
Learning-based Warm-Starting for Fast Sequential
Convex Programming and Trajectory Optimization

Somrita Banerjee
Stanford University

450 Serra Mall
Stanford, CA 94305

somrita@stanford.edu

Thomas Lew
Stanford University

450 Serra Mall
Stanford, CA 94305

thomas.lew@stanford.edu

Riccardo Bonalli
Stanford University

450 Serra Mall
Stanford, CA 94305

rbonalli@stanford.edu
Abdulaziz Alfaadhel

Center of Excellence for
Aeronautics and Astronautics

Riyadh 13512
Saudi Arabia

aalfaadhel@kacst.edu.sa

Ibrahim Abdulaziz Alomar
Center of Excellence for

Aeronautics and Astronautics
Riyadh 13512
Saudi Arabia

ialomar@kacst.edu.sa

Hesham M Shageer
Center of Excellence for

Aeronautics and Astronautics
Riyadh 13512
Saudi Arabia

hshageer@kacst.edu.sa
Marco Pavone

Stanford University
450 Serra Mall

Stanford, CA 94305
pavone@stanford.edu

Abstract—Sequential convex programming (SCP) has recently
emerged as an effective tool to quickly compute locally optimal
trajectories for robotic and aerospace systems alike, even when
initialized with an unfeasible trajectory. In this paper, by
focusing on the Guaranteed Sequential Trajectory Optimization
(GuSTO) algorithm, we propose a methodology to accelerate
SCP-based algorithms through warm-starting. Specifically,
leveraging a dataset of expert trajectories from GuSTO, we
devise a neural-network-based approach to predict a locally
optimal state and control trajectory, which is used to warm-
start the SCP algorithm. This approach allows one to retain
all the theoretical guarantees of GuSTO while simultaneously
taking advantage of the fast execution of the neural network and
reducing the time and number of iterations required for GuSTO
to converge. The result is a faster and theoretically guaranteed
trajectory optimization algorithm.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. PROBLEM FORMULATION . 2
3. TECHNICAL APPROACH . 3
4. NUMERICAL RESULTS . 4
5. CONCLUSIONS . 6
ACKNOWLEDGMENTS . 6
REFERENCES . 6
BIOGRAPHY . 7

1. INTRODUCTION
In the field of robotics, an ubiquitous problem is the problem
of trajectory optimization, which consists of finding a high-
quality strategy described as a sequence-in-time of states
and controls that is dynamically feasible, obeys all state and
control constraints, and minimizes a chosen cost function.
Among other applications, this is a problem relevant to the
control of the new generation of autonomous space robots,
such as Astrobee [1]. The goal of these assistive free-flyers

978-1-7281-2734-7/20/$31.00 c©2020 IEEE

on-board the International Space Station (ISS) is to assist
humans in space and reduce the cost of operations, e.g. by
performing tasks such as positioning of sensors, maintenance,
and manipulation of payloads. However, to enable the safe
operation of these robots, it is necessary to devise computa-
tionally fast algorithms to optimize their trajectories.

In the current literature, there are two broad approaches to
tackle trajectory optimization. The first class of methods
consists of deterministic planning algorithms, while the sec-
ond one leverages methods from machine learning. A short
review of those techniques is provided below.

Techniques in trajectory optimization can be divided into
global search methods and local methods. Global search
methods include motion planning techniques, such as
sampling-based motion planning algorithms (e.g., RRT∗,
PRM∗, and FMT∗) [2], [3], [4]. Though these techniques re-
quire no initialization, they scale poorly to high-dimensional
systems with kinodynamic constraints. For such reasons,
they are thus instead used in practice to initialize other
trajectory optimization algorithms. On the other hand, local
methods are much faster and can find locally optimal solu-
tions. However, they are often heuristic and can be very
sensitive to the initial starting point [5]. Among the most
promising local methods is Sequential Convex Programming
(SCP) [6], [7], [8]. This technique consists of successively
convexifying the underlying non-convex problem, allowing
for the use of convex solvers, which usually benefit from fast
convergence properties. One of the most recent examples
of an SCP algorithm is Guaranteed Sequential Trajectory
Optimization (GuSTO) [9], [10]. This method enjoys theo-
retical guarantees on convergence, does not need a feasible
initial guess, and is faster than many other optimization
techniques. Despite such upsides, the convergence of GuSTO
and computation time strongly depend on the quality of its
initialization.

A second class of methods is represented by algorithms
that leverage machine learning techniques. For instance, a
neural network architecture presented in [11] is capable of
imitating the value iteration algorithm to solve path planning
problems. Alternatively, a conditional variational autoen-

1

coder is developed in [12] to learn a sampling distribution
to inform sampling-based motion planning algorithms. By
leveraging a dataset of collision-free near-optimal paths using
RRT*, [13] proposed a neural network architecture to predict
optimal control actions from any state, as well as a method to
accelerate sampling-based planners. These methods tend to
be computationally very effective; however, they usually lack
guarantees of local optimality or even feasibility.

Instead of opting for an approach based on either trajec-
tory optimization or machine learning, we propose to com-
bine the two approaches to exploit the advantages of each.
Specifically, with the objective of improving the numerical
convergence of theoretically guaranteed trajectory optimiza-
tion algorithms, we propose to train a neural network to
predict a strategy for initializing GuSTO. More precisely,
this trajectory is used as a warm-start for the GuSTO SCP
algorithm. The end result is a framework that features
both fast convergence and theoretical guarantees of local
optimality [9]. Recently, [14] presented a similar method
to predict initializing trajectories, which are then used as
an initial guess for a local planner. However, instead of
using a neural network as in this work, their approach uses
a nearest neighbors predictor with hand-crafted descriptors
of the problem. Also, their local trajectory optimization
algorithms such as iLQG do not enjoy theoretical guarantees
of optimality as in GuSTO. Also, in [15], an initial trajectory
predicted by a neural network is refined by solving a one step
quadratic program. However, their approach does not include
nonconvex inequality constraints (e.g., obstacle avoidance
constraints), and does not guarantee dynamical feasibility or
local optimality. Our approach is different, as our goal is to
predict a warm-starting trajectory for an SCP algorithm, thus
retaining all the theoretical guarantees of local optimality.

In summary, this paper presents a method which uses a
neural network to initialize an SCP algorithm such that it
converges faster, while ensuring that the final solution retains
all the theoretical guarantees provided by the original opti-
mization algorithm. By leveraging GuSTO to provide expert
trajectories and refine the predictions of the neural network,
the proposed framework can handle general trajectory opti-
mization problems with nonlinear dynamics and non-convex
constraints. Specifically, we provide two main contributions:
• We combine the expressive power of machine learning
tools and the robustness of trajectory optimization algorithms
to design a faster algorithm whose output is a feasible solution
of the original problem. Specifically, by training a neural net-
work via supervised learning to warm-start an SCP algorithm
(in particular, GuSTO), our framework not only provides a
feasible strategy but also returns a locally optimal solution to
the original non-convex optimal control problem.
• We demonstrate the proposed framework on a high dimen-
sional nonlinear system with non-convex constraints. We
verify the accuracy of the neural network and observe a sig-
nificant speed improvement when using the neural network
prediction to initialize the SCP algorithm compared to a naive
initialization. Moreover, we show on specific examples that
the framework performs well even on scenarios outside of
the distribution of problems on which the neural network is
trained, demonstrating the robustness of our hybrid learning
and trajectory optimization approach.

The paper is organized as follows. In Section 2, we formulate
the trajectory optimization problem. Then in Section 3, we
present the framework combining a neural-network-based
initialization scheme with SCP. Section 4 presents numerical
results demonstrating the accuracy of the method, a reduction

in computation time, and robustness properties. Finally,
Section 5 provides conclusions and future research directions.

2. PROBLEM FORMULATION
We address the problem of trajectory optimization. Given an
initial state xinit, a final goal point xfinal, as well as a fixed
final time tf , the objective consists of finding a strategy, i.e.
a sequence of states x(t) and controls u(t) for all times t ∈
[0, tf], such that a cost function (e.g. time or fuel consump-
tion) J(x,u) is minimized, while simultaneously satisfying
the dynamics of the system as well as all state and control
constraints (including collision avoidance constraints). The
safe subsets of the state and control space are denoted by
Xsafe ⊆ Rn and U ⊆ Rm. This trajectory optimization
problem can be expressed as the following Optimal Control
Problem (OCP):

min
x,u

J(x,u)

subject to ẋ(t) = f(x(t),u(t)) ∀ t ∈ [0, tf]

x(t) ∈ Xsafe ∀ t ∈ [0, tf]

u(t) ∈ U ∀ t ∈ [0, tf]

x(0) = xinit

x(tf) = xfinal.

The method proposed in this work applies to general in-
stances of OCP. However, in this paper, for the sake of clarity,
we describe the method by focusing on the dynamical model
of the 13D free-flying spacecraft robot Astrobee [1]. For
this system, the dynamics are as follows [16]. The state
x = (r,v, q,ω) ∈ R13 consists of position r ∈ R3, velocity
v ∈ R3, the quaternion attitude representation for rotations
q ∈ S3 ⊂ R4, and angular velocity ω ∈ R3. The control
input u = (f , τ) ∈ R6 consists of the input force f ∈ R3

and the input torque τ ∈ R3.

Assuming a microgravity space environment, the transla-
tional dynamics are expressed as a double integrator as[

ṙ(t)
r̈(t)

]
=

[
03×3 I3×3
03×3 03×3

] [
r(t)
ṙ(t)

]
+

[
03×3
I3×3

M

]
f(t),

where M ∈ R is the mass of the Astrobee robot. The attitude
dynamics are given as

q̇ =
1

2
Ω(ω)q, Jω̇ = τ − S(ω)Jω,

where J ∈ R3×3 is the constant spacecraft inertia matrix and

S(ω):=

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
,

Ω(ω):=

 0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 .
The state and control vectors are restricted to lie within
specified bounds

xmin ≤ x(t) ≤ xmax

umin ≤ u(t) ≤ umax,

2

due to limits on the thrust of the Astrobee robot, safety limits
on the speed, and position limits.

Non-convex obstacle avoidance constraints are imposed us-
ing signed distance fields. Specifically, given nO obstacles
Oi, we define the signed distance function ds(·) as

ds(r(t),Oi) = inf
y∈Oi

‖r(t)− y‖2 − inf
z/∈Oi

‖r(t)− z‖2,

and impose non-convex obstacle avoidance constraints for
each obstacle Oi as

ds(r(t),Oi) ≥ dmin,

where dmin > 0 is a safety margin such that a ball of radius
dmin centered at r(t) contains Astrobee. For the purpose of
SCP, this constraint can be convexified using the procedure
proposed in [17].

As Astrobee operates in a fixed environment, namely the ISS,
we assume all obstacles to be static. If this is not the case,
fast replanning with this framework is capable of handling
slowly moving objects and avoid any unforeseen collision.
For our numerical experiments, we consider a room with two
polygonal obstacles. This scenario is similar to turning a
corner on the ISS with an obstacle blocking the center of the
corridor, as shown in Figure 1.

Figure 1: 3D representation of the environment used for
numerical experiments, with Astrobee navigating along a
collision-free trajectory.

Finally, the cost metric is the total control effort for Astrobee:

J =

∫ tf

0

∥∥u(t)∥∥2 dt = ∫ tf

0

(∥∥f(t)∥∥2 +∥∥τ (t)∥∥2) dt

More details of this system can be found in [18].

An SCP method, such as Guaranteed Sequential Trajectory
Optimization (GuSTO) [9], [10], solves OCP by successively
convexifying the dynamics and state constraints, yielding a
sequence of convex programs which can be efficiently solved
using any generic convex program solver. In this family of
convex problems, the problem at iteration k+1 is obtained by
linearizing dynamics and state constraints around the solution
found at iteration k. Initially, all non-convex terms are
linearized around an initial state and control strategy, denoted
as x0 and u0, respectively.

GuSTO is faster than many other SCP-based methods for
complex scenarios [9], [10]. It also does not need to be
initialized with a feasible state and control strategy for the
method to successfully converge. Importantly, when con-
vergence is achieved, GuSTO is proven to provide a locally
optimal solution of OCP.

However, as mentioned in the introduction, GuSTO is not
as fast as machine learning approaches, which can compute
solutions rapidly, although without any guarantee of feasibil-
ity nor optimality. Additionally, GuSTO’s performance, like
that of any other SCP-based method, is tied to the quality of
the initial state and control strategies, x0 and u0. Generally,
the closer the initial guess is to the locally optimal solution,
the faster and the more likely is that the SCP procedure
converges.

To accelerate GuSTO while retaining all its theoretical guar-
antees, this paper proposes a method that leverages machine
learning to compute a state trajectory x0 = {x(t), t ∈
[0, tf]} and a control trajectory u0 = {u(t), t ∈ [0, tf]} that
efficiently initialize the algorithm.

3. TECHNICAL APPROACH
The proposed approach consists of training a neural network
which, for an environment with a predefined set of obstacles,
and given an initial state xinit and a final state xfinal, provides
a state and control trajectory (x0,u0) which is a good initial
guess for GuSTO. To do so, a dataset of expert trajectories
from the SCP algorithm is generated and used for supervised
learning. As mentioned previously, only static obstacles are
accounted for during the training of the neural network (e.g.,
walls and corridors of the ISS). Additional obstacles that
are not in the training dataset (e.g., smaller floating objects
entering the field of operation of Astrobee) can be accounted
for via high frequency recomputations, critically enabled by
the speed-ups achieved via warm-starting.

In our approach, the neural network predicts a continuous
time trajectory parameterized as a pth order polynomial,
which implies that the neural network only needs to predict
p + 1 polynomial coefficients for each dimension. For the
dynamics of Astrobee and the obstacle field considered in this
work, a polynomial of degree p = 4 provides accurate trajec-
tories. Other parameterizations such as Bezier curves [19],
B-splines [20], [21] or higher degree polynomials could also
be used for different scenarios and the approach proposed in
this work can be easily adapted to such parameterizations.
As shown in Table 1, the inputs to the neural network are
the desired initial and final states of the problem, that is xinit
and xfinal. The output is a prediction of both the locally
optimal state and control trajectories, with each dimension
represented as a pth degree polynomial in time. Denoting the
ith components of the state x as xi, the state trajectory at time
t is expressed as

xi(t) =

p∑
k=0

αi,kt
k;

the control trajectoryu(t) has an analogous parameterization.

As shown in Figure 2, the neural network has a feedforward
architecture with 3 fully connected hidden layers with 256,
512 and 256 units, respectively. All weights are initialized
uniformly and ReLU activation functions are chosen for

3

Table 1: Neural network inputs and outputs. The inputs
are the desired initial and final states of the problem. The
output is a prediction of the locally optimal state and control
trajectories, represented as fourth order polynomials in time.

Input Description Size

xinit Initial state (r,v, q,ω) 13
xfinal Final state (r,v, q,ω) 13

Total 26

Output Description Size

αi,k

Polynomial coefficients
k = 0:4 for the ith dimension
of the state or control, i = 1:19

5x19

Total 95

each layer. The architecture was chosen by comparing the
test error across different models, and choosing the smallest
architecture yielding good generalization over the different
scenarios in the test set.

Figure 2: Architecture of the neural network predicting an
initializing strategy for GuSTO. ReLU activation functions
are used for each neuron.

The training dataset consists of the solutions to 11,297 in-
stances of OCP computed by GuSTO2 in an environment
with two polygonal obstacles represented in Figure 1. To
generate different scenarios, the initial and final states are uni-
formly sampled throughout the 13-dimensional space, while
respecting the state constraints of the problem. IPOPT [22]
is used to solve the convex subproblems defined by GuSTO
and generate the optimal trajectories for OCP. Then, the
resulting sequence of locally optimal states and control inputs
are fitted via polynomial regression to obtain the polynomial
coefficients αi,k describing the continuous time trajectories
x(t) and u(t) to be predicted by the neural network. As
discussed previously, a polynomial representation of degree
4 is accurate enough for the class of trajectories considered in
this work.

Using the Keras API for Tensorflow [23], the neural network

2The code is available at https://github.com/StanfordASL/
nnGuSTO.

is trained for 30 epochs using an `2 loss on the predicted
and fitted (true) polynomial coefficients αi,k. Of the 11,297
problems in the dataset, 10% (1130 problems) are set aside
and reserved for validation, to never be used in training.
The remaining 90% are further split into 75% training (to be
used to fit the neural network model) and 25% test (to tune
hyperparameters during training).

4. NUMERICAL RESULTS
In this section, the accuracy of the predictions of the neural
network are evaluated on the validation set, i.e. on the
1130 problems which were never used for training. Then,
the predicted trajectories are used to warm-start GuSTO. We
compare the results generated with: 1) GuSTO with a naive
straight-line initialization, 2) the neural network prediction,
and 3) GuSTO with a warm-start from the neural network.

Prediction Accuracy

To assess the accuracy of the predictions of the neural net-
work, the relative trajectory prediction error is computed for
each of the 1130 problems in the validation dataset for each
of the dimensions of the state and control trajectories as

Traj. pred. error for ith dim :=

∫ tf

t=0

∥∥xpred
i (t)− xtrue

i (t)
∥∥dt∫ tf

t=0

∥∥xtrue
i (t)

∥∥ dt
,

where xpred is the trajectory predicted by the neural network,
and xtrue is the locally optimal trajectory obtained from
GuSTO and fitted to a polynomial of degree 4, as described
in Section 3. The same error metric is used to evaluate the
prediction accuracy of the control input trajectory. All results
are reported in Table 2, showing an average error under 15%.
Although the accuracy of the neural network is not perfect,
these results are sufficient to provide a speed improvement
for GuSTO, as shown in the following section.

Table 2: Trajectory prediction errors evaluated on the 1130
scenarios from the validation dataset.

Trajectory prediction error

Mean Std Dev

Position (r) 3.66% 4.55%

Velocity (v) 13.13% 16.96%

Quaternion attitude (q) 1.19% 6.63%

Angular velocity (ω) 2.34% 9.21%

Input force (f) 13.96% 17.62%

Input torque (τ) 3.24% 9.40%

Further, we evaluate the prediction accuracy of the neural
network on a challenging problem shown in Figure 3. For
this specific scenario, the trajectory predicted by the neural
network is close to the locally optimal trajectory computed
by GuSTO. Moreover, as expected, this result also shows
that the solution of GuSTO warm-started using the prediction
from the neural network is identical to the solution of GuSTO
initialized with a straight-line trajectory.

Acceleration through Warm-Starting

In this section, we show that using the predictions of the
neural network as a warm-start accelerates the convergence

4

https://github.com/StanfordASL/nnGuSTO
https://github.com/StanfordASL/nnGuSTO

Figure 3: Locally optimal trajectory computed by (1) GuSTO
initialized with a straight line, (2) direct inference from
the neural network, and (3) GuSTO warm-started with the
neural network prediction. The two solutions obtained after
convergence of GuSTO are nearly identical, and the neural
network is able to predict a trajectory very close to the locally
optimal trajectory.

of GuSTO, sometimes significantly. In Table 3, the number
of SCP iterations until convergence are reported for all 1130
scenarios of the validation dataset. On average, we observe a
reduction of 17% in the number of iterations. Also, the cost
of the final trajectory computed using warm-starting remains
similar to that of a traditional straight-line initialization, as
expected. Moreover, all constraints (including non-convex
dynamics and obstacle avoidance constraints) are satisfied in
all problems, demonstrating the robustness of the proposed
framework.

Table 3: Number of SCP iterations and optimal cost of solu-
tion for all 1130 problems in the validation set, comparing the
results using a straight-line initialization and the prediction
of the neural network as a warm-start.

Cold-start Warm-start

Number of
iterations

Average 4.03 3.33

Std dev 4.69 3.25

Worst case 52 34

Total cost of
solution

Average 0.010 0.008

Std dev 0.016 0.014

Worst case 0.050 0.050

Next, we focus our study on challenging scenarios where
GuSTO requires at least 10 iterations to converge using a
naive straight-line initialization. In such cases, we observe
an improvement of approximately 57% fewer iterations when
leveraging the predictions of the neural network as a warm-
start, as reported in Table 4. This demonstrates that using a

neural network to warm-start GuSTO can greatly reduce the
number of SCP iterations required to converge to a locally
optimal solution.

Table 4: Number of SCP iterations and optimal cost of
solution for complex problems from the validation set, where
GuSTO requires at least 10 iterations to converge using a
straight-line initialization.

Cold-start Warm-start

Number of
iterations

Average 16.59 7.20

Std dev 8.36 5.71

Worst case 52 34

Total cost of
solution

Average 0.020 0.019

Std dev 0.017 0.016

Worst case 0.050 0.050

For the purpose of visualization, four of the problems from
the validation dataset are presented in Figure 4. For each
scenario, we compare the computed trajectories obtained
from the neural network, from GuSTO using a straight-
line initialization, and using the warm-start provided by the
neural network. First, we observe that the trajectories after
convergence of GuSTO are nearly identical, as reflected in
Table 4. Moreover, we observe that although the prediction
of the neural network is not a feasible solution to OCP, it still
leads to a reduction in the number of required SCP iterations
for GuSTO, as reported in Table 4.

Figure 4: Four scenarios comparing the trajectories ob-
tained from (1) GuSTO initialized with a straight line, (2)
direct inference from the neural network, and (3) GuSTO
warm-started with the neural network prediction.

Robustness in the Presence of Unmodeled Obstacles

Finally, we demonstrate that the prediction of the neural net-
work can also be used to warm-start GuSTO in the presence
of obstacles which are not present in the training set, e.g. a

5

moving obstacle entering the workspace. Four scenarios are
extracted from the validation dataset and obstacles of arbi-
trary size are inserted into the environment. Then, GuSTO is
used with and without warm-starting to compute a solution
to OCP, and the resulting trajectories are shown in Figure 5.
Note that in all four of these cases, a speed improvement due
to warm-starting is observed.

Figure 5: Trajectory optimization results in presence of ob-
stacles which are not in the training set of the neural network.
Although the prediction is often infeasible, the neural network
can still be used to warm-start GuSTO, reducing computation
time and leading to a feasible solution for OCP.

These preliminary results show promise that using a neu-
ral network with partial knowledge of the environment still
enables robust warm-starting of trajectory optimization al-
gorithms. The infeasibility of the solution predicted by the
neural network does not appear to be an issue, as GuSTO is
capable of refining this initial guess to compute a feasible and
locally optimal trajectory.

5. CONCLUSIONS
This work presented a framework which combines GuSTO,
an efficient sequential convex programming technique for
trajectory optimization, with a neural network, enabling fast
and robust trajectory optimization with theoretical guaran-
tees. Using the output of the trained model to warm-start the
nonlinear solver, the proposed approach reduces computation
time, while obtaining feasible and locally optimal solutions to
the trajectory optimization problem. Furthermore, we showed
that even in the presence of obstacles which are not accounted
for in the training of the neural network, its output can still be
used as a warm-start to improve the speed of GuSTO, while
retaining local optimality and feasibility.

An interesting future research direction consists of training
a neural network to predict the Lagrange multipliers corre-
sponding to the initial state constraint. Indeed, these mul-
tipliers were shown to converge to the Pontryagin extremal

associated with the optimal control problem evaluated at
time zero [9], which can be used to initialize a shooting
method and efficiently compute an optimal solution to the
trajectory optimization problem. Second, different initializa-
tion strategies could be used to generate the training dataset
of the neural network. For instance, smoothing solutions
from sampling-based planners by using SCP would ensure
that the training dataset consists of globally, near-optimal
solutions, similarly as in [24]. Finally, providing the network
with a representation of the environment, as in [12], [14],
[25], would help generalize to different obstacle fields. This
could improve the robustness of the solution in changing
environments.

ACKNOWLEDGMENTS
This work is supported by the King Abdulaziz City for
Science and Technology (KACST), and by the Stanford
Graduate Fellowship (SGF). The authors would like to thank
Andrew Bylard and Boris Ivanovic for useful discussion
during the development of this work.

REFERENCES
[1] T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher,

H. Sanchez, and E. Smith, “Astrobee: A new platform
for free-flying robotics on the International Space Sta-
tion,” in Int. Symp. on Artificial Intelligence, Robotics
and Automation in Space, 2016.

[2] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring
random trees: Progress and prospects,” in Workshop on
Algorithmic Foundations of Robotics, 2000.

[3] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for path planning
in high-dimensional spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[4] L. Janson, E. Schmerling, A. Clark, and M. Pavone,
“Fast Marching Tree: a fast marching sampling-based
method for optimal motion planning in many dimen-
sions,” Int. Journal of Robotics Research, vol. 34, no. 7,
pp. 883–921, 2015.

[5] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge Univ. Press, 2004.

[6] X. Liu and P. Lu, “Solving nonconvex optimal control
problems by convex optimization,” AIAA Journal of
Guidance, Control, and Dynamics, vol. 37, no. 3, pp.
750 – 765, 2014.

[7] Y. Mao, M. Szmuk, and B. Açikmeşe, “Successive
convexification of non-convex optimal control problems
and its convergence properties,” in Proc. IEEE Conf. on
Decision and Control, 2016.

[8] Y. Mao, D. Dueri, M. Szmuk, and B. Açikmeşe,
“Successive Convexification of Non-Convex Optimal
Control Problems with State Constraints,” IFAC-Papers
Online, vol. 50, no. 1, pp. 4063–4069, 2017.

[9] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone,
“GuSTO: guaranteed sequential trajectory optimization
via sequential convex programming,” in Proc. IEEE
Conf. on Robotics and Automation, 2019.

[10] R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and
M. Pavone, “Trajectory optimization on manifolds: A
theoretically-guaranteed embedded sequential convex

6

programming approach,” in Robotics: Science and Sys-
tems, 2019.

[11] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel,
“Value iteration networks,” in Conf. on Neural Informa-
tion Processing Systems, 2016.

[12] B. Ichter, J. Harrison, and M. Pavone, “Learning sam-
pling distributions for robot motion planning,” in Proc.
IEEE Conf. on Robotics and Automation, 2018.

[13] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C.
Yip, “Motion planning networks,” in Proc. IEEE Conf.
on Robotics and Automation, 2019.

[14] N. Jetchev and M. Toussaint, “Fast motion planning
from experience: trajectory prediction for speeding up
movement generation,” Autonomous Robots, vol. 34,
no. 1-2, pp. 111–127, 2013.

[15] G. Tang, W. Sun, and K. Hauser, “Learning trajec-
tories for real-time optimal control of quadrotors,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,
2018.

[16] G. S. Aoudé, “Two-stage path planning approach for de-
signing multiple spacecraft reconfiguration maneuvers
and applications to SPHERES onboard ISS,” Master’s
thesis, Massachusetts Inst. of Technology, 2007.

[17] J. Virgili-llop, C. Zagaris, R. Zappulla II, A. Bradstreet,
and M. Romano, “Convex optimization for proximity
maneuvering of a spacecraft with a robotic manipu-
lator,” in AIAA/AAS Space Flight Mechanics Meeting,
2017.

[18] Astrobee robot software. NASA. Available at https://
github.com/nasa/astrobee.

[19] K. R. Simba, N. Uchiyama, and S. Sano, “Real-time
smooth trajectory generation for nonholonomic mobile
robots using bézier curves,” Robotics and Computer-
Integrated Manufacturing, vol. 41, no. 1, pp. 31–42,
2016.

[20] K. Wang, “B-splines joint trajectory planning,” Comput-
ers in Industry, vol. 10, no. 2, pp. 113 – 122, 1988.

[21] Y.-C. Chen, “Solving robot trajectory planning prob-
lems with uniform cubic B-splines,” Optimal Control
Applications and Methods, vol. 12, no. 4, pp. 247–262,
1991.

[22] A. Wachter and L. T. Biegler, “On the implementation
of an interior-point filter line-search algorithm for large-
scale nonlinear programming,” Mathematical Program-
ming, vol. 106, no. 1, pp. 25–57, 2006.

[23] F. Chollet et al., “Keras,” https://github.com/fchollet/
keras, 2015.

[24] F. Baldini, S. Bandyopadhyay, R. Foust, S.-J. Chung,
A. Rahmani, J.-P. de la Croix, A. Bacula, C. M. Chilan,
and F. Hadaegh, “Fast motion planning for agile space
systems with multiple obstacles,” in AIAA/AAS Astrody-
namics Specialist Conference, 2016.

[25] T. Salzmann, B. Ivanovic, and M. Pavone,
“Trajectron++: Multi-agent generative trajectory
forecasting with heterogeneous data for control,” 2020,
available at https://stanfordasl.github.io/wp-content/
papercite-data/pdf/Salzmann.Ivanovic.ea.2020.pdf.

BIOGRAPHY[

Somrita Banerjee received her B.S.
degree in Mechanical and Aerospace
Engineering from Cornell University in
2017. She is currently a graduate stu-
dent in the Aeronautics and Astronautics
department at Stanford University. Her
research focuses on problems involving
robotics in space applications.

Thomas Lew received his BSc. de-
gree in Microengineering from Ecole
Polytechnique Federale de Lausanne in
2017, his MSc. degree in Robotics from
ETH Zurich in 2019, and is currently
pursuing his Ph.D. degree in Aeronau-
tics and Astronautics at Stanford Uni-
versity. His research focuses on the in-
tersection between optimization, control
theory and machine learning techniques

for aerospace applications.

Dr. Riccardo Bonalli obtained his MSc
in Mathematical Engineering from Po-
litecnico di Milano, Italy, in 2014, and
his Ph.D. in applied mathematics from
Sorbonne Universite, France, in 2018, in
collaboration with ONERA - The French
Aerospace Lab, France. He is now post-
doctoral researcher at the Department of
Aeronautics and Astronautics, at Stan-
ford University. His main research in-

terests concern the theoretical and numerical optimal control
with applications in aerospace engineering and robotics.

Abdulaziz Alfaadhel is a research
specialist with the Center of Excel-
lence for Aeronautics and Astronautics
(CEAA) at KACST and Stanford Univer-
sity. He received his Bachelor’s Degree
in Aerospace Engineering from the King
Fahd University of Petroleum and Min-
erals (KFUPM), Dhahran in May 2018.
His research interests include optimal
control, trajectory optimization and or-

bital mechanics.

7

https://github.com/nasa/astrobee
https://github.com/nasa/astrobee
https://github.com/fchollet/keras
https://github.com/fchollet/keras
 https://stanfordasl.github.io/wp-content/papercite-data/pdf/Salzmann.Ivanovic.ea.2020.pdf
 https://stanfordasl.github.io/wp-content/papercite-data/pdf/Salzmann.Ivanovic.ea.2020.pdf

Ibrahim Abdulaziz Alomar has a bach-
elor of science in Mechanical engineer-
ing from King Saud University and he
currently works with the Center of Ex-
cellence for Aeronautics and Astronau-
tics (CEAA) at KACST. His main re-
search interest are modeling and control
of mechanical and aerospace systems.

Dr. Hesham M Shageer is an Assis-
tant Research Professor with the King
Abdulaziz City for Science and Technol-
ogy (KACST). He is one of the Prin-
cipal Investigators with the collabora-
tive research Center of Excellence for
Aeronautics and Astronautics (CEAA) a
joint effort between KACST and Stan-
ford University. His research experi-
ence includes Adaptive Control Theory

and Design Methodologies, System Modeling and Numer-
ical Simulation, as well as Optimal Experimental Design.
Hesham received his B.S. (2004), M.S. (2006) and Ph.D.
(2013) degrees from the University of Virginia (UVA) with
a major in Electrical Engineering and a specialization in
Control Systems. While at UVA, he participated on a novel
aircraft control design project funded by NASA, in addition
to the Solar Decathlon Design Competition. His research
interests span multiple domains including Machine Learning
Based Adaptive Control Synthesis, Autonomous Aircraft Sys-
tem Design, Green Engineering and Bio-mimicking Design
Concepts.

Dr. Marco Pavone is an Associate
Professor of Aeronautics and Astronau-
tics at Stanford University, where he is
the Director of the Autonomous Systems
Laboratory. Before joining Stanford,
he was a Research Technologist within
the Robotics Section at the NASA Jet
Propulsion Laboratory. He received a
Ph.D. degree in Aeronautics and Astro-
nautics from the Massachusetts Institu-

teof Technology in 2010. His main research interests are in
the development of methodologies for the analysis, design,
and control of autonomous systems, with an emphasis on
self-driving cars, autonomous aerospace vehicles, and future
mobility systems. He is a recipient of a number of awards,
including a Presidential Early Career Award for Scientists
and Engineers, an ONR YIP Award, an NSF CAREER Award,
and a NASA Early Career Faculty Award. He was identified
by the American Society for Engineering Education (ASEE)
as one of America’s 20 most highly promising investigators
under the age of 40. He is currently serving as an Associate
Editor for the IEEE Control Systems Magazine.

8

	Introduction
	Problem formulation
	Technical Approach
	Numerical Results
	Conclusions
	Acknowledgments
	References
	Biography

