation
trajectories [36], [37], but without creating a semantic map.

Scene Recognition. The task of correctly classifying a
scene in an image has captured large interest in the Com-
puter Vision community. Scene-centric datasets have been
released to address this challenge. For example, Scene15 [38]
was the first testbed for such a task but had a limited
number of samples and classes. MIT Indoor67 [39] and
SUN [40] enlarged the set of classes but the small number
of samples limited the application of deep learning. More
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Fig. 2. Sample observations and corresponding top-down semantic maps
from the extracted dataset. The upper row shows a common challenge faced
in the dataset: occlusions and multiple semantic categories in a single image.
Furthermore, on the right side of the upper image, the region is not obviously
recognizable as a bathroom.

recently, Zhou et al. released Places [6], containing ≈8
million images. However scene-centric datasets are ill-suited
for robot navigation, wherein observations are likely to
contain occlusion or be uninformative (e.g. facing a wall).
To address these shortcomings, we collect an offline dataset
for the classification of rooms inside environments used for
embodied navigation.

III. PROBLEM STATEMENT

The goal of this work is to produce top-down semantic
maps depicting the different regions of an unseen envi-
ronment while exploring it online. This is a challenging
task because semantically mapping an unseen environment
requires one to model and extract semantic information
from the available observations while generalizing over the
possible different appearances of each region. The goal is to
create semantic maps that can be exploited for downstream
navigation tasks. Overall, ISRM consists of two subtasks:
Region Classification and Region Mapping.

Notation and Setup. In the following, we denote a prob-
ability distribution over x given y as P (x | y). A set of
n regions is denoted as R = {r1, · · · , rn}, where the ith

region category is defined as ri ∈ R (e.g., r1 = bathroom).
Similarly, an RGB-D observation at timestep t extracted from
the point of view of the agent is denoted as st = {srgb

t , sd
t}.

The pose (2-D position and heading) of the robot at time t
is pt, and the action taken at that time is at.

Region Classification. Suppose the robot has acquired an
RGB observation srgb

t of the environment. In region clas-
sification, we seek to model a categorical distribution over
regions given an RGB observation, i.e. P (ri | srgb

t ). Note
that this formulation allows for ambiguity in classification,
which frequently occurs in the dataset as shown in Figure 2.

Region Mapping. The output of region classification is not
directly amenable to downstream tasks; hence, we seek to
perform region mapping, to create a global map of semantic
regions. In particular, suppose we are given an arbitrary 2D
location x, and a history of observations up to time t, denoted
S = (s0, · · · , st). We seek to model a distribution over
possible regions, P (ri | x, S), and a distribution over static
obstacle occupancy, P (o | x, S), at the location x.
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IV. PROPOSED METHOD

In this section, we first introduce the collection procedure
and the features of our dataset of observation-map pairs.
Then, we present our method for semantic region mapping
and navigation.

A. Dataset

In order to train a model for region recognition inside
photo-realistic environments we extract an off-line dataset
of RGB-D observations from the point of view of the
agent coupled with the corresponding top-down ground-truth
region maps. Collecting a dataset rather than getting top-
down maps directly from the simulator also allows us to
efficiently shuffle the training samples and avoid an episode-
based online setting, which would increase computational
costs and lower the generalization capabilities of the trained
method due to forgetting [41], [42].

1) Extraction Procedure: The offline dataset is extracted
by running a state-of-the-art exploration method [9] using
Habitat simulator [43] on the environments contained in
Matterport3D dataset for a total of 236K samples. The
observation-map pairs are saved taking into consideration the
pose of the agent and are stored only if the agent has not
visited the same position (within 0.1 meters) and orientation
(within 0.1 radians ≈ 6 degrees). We generate exploration
episodes using the start position of the episode contained
in the object-goal navigation task on Matterport3D dataset
[44], which are collected on 61 and 11 unique building
respectively for training and validation splits.

2) Dataset Characteristics: The resulting dataset is di-
vided into 228K and 8K observation-map pairs for training
and validation splits, respectively, which is a consequence
of the original environment-level division of Matterport3D
dataset. Further, we extract a training-val split consisting of
a randomly sampled 5% of the items in the training set. The
RGB-D observation resolution is 224× 224, with the depth
observation that goes from 0 to 10 meters. The extracted map
is 101× 101×C where C is the number of semantic region
categories. We extract the maps maintaining the semantic
labels used in the annotation of Matterport3D dataset [45].
Two samples from the dataset are shown in Figure 2.

B. Region Classification Module

To tackle the task of correctly classifying the current
RGB observation srgb

t to a region label ri ∈ R, we employ
the CLIP image-text model [7], which has been trained
contrastively on large-scale image-text pairs and has shown
good classification performance also in zero-shot scenarios.
Nevertheless, CLIP still needs to be adapted to the task of
region classification and to the distribution of indoor images
to work properly, so we also design a finetuning strategy.

Overall, the architecture of the region classification mod-
ule is composed of an image encoder that processes the
RGB observation srgb

t to obtain the visual features ϕrgb
t , and

a text encoder that takes as input the set of predefined
region labels R and extracts corresponding text features
Φtxt = [ϕtxt

0 , · · · , ϕtxt
R ]. The predicted region label is derived
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Fig. 3. Architecture of the proposed Semantic Region Mapper.

using the cosine similarity between the observation features
ϕrgb
t and the text features of each region label Φtxt:

ri s.t. i = argmax
j

ϕrgb
t

• ϕtxt
j

∥ϕrgb
t ∥ • ∥ϕtxt

j ∥
. (1)

The cosine similarity is used to model P (ri | x, S) as a
categorical distribution.

1) Multi-Modal Supervised Contrastive Loss: To lower
the computational requirements, we start with pretrained
CLIP visual and text encoders and only finetune the projec-
tion toward the final embedding space. Differently from the
image-text matching task on which CLIP has been trained,
however, in region classification multiple samples in a mini-
batch are likely to belong to the same textual label. The
standard InfoNCE loss is incapable of handling such cases,
which can result in reduced performance [8].

To overcome this issue and handle the case of having
multiple samples with the same label, we devise a multi-
modal adaptation of the Supervised Contrastive Loss [8].
Specifically, given a batch of N image features V =
[ϕrgb

0 , ϕrgb
1 , · · · , ϕrgb

N−1], we associate to each image the cor-
responding ground-truth region by using the label associated
with the most pixels in the ground-truth top-down semantic
map m∗. The resulting batch of N labels is used to ex-
tract the text features T = [ϕtxt

0 , ϕtxt
1 , · · · , ϕtxt

N−1], that are
subsequently filtered to remove repeated entries, obtaining
T ′ = [(ϕtxt

0 )′, (ϕtxt
1 )′, · · · , (ϕtxt

K−1)
′]. Visual and textual fea-

tures, and their associated labels, are concatenated to obtain
the features X and labels Y given as

X = [ϕrgb
0 , · · · , ϕrgb

N−1, (ϕ
txt
0 )′, · · · , (ϕtxt

K−1)
′]

= [ϕ0, · · · , ϕN−1, ϕN , · · · , ϕN+K−1] (2)
Y = [y0, · · · , yN−1, y

′
0, · · · , y′K−1]

= [y0, · · · , yN−1, yN , · · · , yN+K−1]. (3)

These are then used in the multi-modal supervised con-
trastive loss LMSC:

LMSC =

N+K−1∑
i=0

−log
(

1
|B(i)|

∑
b∈B(i)

exp(ϕi•ϕb/τ)∑
a∈A(i)

exp(ϕi•ϕa/τ)

)
,

(4)

where τ ∈ R+ is a scalar temperature parameter, A(i) ≡
{0, · · · , N +K − 1} \ {i}, B(i) ≡ {b ∈ A(i) : yb = yi} is
the set of indices of all positives in the batch distinct from
i, and |B(i)| is its cardinality.
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C. Proposed Architecture
Once we have finetuned our region classification module,

we can employ it within a learning-based region mapper
paired with a hierarchical navigation policy. Our method
first converts the RGB and depth observations into egocentric
occupancy and region maps (i.e. distributions over occupancy
and regions within the field of view of the robot). Then, we
fuse the egocentric maps to produce a global map. Fig. 3
shows the architecture of the neural mapper and its modules.

1) Egocentric Region Mapping: The region mapper mod-
ule builds a region-level semantic map of the environ-
ment while generating an obstacle occupancy grid. At each
timestep, the RGB-D observation st = (srgb

t , sd
t) is processed

to extract a L×L×(2+C) egocentric map mt where the first
two channels indicate the occupancy and exploration state
of the currently observed region, and the last C channels
are dedicated to the registration of observed region-level
semantic classes. Each pixel of the map describes the state
of a 5× 5 cm area.

The RGB observation srgb
t is encoded using a ResNet-

18 [46] encoder followed by a UNet [47] encoder. The depth
observation sd

t , along with intrinsic camera parameters, is
used to generate a point cloud of the observed scene where
each depth image pixel is projected to its 3D position with
respect to the camera. The point cloud is then collapsed to
obtain a top-down view stop

t of the area observed by the agent.
We use another UNet encoder to process the top-down view
observation and extract the depth features.

2) Semantic Feature Injection: We employ the region
classification model to produce semantically meaningful
visual features of the current observation. Specifically, we
extract features at different levels of the visual encoder of
the region classifier, together with a CNN with transposed
convolutional layers to upsample and align the spatial shape
of the features to that of the output of the UNet encoders.

At this point, two parallel pipelines follow the generation
of the occupancy map and the region map. We use two
different CNNs to merge the multi-modal features obtained
from the RGB and depth encoders, and the CLIP features.
The merge module that generates the occupancy map uses
RGB and depth features, while the other merge module also
includes the CLIP features. The output of the merge modules
is fed to two UNet decoders to produce the final egocentric
occupancy map and region map.

Note that the occupancy state that is contained in the
first two channels of the map mt is produced following
the method proposed in [19]. Therefore, our mapper is not
limited to predicting the occupancy map of the visible space
but tries to infer also occluded regions of the local map.
However, the prediction of the current region map is limited
to the visible area, to avoid projecting incorrect regions
behind the walls and the obstacles of the visible region. In
order to do so, we use the top-down projection extracted
from the depth observation to mask the region map.

3) Global Map via Egocentric Map Fusion: During nav-
igation, the global level map of the environment Mt with
dimensionality of G × G × (2 + C), where G > L, is

built using local maps mt in an incremental fashion. At
each timestep, the pose of the agent pt is used to apply
a corresponding rotation and translation to the local map.
Finally, the transformed local map is fused with the global
map Mt using a moving average (we compare against a
Bayesian update in Sec. V).

4) Navigation Module: Following the literature on em-
bodied exploration in unseen environments, we employ a hi-
erarchical navigation policy that is responsible for predicting
the atomic actions of the agent [9]. The policy is composed
of a global policy, a deterministic planner, and a local policy.
The global policy takes as input the current state of the global
map Mt to generate long-term goals on the map gt. The
deterministic planner is in charge of generating the shortest
trajectory using the observed occupancy between the agent
and the global goal. A shorter-term goal lt is sampled on
the computed trajectory within 0.25m from agent’s position.
The local policy is trained to reduce the distance from the
local goal lt while avoiding possible obstacles. Following
the hierarchical design, the global goal gt is updated every
η timesteps, while the local goal lt is updated if one of the
following conditions holds: the global goal has been updated,
the local goal is found to be in an occupied region, or the
local goal has been reached.

D. Implementation Details
1) Proposed Architecture: We tested our model on the

environments of Matterport3D using Habitat [43] simulator
with an action space composed of three atomic actions: go
ahead 0.25m, turn left 10◦, and turn right 10◦. The RGB-D
observations used the region classification module and by the
overall architecture have a 224×224 resolution, the minimum
input size for a CLIP model. The mapper module extracts
local maps with size L = 101, while the global maps have
size G = 2001.

2) Dataset Region Label Filtering: Matterport3D contains
a large variety of regions, some of which occur infrequently
in the data (e.g., bedroom is common, whereas spa is
not). Furthermore, there are overlapping region types in
the simulator (e.g., porch/terrace/deck). To simplify
our training procedure and avoid region ambiguities due
to overlapping region labels, we postprocess our dataset to
only contain the 14 most common labels, including other

room. We also collapse overlapping region types into a
single label. This results in the following set of filtered
labels: R = { bathroom, bedroom, closet, dining

room, garage, gym, hallway, kitchen, library, living
room, office, other room, outdoor, stairs }.

V. EXPERIMENTS

In this section, we present experiments used to validate
the proposed method. First, we assess the finetuned CLIP
model used to condition the region mapper. Second, we
study offline training of the mapper module on our collected
dataset. Finally, we test a state-of-the-art exploration method
that is equipped with our pretrained neural region mapper
module. Note we are preparing our code to be posted as
open-source online.
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TABLE I
ACCURACY OF THE DIFFERENT CLIP MODELS ON ROOM

CLASSIFICATION ON THE OFFLINE DATASET COLLECTED IN THE

ENVIRONMENTS OF MATTERPORT3D.

Off. MP3D
Model Train Val Val

ResNet50 pretrained 29.48 26.33
ResNet50 + InfoNCE (only v. proj.) 72.22 32.18
ResNet50 + MSCL (only v. proj.) 86.85 33.30
ResNet50 + InfoNCE 85.66 30.34
ResNet50 + MSCL 85.87 31.02
ViT-B/32 pretrained 32.07 37.53
ViT-B/32 + InfoNCE (only v. proj.) 51.16 39.63
ViT-B/32 + MSCL (only v. proj.) 60.60 41.03
ViT-B/32 + InfoNCE 52.66 43.14
ViT-B/32 + MSCL 56.59 44.75

Human - 49.58± 1.34

A. Region Classification finetuning

1) Experimental Setup: We perform an offline finetuning
of the room classification module on the collected dataset,
and evaluate on two variants of CLIP, namely the ones with
a ResNet50 and a ViT-B/32 visual encoder. As these are
two of the most lightweight CLIP variants, they are also
appropriate for an embodied setting. We evaluate in terms of
accuracy on the training-val and on the validation split of the
collected offline dataset. The performance on the training-val
split, which is a fraction of the training set, is reported to
control overfitting.

2) Baselines: To assess the design of the finetuning
methodology, we firstly compare to a baseline using an In-
foNCE loss, instead of the proposed multi-modal supervised
contrastive loss. Further, we also experiment when finetuning
the final linear projections of both the visual and textual
encoder, and when finetuning only the visual projection. In
parallel, to give an idea of the difficulty of the task, we tested
human performance in a user study dividing the validation
unseen of the offline dataset into 16 parts and asking 16
people unaware of the environments in Matterport3D to
classify each observation with a region label.

3) Results and Discussion: As shown in Table I, pre-
trained CLIP models show a low zero-shot classification per-
formance, with a validation accuracy ranging from 26% (in
the case of ResNet50) to 37.5% (in the case of the ViT-based
backbone). This highlights that the specificity of the task
requires better alignment of the visual appearances associated
with each class, and motivates the need for finetuning. We
also note that trying to adapt such a model online with the
navigation of the agent could result in poor performance due
to the high correlation between observations in an episode.
Therefore, shuffling the training pairs used for finetuning is
beneficial for the generalization capabilities of the model.

Using the multi-modal supervised contrastive loss (MSCL)
provides a considerable performance gain, while finetuning
the textual encoder only provides better results on one
architecture, i.e. ResNet50. We notice that, while finetuning
provides an improvement over the pre-trained backbone, it
also suffers overfitting, which might be worth investigating

TABLE II
REGION-LEVEL MAPPING PERFORMANCE ON THE OFFLINE

MATTERPORT3D DATASET.

Off. MP3D
Train Val Val

Model Acc (↑) IoU (↑) Acc (↑) IoU (↑)

ResNet50 pretrained + projection 2.22 0.19 2.42 0.62
ViT-B/32 pretrained + projection 3.26 0.82 3.96 0.62
ResNet50 fin. (o.v.p.) + projection 14.86 7.28 2.81 0.62
ViT-B/32 fin. + projection 16.81 1.64 5.29 0.66
ResNet50 fin. w. repeated features 47.08 16.84 31.41 16.45
ResNet50 fin. w. spatial features 46.68 16.65 31.31 15.10
ViT-B/32 fin. w. repeated features 44.57 16.71 31.10 17.13
ViT-B/32 fin. w. spat. feat. (Ours) 54.24 28.56 31.19 18.40

in future architectural and training variants. Overall, finetun-
ing the visual projection provides a validation accuracy of
33.3% for ResNet50 and 44.75% for ViT-B/32, highlighting
the benefit of finetuning the image-text model for region
classification.

B. Region-Level Mapping Training

1) Experimental Setup: We then move to the experiments
using the region-level mapper evaluating it in terms of pixel-
level mapping accuracy and mean Intersection-over-Union
with respect to ground-truth region maps extracted from the
offline dataset. Also, in this case, the evaluation is conducted
on both the train-validation and validation splits.

2) Baselines: We consider three baselines. First, we con-
sider a simple baseline in which the most probable region
class, as predicted by the image-text model, is directly
employed to build the egocentric map, without employing
the region-map merge component. In this case, the predicted
region class is projected using the depth map directly on the
egocentric map. Furthermore, we report the results obtained
when employing the CLIP module finetuned with MSCL
as part of our semantic region mapper. When injecting the
features extracted from the CLIP visual encoder, we devise
two different alternatives as baselines: our second baseline
repeats the final feature vector spatially, to match the spatial
shape of the UNet encoders, and our third baseline employs
the CNN with transposed convolutions to upsample and
match spatial resolutions.

3) Results and Discussion: Results are reported in Ta-
ble II. First, we observe that repeating the most probable
semantic class, as predicted from the egocentric observation
of the agent, provides low performance. For instance, a pre-
trained CLIP with ViT-B/32 reaches around 4% accuracy on
the validation set. Applying our finetuning strategy increases
performance, up to 5% accuracy on the validation set. In-
jecting CLIP features in the semantic region mapper instead
provides significantly better results, highlighting that a proper
strategy to translate CLIP predictions into an egocentric
map is needed. In this regard, we notice that the spatial
features extracted from a ResNet50 are less powerful than
those extracted from the ViT-based backbone. When using
the ResNet50 backbone, we notice that simply repeating the
global feature vector is better than employing intermediate
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Fig. 4. Samples of generated maps with corresponding ground truth and
visual inputs on the environments of Matterport3D. Note that the first row
shows that the model defines the region between the TV and the couches
as a hallway (in red).

TABLE III
REGION-LEVEL MAPPING PERFORMANCE ON THE OFFLINE

MATTERPORT3D DATASET USING DIFFERENT INPUT MODALITIES.

Off. MP3D
Train Val Val

Model Acc (↑) IoU (↑) Acc (↑) IoU (↑)

Ours RGB-only 27.42 15.48 15.75 6.52
Ours Depth-only 46.34 22.83 28.88 17.32
Ours 54.24 28.56 31.19 18.40

and spatial-aware features. On the contrary, the ViT-based
backbone provides better spatial features. Overall, the pro-
posed models achieve up to 31.4% accuracy and up to 18.4%
IoU on the validation set.

4) Qualitative Samples: Following the quantitative anal-
ysis of the map generation of the region mapper, in Figure 4
we present some samples of the output of the region map
decoder with the corresponding input acquired on the envi-
ronments of Matteport3D (MP3D) dataset [45].

5) Ablation Study: To validate the contribution of using
both RGB and depth modalities for the input of the neural
mapper, in Table III we compare our approach using ViT-
B/32 backbone and spatial features with two baselines using
each modality singularly. The model using RGB-D surpasses
the other baselines, indicating that using both RGB and depth
information is beneficial for the final results.

C. Online Mapping Experiments

1) Experimental Setup: The online mapping experiment
is performed using the Habitat simulator [43] with Mat-
terport3D (MP3D) [45] environments. Among the available
datasets for photo-realistic embodied navigation like Gib-
son [48], Habitat-Matterport3D (HM3D) [49], only Matter-
port3D contains room annotations. We test our mapping ap-
proach on board of a state-of-the-art exploration method [9]
to evaluate the agent’s ability to correctly classify the ob-
served regions. We compare against a baseline using a perfect
object detector that maps the environment by propagating the
region labels associated with the closest object characterizing
a specific region (bed → bedroom) similar to [1]–[5]. We

TABLE IV
ONLINE MAPPING PERFORMANCE OVER THE MATTERPORT3D DATASET.

MP3D Val
Model maskAcc (↑) ovrAcc (↑) IoU (↑)

Baseline w. oracle object detection (c.f. [1]–[5]) 26.58 8.63 19.44
Baseline w. pretrained scene detector (c.f. [34]) 28.46 9.42 21.03
ViT-B/32 (repeated features) 33.67 18.60 20.10
ViT-B/32 (spatial features) and Bayesian update 13.08 10.58 6.48
ViT-B/32 (spatial features) and noise (ours) 32.73 13.74 22.08
ViT-B/32 (spatial features) (ours) 40.81 22.70 24.68

also test a baseline based on Sunderhauf et al. [34], but using
a ResNet50 model trained on the more recent Places365
dataset [6].

2) Global Room-Level Mapping: In Table IV we evaluate
the performance of our mapper in the online setting. For
our approach, we use CLIP with ViT-B/32 backbone, since
it outperformed ResNet in the offline setting. We test both
repeated and spatial features. We also compare a Bayesian
map update as opposed to a moving average. Finally, to test
the validity of assuming perfect pose and depth information
in our formulation, we also compare with a noisy baseline
using Habitat’s built-in noise models for the pose sensor [43]
and the depth camera [50]

We report the results in terms of IoU with respect to the
entire ground-truth semantic map, the pixel-level accuracy
restricted to the area explored by the agent (maskAcc), and
the overall pixel-level accuracy over the entire navigable
area (ovrAcc). As expected, the results are generally in line
with the offline setting, with the ViT-B/32 backbone with
spatial features providing the best results (masked accuracy
of 40.81% and IoU of 24.68%). The baseline using oracle
object detection achieves only 26.6% accuracy, since areas
close to characteristic objects often belong to different rooms.
We also find that a moving average is more robust than a
Bayesian update against spurious and rapidly-changing high-
confidence classifications from timestep to timestep (e.g.,
outputting bedroom with high confidence at time t, then
bathroom at t + 1), which is a well-known problem with
neural network classifiers [51]. Finally, we see that noise in
pose and depth does produce some impact on performance,
but our method with noise still outperforms the other noise-
free baselines.

VI. CONCLUSION

We proposed a method for semantic region mapping for
Embodied navigation in indoor environments. Our research
is motivated by the need to endow agents with a semantic
mapping of their surroundings, which is currently under-
explored and essential to provide future embodied agents
with semantic understanding capabilities. Our approach com-
prises a region classification module, based on a finetuned
CLIP model, a region mapping architecture with semantic
feature injection, and a navigation module, aware of high-
level region semantics. Experiments, conducted on a novel
dataset for the region mapping task, and on the Matterport 3D
dataset, show that endowing a robot with high-level semantic
understanding can convey an advantage over typical low-
level object-based mapping.
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