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Abstract: Real-time optimal control of high-dimensional, nonlinear systems remains a challeng-
ing task due to the computational intractability of their models. While several model-reduction
and learning-based approaches for constructing low-dimensional surrogates of the original system
have been proposed in the literature, these approaches suffer from fundamental issues which
limit their application in real-world scenarios. Namely, they typically lack generalizability to
different control tasks, ability to trade dimensionality for accuracy, and ability to preserve
the structure of the dynamics. Recently, we proposed to extract low-dimensional dynamics
on Spectral Submanifolds (SSMs) to overcome these issues and validated our approach in a
highly accurate simulation environment. In this manuscript, we extend our framework to a
real-world setting by employing time-delay embeddings to embed SSMs in an observable space
of appropriate dimension. This allows us to learn highly accurate, low-dimensional dynamics
purely from observational data. We show that these innovations extend Spectral Submanifold
Reduction (SSMR) to real-world applications and showcase the effectiveness of SSMR on a soft
robotic system.
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1. INTRODUCTION

The class of systems considered for control is becoming
more complex and diverse, to include infinite-dimensional
systems (i.e., dynamically-evolving continua) such as
those involving fluid flows, deformable or flexible struc-
tures, and chemical processes. Controlling these types
of systems accurately is challenging because it requires
high-dimensional models. Physics-based models of infinite-
dimensional systems are governed by partial differential
equations, which, after discretization, result in finite, but
extremely high-dimensional systems of ordinary differen-
tial equations (ODE). Since these ODEs have thousands
to millions of dimensions, they are quite computationally
intensive to propagate. Therefore, the application of ro-
bust optimal control schemes, such as model predictive
control (MPC), for real-time control using these models is
unrealistic.

In this work, we learn the reduced dynamics of high-
dimensional systems on low-dimensional, attracting in-
variant manifolds called Spectral Submanifolds (SSMs).
This Spectral Submanifold Reduction (SSMR), yields ac-
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curate, very low-dimensional models to be used in real-
time optimal control schemes. By learning dynamics on
these generic structures, our approach overcomes com-
mon drawbacks associated with learning-based techniques.
These include lack of generalizability to different control
tasks, inability to tractably trade off dimensionality for
accuracy, and inability to preserve the structure of the
dynamics (Alora et al. (2022)).

Statement of Contributions: Our contributions are
two-fold. In this exposition, we

(i) Provide a more comprehensive description of our
SSMR approach relative to that given by Alora
et al. (2022). Specifically, we detail the theoretical
underpinnings of our control-parameterized SSM ap-
proach. This allows us to interpret the trajectory of
our system under control inputs as living on a time-
varying manifold.

(ii) We validate the efficacy of our SSMR framework
(which was initially shown in a simulation envi-
ronment) in the real-world by (a) learning reduced
models purely from experimental data using time-
delay embeddings and (b) learning a second set of
mappings which allow us to extract models based on
generic observables for state estimation and control.

We demonstrate that SSMR is competitive vis-á-viz the
state-of-the-art for the control of a real-world soft robot.



Related Work: The prevailing model-based approach
in the literature for control of high-dimensional, linear
dynamical systems leverages projection-based methods as
a means for model reduction (Lorenzetti et al. (2021);
Ghiglieri and Ulbrich (2014); Alla and Volkwein (2015);
Altmüller (2014)) These approaches involve a data-driven
procedure to identify linear subspaces which best explain
the behavior of the system. The high-dimensional govern-
ing equations are then projected down to such a linear
subspace, giving a reduced-order model (ROM) of the
system for computationally tractable control. While these
approaches work well for linear systems, the ROM validity
deteriorates rapidly far away from the linearization point.

Various schemes to approximate the nonlinearities for
control have been proposed including a piecewise-affine
approximation (Tonkens et al. (2021)) and nonlinear bal-
anced truncation (Huang and Kramer (2020)). Unfortu-
nately, these existing approaches still result in relatively
high-dimensional models for control (i.e., greater than 20
dimensions). Additionally, the dimension of the ROM can
grow rapidly with only a small improvement in accuracy.
In this work, we extract ROMs from invariant manifolds
which capture the nonlinearities of the system. By identi-
fying the reduced dynamics on these generic structures, we
obtain highly accurate, low-dimensional models amenable
to real-time control. We do this in a purely data-driven
fashion, allowing us to forego the encumbering and code-
intrusive process of extracting governing equations from
finite element code.

On the other end of the literature spectrum, data-driven
approaches using neural networks (NN) have been used to
learn low-dimensional dynamics from observed transitions
of the system. The range of approaches vary by the level
of inductive bias incorporated, spanning methods which
use black-box architectures composed of multilayer percep-
trons (Thuruthel et al. (2018)) to grey-box architectures
that aim to preserve physical invariants (Thuruthel et al.
(2018); Greydanus et al. (2019); Cranmer et al. (2020)).
The underlying assumption behind these approaches is
that there exists low-dimensional, latent dynamics that
one can learn, which explain the observations. This idea is
similar to the setting in this work, but rather than inferring
the existence of these dynamics, we explicitly target struc-
tures which we know exist in the phase space of dissipative,
physical systems. While the existing approaches rarely
preserve the properties of the underlying dynamics, our
strategy allows us to encode these properties directly. We
tailor our learning approach to best capture this structure
and the reduced dynamics on it.

A popular data-driven approach which has garnered sig-
nificant interest within the controls community is based on
the Koopman operator (Mezić (2005)). This approach in-
volves finding a nonlinear change of coordinates which ap-
proximately transforms the original nonlinear system into
a linear system. Koopman operator-based approaches are
thus amenable to established linear control schemes and
approximation of the Koopman operator has been used in
a variety of control applications (Bruder et al. (2019b,a)).
While conceptually appealing, most physical systems do
not admit exact finite-dimensional, linear representations.
Additionally, attempts to accurately approximate complex
physical systems require a larger set of observable basis

functions, which leads to numerical conditioning issues of
the approximate Koopman operator, as shown by Dah-
dah and Forbes (2022). Lastly, similar to the other data-
driven approaches, Koopman operator-based approaches
rarely preserve the structure of the dynamics, as shown in
Alora et al. (2022). By explicitly targeting rigorous and
generic structures in the high-dimensional system’s phase
space, we are able to extract ROMs which overcome these
limitations.

Organization: In Section 2 we describe the class of
high-dimensional systems we consider for control and
pose the associated nonlinear optimal control problem. In
Section 3 we summarize recent results on SSMs, justify the
construction of control-parameterized SSMs, and derive
the form of the parameterizations and reduced dynamics
with control. In Section 4 we detail the learning procedure
to extract these mappings from data and then formulate
the reduced order optimal control problem. We present our
hardware results with discussion in Section 5.

2. PROBLEM FORMULATION

2.1 Notation

The set of integers and reals are denoted by Z and R,
with their non-negative subsets denoted by N and R+.
The complex numbers are denoted by C. Tℓ = Rℓ/

(
2πZℓ

)
represents the ℓ-dimensional torus. Ck represents the space
of k-times continuously differentiable functions and Ca

represents the space of analytic functions. L2(V,W ) is the
space of square integrable functions from a complete vector
space V to W . O(·) represents Landau big-O notation.

2.2 High-Dimensional Optimal Control Problem

We consider control-affine systems with N ∈ N degrees
of freedom (DOF). Such systems can be written in first-
order form with state vector xf (t) ∈ Rnf (where f denotes
full state, as opposed to the reduced state x introduced in
Theorem 7, Section 3.1) as

ẋf (t) = Axf (t) + fnl(x
f (t)) + εBu(t), (1)

where nf = 2N , A ∈ Rnf×nf , B ∈ Rnf×m represents the
linear control matrix, and fnl : Rnf → Rnf represents the
nonlinearities in the dynamics. For mechanical systems,
this can represent high-dimensional finite-element mod-
els (FEM), where N represents the number of nodes in
the mesh, which converge to the exact model of control-
affine systems in the continuum limit (i.e., N → ∞)
(Della Santina et al. (2021)). Since our approach relies on
estimating dynamics on smooth, attracting manifolds at-
tached to an equilibrium point, we introduce the following
assumptions on the form of A and fnl.

Assumption 1. A is Hurwitz-stable, i.e., every eigenvalue
of A has negative real part. Thus, the origin is an asymp-
totically stable fixed point for ε = 0.

Assumption 2. fnl ∈ Ca belongs to the class of analytic
functions and satisfies fnl(0) = 0, ∂fnl(0)/∂x

f = 0.

Assumption 1 is generically satisfied by many physical
systems such as robotic arms conducting pick and place
tasks in a constrained workspace. Additionally, systems
which exhibit smooth behavior satisfy Assumption 2. Our



approach can also handle systems with mild discontinuities
such that these behaviors can be approximated smoothly,
as shown by Cenedese et al. (2022b). As we develop
SSMR theory, we will make several more assumptions after
developing notation. We claim that these assumptions are
generically satisfied for a large class of physical systems,
such as continuum robots.

We now pose the problem of controlling Equation (1) to
follow arbitrary and dynamic trajectories in the vicinity
of the origin. Consider the following continuous-time,
optimal control problem (OCP) with quadratic cost and
polytopic constraints in states and control:

minimize
u(·)

∥δz(tf )∥2Qf
+

∫ tf

t0

(
∥δz(t)∥2Q + ∥u(t)∥2R

)
dt,

subject to xf (0) = g(z(0)),

ẋf (t) = Axf (t) + fnl(x
f (t)) + εBu(t), (2)

y(t) = h(xf (t)), z(t) = Cy(t),

u ∈ U , z ∈ Z .

Here, δz(t) = z(t)− z̄(t) is the tracking difference between
the performance variable, z(t) ∈ Ro and the desired
trajectory z̄(t) ∈ Ro. The observed state is denoted
as y(t) ∈ Rp and [t0, tf ] represents the time horizon.
Q,Qf ∈ Ro×o are positive semi-definite matrices which
represent the stage and terminal costs, respectively, over
the performance variables, while R is a positive-definite
matrix representing the cost on controls. The constraint
sets are defined as U := {u(t) ∈ Rm : Muu(t) ≤ bu}
and Z := {z ∈ Ro : Mzz(t) ≤ bz} with Mu ∈ Rnu×m

and Mz ∈ Rnz×o, where nu and nz represent the number
of constraints in the inputs and the observed states,
respectively. Lastly, C ∈ Ro×p is a selection matrix of
states that we observe, while the functions g : Ro → Rnf

and h : Rnf → Rp map the performance variable to the full
state and the full state to the observed state, respectively.
We also make following assumption:

Assumption 3. g,h ∈ Ca also belong to the class of
analytic functions and satisfies g(0) = h(0) = 0.

In most settings, our observables are a subset of the nodes
of our system or are related by a combination of rotations
and translations. Hence, for a myriad of applications,
Assumption 3 is generically satisfied.

For high-dimensional dynamical systems, i.e., nf ≫ 1,
dimensionality of Equation (1) makes it intractable to
solve the OCP (2) in real-time. Thus, we seek a low-
dimensional approximation of Equation (1) that enables
online control and allows us to approximate a solution to
the OCP.

3. CONTROL DYNAMICS ON LOW-DIMENSIONAL
INVARIANT MANIFOLDS

3.1 Summary of Spectral Submanifolds

We define an n-dimensional spectral subspace E as the
direct sum of an arbitrary collection of n eigenspaces of
A,

E := Ej1 ⊕ Ej2 ⊕ ...⊕ Ejn ,

where Ejk denotes the real eigenspace corresponding to
an eigenvalue λjk of A. Let ΛE be the set of eigenvalues

related to E and Λout be that of eigenvalues not related
to E. If minλ∈ΛE

Re(λ) > maxλ∈Λout
Re(λ), then E repre-

sents the slowest spectral subspace of order n. Intuitively,
the slowest spectral subspace corresponds to the dominant
modes representing the persisting dynamics of the system.

Recent results in nonlinear dynamics establish the ex-
istence of unique, smoothest invariant structures in the
phase space of Equation (1), Haller and Ponsioen (2016).
SSMs are nonlinear continuations of the spectral subspaces
of the linearization of (1). The SSM corresponding to E
in the autonomous part of (1) is defined as follows.

Definition 4. An autonomous SSM W(E), corresponding
to a spectral subspace E of the operator A is an invariant

manifold of the autonomous part ẋf
aut(t) = Axf

aut(t) +

fnl(x
f
aut(t)) of the nonlinear system (1), i.e.,

xf
aut(0) ∈ W(E) =⇒ xf

aut(t) ∈ W(E), ∀t ∈ R,
such that,

(1) W(E) is tangent to E at the origin and has the same
dimension as E,

(2) W(E) is strictly smoother than any other invariant
manifold satisfying condition 1 above.

A slow SSM is associated with a spectral subspace con-
taining the slowest decaying eigenvectors of the linearized
system. SSMs as described in Definition 4 turn out to exist
as long as the following assumption is satisfied

Assumption 5. The spectrum ΛE , has no low-order reso-
nance relationship with any eigenvalue in the outer spec-
trum Λout (see Haller and Ponsioen (2016); Cenedese et al.
(2022a) for details).

In the non-autonomous setting of quasi-periodic forcing,
SSMs are envisioned similarly to the autonomous setting
and the role of the fixed point is taken over by the quasi-
periodic orbit γε created by the small-amplitude control
force. A nonautonomous, time-varying SSM W(E, γε) is
then a fibre bundle that perturbs smoothly from the vec-
tor bundle γε × E under the addition of control u(t) =
fext(x

f ,Ωt), where Ω = (ω1, . . . ,ωℓ) is the incommensu-
rable frequency basis of fext ∈ L2.

Definition 6. A quasi-periodic SSMW(E, γε), correspond-
ing to a spectral subspace E of the operator A is an in-
variant manifold of the nonlinear system (1), under quasi-
periodic u(t) = fext(x

f ,Ωt) such that

(1) W(E, γε) is a subbundle of the normal bundle Nγε
of the periodic orbit γε, satisfying dimW(E, γε) =
dimE + 1,

(2) W(E) perturbs smoothly from the spectral subspace
E of the linearized system under the addition of
nonlinear and control terms in Equation 1.

(3) W(E, γε) has strictly more continuous derivatives
along γε than any other invariant manifold satisfying
conditions 1 and 2 above.

Additionally, for moderate control efforts (i.e., the control
term does not dominate the right hand side in Equa-
tion (1)), the following theorem guarantees the existence
of the time-varying SSM.

Theorem 7. Consider a spectral subspace E with dimE =
n and its associated eigenvalues (counting multiplicities)



listed as λ1, . . . , λn. Suppose Assumptions (1), (2), and (5)
are satisfied.

Then the following holds:

(1) There exists a time-varying, quasi-periodic SSM,
W(E, γε) for system (1) that depends smoothly on
the parameter ε and is unique in the class of CΣ(E)+1

invariant manifolds, where Σ(E) represent the abso-
lute spectral quotient as defined in Haller and Pon-
sioen (2016).

(2) W(E, γε) can be viewed as an embedding of an open
set V into the state space of System (1) via the map

Wε(x,Ωt) : V ⊂ Rn × Tℓ → Rnf , (3)

with the quasi-periodic frequencyΩ ∈ Tℓ and reduced
state, x ∈ Rn.

(3) There exists a polynomial function with respect to x,
Rε(x,φ) : V → Rn satisfying the invariance equation

AWε(x,φ) + fnl(Wε(x,φ)) + εBfext(Wε(x,φ),φ)

= DxWε(x,φ)Rε(x,φ) +
d

dt
Wε(x,φ),

(4)

where φ = Ωt, such that the reduced dynamics on
the SSM is given by

ẋ = Rε(x,φ). (5)

Proof. This is a restatement of Theorem 4 in Haller and
Ponsioen (2016) in our setting, which is deduced from the
abstract results on whiskers of invariant tori in Haro and
de la Llave (2006).

For general control inputs where u(t) is no longer necessar-
ily quasi-periodic, the trajectory of System (5) will remain
close to the full state trajectory. To make this intuition
formal, let us define the following control-parameterized
mappings

Definition 8. DefineW : Rn×U → Rnf andR : Rn×U →
Rn as control-parameterized mappings whose autonomous
parts (i.e., the terms which depend only on x) are equal
to Wε and Rε, respectively.

In the following corollary, we show that it is possible
to interpret the trajectory of the system under u(t) as
lying approximately on a time-varying, invariant manifold
W(E, γε).

Corollary 9. Suppose u(t) is bounded and smooth, i.e.,
∥u(t)∥ ≤ M , ∀t ∈ R+ and u ∈ L2. Then the following
holds,

(1) W(x,u) andR(x,u) can be arbitrarily approximated
by a parameterization Wε(x,Ωt) and Rε(x,Ωt) for
some Ω ∈ Tℓ over a finite time-interval t ∈ [0, T ] with
T ∈ R+.

(2) Furthermore, there exists a polynomial with respect
to x such that the following relationship holds

AW(x,u) + fnl(W(x,u)) + εBu

= DxW(x,u)R(x,u) +
d

dt
W(x,u) (6)

Proof. Define a periodic function with respect to u over
a finite time interval T as gϵ(t) := u(t)10≤t<T− ϵ

8M2
(t) +

u(0)1T− ϵ
8M2 ≤t<T (t), where 1(·) denotes the standard indi-

cator function. We first show that u(t) can be arbitrarily
approximated by gϵ(t):∫ T

0

||gϵ(t)− u(t)||2dt

=

∫ T− ϵ
8M2

0

||gϵ(t)− u(t)||2dt+
∫ T

T− ϵ
8M2

||gϵ(t)− u(t)||2dt

=

∫ T

T− ϵ
8M2

||g(0)− u(t)||2dt <
∫ T

T− ϵ
8M2

4M2dt =
ϵ

2
.

By Theorem 1 of Samoilenko and Teplinsky (2013), the
set of values of some quasi-periodic function uϵ(Ωt) =
fext(x

f ,Ωt) is dense in the set of values of gϵ(t) i.e.,
||uϵ(Ωt)− gϵ(t)||2 ≤ ϵ

2T . Thus,∫ T

0

||uϵ(Ωt)− u(t)||2dt

≤
∫ T

0

(
||uϵ(Ωt)− gϵ(t)||2 + ||gϵ(Ωt)− u(t)||2

)
dt < ϵ.

Since the autonomous parts of W and R equal those
of Wε and Rε, respectively, then by the approximation
argument above, there exists Ω ∈ Tℓ such that Wε(x,Ωt)
and Rε(x,Ωt) approximate W and R, respectively over
finite T. This proves part (1). Part (2) follows from part (1)
and Theorem 7, resulting in a control-dependent SSM pa-
rameterization W(x,u) and R(x,u) which satisfies Equa-
tion (6), at least for finite time. 2

3.2 Low-Dimensional Models on SSMs

SSMs are ideal candidates for model reduction because
they exponentially attract nearby trajectories and can
capture nonlinear phenomena near the fixed point to which
they are attached.

In practice, we do not have access to the full state xf .
Though, by Whitney’s embedding theorem, we can embed
the SSM and reduced dynamics in a space consisting of
observables, y ∈ Rp where p ≥ 2n+1. If y does not satisfy
this condition, then we can invoke Taken’s embedding
theorem and use time-delay embeddings of y (Kim et al.
(1999)), such that our new observed measurements include
current and past measurements, to embed W(E, γε) in
a space with sufficient dimension. The sampling time of
the delays should be small enough to capture the period
of the dominant modes of the system. This information
can be inferred via frequency analysis. Thus, our SSM
parameterizations in the observed space, using the graph-
style approach of Cenedese et al. (2022a), is

x = V⊤
0 y,

y = V0x+wnl(x) + εwu(t), (7)

ẋ = R0x+ rnl(x) + εru(t),

where the columns of V0 ∈ Rp×n span the tangent space
of W(E, γε) and the two maps wnl : Rn → Rp and
rnl : Rn → Rn represent the nonlinear terms in the SSM
parameterization and reduced dynamics, respectively. The
maps wu : R+ → Rp and ru : R+ → Rn represent the
control-parameterized terms for some fixed u.

Under the additional assumption

Assumption 10. The outer modes have negligible effects in
theO(ε)-correction of the non-autonomous SSM geometry.



one can show using the invariance properties of the SSM,
that

wu(t) = wu(0) +Bw

∫ t

0

u(s)ds, (8)

ru(t) = Bru(t),

where Br ∈ Ro×m is the control matrix describing how the
input influences the reduced dynamics while Bw ∈ Rn×m

describes how the SSM is translated in the phase space.
Assumption 10 is generically satisfied in slow SSMs of
mechanical systems where the outer modes are much stiffer
than those related to the SSM (Jain and Haller (2021)),
as in the example we discuss later.

In many control settings, it might be preferable to use
a different set of observables that differ from those used
to construct the SSM. We find that good closed-loop
performance necessitates working with models that do not
involve time-delays. Thus, while we retain the reduced
dynamics in Equation (7) regressed from possibly time-
delayed observations, we now seek mappings that relate
our reduced coordinates to our new observables. Without
loss of generality, suppose our desired observables for con-
trol are the performance variables, z. By Assumption (3),
i.e., smoothness of our observable functions, we can relate
our reduced coordinates with the new observables via a
new coordinate chart and parameterization through the
nonlinear mappings

x = vz(z), (9)

z = wz(x,u) = wa(x) + εwu,z(t).

where wz : Ro → Rn and vz : Rn×m → Ro are the reduced
coordinate and observable parameterizations on the SSM,
respectively, wa : Rn → Ro is the autonomous part of

wz, and wu,z(t) = w1,z(0) + Bw,z

∫ t

0
u(s)ds is similar to

wu(t), but is now a mapping with respect to z. In the
following section, we seek to learn the reduced dynamics
in (7,8) and the paramaterizations in (9) by approximating
the mappings that describe the trajectory of our observed
states on SSMs.

4. LEARNING LOW-DIMENSIONAL DYNAMICS ON
INVARIANT MANIFOLDS

Our three-step SSMR procedure involves: (1) collecting
trajectories at or near the SSM. (2) learning the SSM
geometry and the reduced dynamics in (7), followed by
(3) learning the linear control matrices that describes the
effect of the controls in the reduced coordinates.

4.1 Learning Autonomous Dynamics

To describe the autonomous part of the geometry and
reduced dynamics on W(E, γε), we express the mappings
vz and wa via a Taylor series expansion

x = vz(z) = Ṽ0z+ Ṽz2:nv

za = wa(x) = W0x+Wx2:nw (10)

ẋa = ra(x) = R0x+Rx2:nr

where x2:nv is the family of all monomials from order 2
to nv, and nv, nw, nr ∈ R+ are the desired order of the
Taylor series expansion for approximating the maps of
the SSM. To learn the autonomous parts of the geometry

and reduced dynamics in Equation (7), the training data
should involve only trajectories that are near the SSM.
Thus, we obtain training data snapshots by initializing
the system along various points in its configuration space,
then collect the observed state trajectory as it decays to its
equilibrium point. Since we aim to infer the geometry of
our SSM from data, our decaying trajectories should be as
close to the SSM as possible. Hence, each decay trajectory
is truncated to remove initial transients converging to the
SSM.We denote the truncated training dataset of decaying
trajectories as Da.

We first approximate the basis for the tangent space to
which we attach our SSM by finding the n dominant modes
of Equation (1) (i.e., the n columns of V0). To do this
we carry out singular value decomposition (SVD) on our
dataset Da and pick the n leading directions that capture
a majority of the variance in the data. Indeed, for systems
that do not feature strong nonlinearities, SVD is able to
obtain a close estimate for the spectral subspace E to
which the SSM is tangent as shown in Ax̊as et al. (2022).
Thus, we make the following assumption

Assumption 11. SVD of the leading n modes on the
dataset Da can capture the tangent space of the SSM,
spanned by the columns of V0.

Under Assumption (11), we then form the set of reduced
coordinates {x : x = V⊤

0 y} from our training trajecto-
ries y ∈ Da. With slight abuse of notation, we denote
(x,y, z) ∈ Da to specify data either obtained or inferred
from autonomous trajectories. Here z may be a subset of
the observables y or obtained after post-processing y. We
can then find the unknown coefficients in Equation (10)
via polynomial regression

(Ṽ∗
0, Ṽ

∗) = argmin
Ṽ0,Ṽ∗

∑
(x,z)∈Da

∥∥∥x− Ṽ0z− Ṽz2:nv

∥∥∥2
2
,

(W∗
0,W

∗) = argmin
W0,W∗

∑
(x,z)∈Da

∥∥z−W0x−Rx2:nv
∥∥2
2
,

(11)

(R∗
0,R

∗) = argmin
R0,R∗

∑
x∈Da

∥∥ẋ−R0x−Rx2:nr
∥∥2
2
.

The time derivative in (11) can be computed using stan-
dard finite difference schemes if the sampling time of Da

is much smaller than the Nyquist sampling time of the
fastest mode in the SSM dynamics.

4.2 Learning Linear Control Dynamics

We set ε = 1, without loss of generality, for the rest of
the exposition. Once the autonomous parameterizations
in (10) are known, we can regress the control matrices Br

and Bw,z.

To do this, we collect a new dataset (y, z) ∈ Du of state
transitions obtained from exploring the actuation space of
the system. We do this by generating a smooth sequence
of inputs, u, e.g., through periodic actuation at various
control amplitudes and recording the corresponding (pos-
sibly time-delayed) observed state trajectories y. We then
map y ∈ Du down to the reduced coordinates x = V⊤

0 y
and regress the control matrices as follows,



B∗
r = argmin

Br

∑
x∈Du

||ẋ−R0x−Rx2:nr −Bru||22,

B∗
w,z = argmin

Bw,z

∑
(x,z)∈Du

∥∥∥∥ d

dt
(z−wa(x))−Bw,zu

∥∥∥∥2
2

.

(12)

These control matrices constrain the effect of the inputs
on the shape of the SSM and describes how the inputs
translate the SSM in the system’s phase space. Thus,
the parameterization of the coordinate chart, the param-
eterization of our time-varying SSM, W(x,u), and the
controlled reduced dynamics on it are

x = vz(z) = Ṽ0z+ Ṽz2:nv

z = wz(x) = W0x+Wx2:nw +Bw,z

∫ t

0

u(s)ds (13)

ẋ = r(x) = R0x+Rx2:nr +Bru.

4.3 Reduced Order Optimal Control Problem

Learning the parameterization of the SSM enables us to
learn the intrinsic physics of our system, leading to low-
dimensional and accurate reduced models with n ≪ nf .
This allows us to approximate the OCP in (2) by posing
an optimization problem with respect to the dynamics on
the SSM as follows

minimize
u(·)

∥δz(tf )∥2Qf
+

∫ tf

t0

(
∥δz(t)∥2Q + ∥u(t)∥2R

)
dt

subject to x(0) = vz(z(0)− zeq),

ẋ(t) = r(x(t)) +Bru(t),

z(t) = wz(x(t),u(t)) + zeq, (14)

z(t) ∈ Z , u(t) ∈ U ,

where zeq ∈ Ro is the performance state at equilibrium. To
solve the approximate OCP (14) numerically, we discretize
the continuous-time system and use Sequential Convex
Programming (SCP) to transform (14) into a sequence of
quadratic programs. If n is small enough, we can compute
the solution to the resulting approximate OCP in real-
time.

5. HARDWARE EXPERIMENTS

In this section we demonstrate our proposed SSMR-
based control scheme through hardware experiments on
the Diamond soft robot in Figure 1. We compare our
approach against two state-of-the-art approaches, namely
Trajectory-Piecewise Linear (TPWL) (Tonkens et al.
(2021)) and a Koopman operator-based approach (Bruder
et al. (2019a)).

5.1 Hardware Setup

Our experimental robot platform is equipped with vari-
ous components for actuation, sensing, and computation.
Four Dynamixel XM430-W350-T torque-enabled servos
are used to control the tension in the actuation cables.
Commands are sent to the servos using the DynamixelSDK
Robot Operating System (ROS) library. Next, we use
the Motive OptiTrack motion capture system to track
the position of the motion capture markers attached to
the robot’s tip and elbows, in real-time. We numerically

Fig. 1. Hardware platform setup of the elastomer “Dia-
mond” soft robot equipped with motion capture and
torque-controlled servos.

differentiate position in order to get the velocities of each
marker. These positions and velocities are transformed
into the robot’s local reference frame and then streamed
as ROS topics.

Our control scheme is implemented in Python as a ROS
package 1 and run on a Lenovo Thinkpad E590 laptop with
a 1.6 GHz Intel Core i5 processor and 8 GB of RAM.
The optimization problem is setup in CVXPY (Diamond
and Boyd (2016); Agrawal et al. (2018)) and solved using
Gurobi (Gurobi Optimization, LLC (2022)) and OSQP
(Stellato et al. (2020)).

5.2 Model and Controller Parameters

System identification of the TPWL FEM model and cali-
bration of the sensors and actuators were conducted sim-
ilarly to Lorenzetti (2021). The resulting TPWL model is
nTPWL = 42 dimensions and requires position and velocity
from the the elbows and tip, resulting in a 30-dimensional
observation model. The TPWLOCP is defined with a hori-
zon of N = 5, rollout horizon of Nr = 4, and discretized in
time with dt = 0.1 s using a zero-order hold control. The
optimal control and state trajectories are interpolated,
allowing the feedback controller and state estimator to
operate with a control sampling time of Ts = 0.01 s.

To obtain a data-driven Koopman model, we sample the
configuration space of the robot through a sequence of
random control inputs and observe state transitions of
the robot’s tip marker x–y–z position. We then compute
the model using the toolbox in Bruder et al. (2019a), by
transforming the observables into a “lifted” state space.
The lifting basis functions consist of all monomials up
to order 2 and d = 1 time-delay, resulting in a linear
model with a lifted state dimension of nKoop = 66. The
model’s time-discretization and control sampling time are
Ts = dt = 0.1 s, with horizon of N = 3 and rollout horizon
of Nr = 1.

To construct the SSMR model, we collect d = 9 time-
delayed observations of the tip position, y ∈ R30. We
1 https://github.com/StanfordASL/soft-robot-control



Fig. 2. Experimental results of tracking performance for the Figure 8 (left) and Circle (right) trajectories based on the
model and control parameters described in Section 5.2. The TPWL trajectory is shown in green, the Koopman
trajectory in orange, and the SSMR in blue. The dotted black line represents the reference trajectory.

obtain this data by displacing the robot along 34 different
points in its workspace and observe the decaying trajec-
tory state transitions sampled at Ts = 10 ms. This is
consistent with the highest frequency mode in the SSM
which has a period of roughly 243 ms. After conducting
PCA on our training data, we found that the 6 leading
modes captured over 99% of the variance in our dataset.
Furthermore, since we have access to position and velocity
of the tip, we learn the mappings wz and vz such that
y = [xee, yee, zee, ẋee, ẏee, żee]. Due to noise amplification
introduced by numerical differentiation, we pass our veloc-
ity measurements through a low-pass filter to reduce the
noise prior to regression. We fit a cubic order, nSSM = 6
dimensional SSM parametrization and reduced dynamics
in (13) using the procedure in Section 4. To fit Br, we
reuse the Figure 8 trajectory and inputs generated by the
TPWL model. Our model’s time discretization and control
sampling time are Ts = dt = 0.05 with horizon N = 6 and
rollout horizon of Nr = 5. We remark that the control
parameters chosen were tuned for each method to yield
the best, real-time performance across all tasks.

5.3 Results

Table 1. A comparison of mean squared track-
ing error (mm2) for the Figure 8 and Circle

trajectories.

SSMR Koopman TPWL
(n = 6) (n = 66) (n = 42)

Figure 8 58.91 57.59 56.22
Circle 29.66 41.81 64.15

Table 1 reports the mean-squared error tracking perfor-
mance while Figure 2 depict the experimental results for
the quasi-static Figure 8 and Circle trajectories over a
single trial. Despite the fact that our SSMR model is only
6-dimensional (compared to 42- and 66-dimensional for the
TPWL and Koopman models, respectively), it performs
comparably against the other approaches in the Figure 8
trajectory and outperforms them in the Circle trajectory.

Also, while the control terms in the SSMR model were
regressed using a Figure 8 trajectory, the model generalizes

well to other control tasks. This is due to the fact that
we are able to learn the autonomous dynamics faithfully,
enabling us to effectively disambiguate the effect of ac-
tuation and learn its influence on the reduced dynamics
with radically less data (as long as the training trajectories
sufficiently explore the actuation space).

A large source of error in our model likely stems from
its dependence on velocity in both the model-building
phase and the online state estimation phase. Since we
obtain velocity through numerical differentiation, the noise
introduced by this procedure can degrade our model and
corrupt our state estimates during closed-loop operation.
Secondly, while our approach is purely data-driven, we
still observe the hysteresis phenomenon which plagues the
TPWL model but not the data-driven Koopman model
(similarly reported in Lorenzetti (2021)). This may be due
to the sequential nature in which we disambiguate the
effect of controls. While these initial results are promising,
we believe that we can achieve even better performance
using d = 1 time-delays of the tip position as observables.
This would allow us to circumvent the noise introduced
by numerical differentiation while implicitly obtaining
velocity information.

6. CONCLUSION AND FUTURE WORK

In this work, we provide a rigorous description of our
SSMR-based control framework and showcase its real-
world applicability for real-time optimal control. We out-
lined how to learn faithful, low-dimensional dynamics for
control on invariant manifolds using pure observation data.
We then demonstrated the efficacy of our SSMR-based
control scheme on a real-world soft robot, outperforming
the current state-of-the-art.

In the future, we plan to extend our approach to state-
affine control terms in order to handle a larger class
of physicals systems, such as cable- or pneumatically-
actuated continuum manipulators. Also, for many phys-
ical systems, it may be expensive or difficult to collect
experimental data to train the model. Future work will in-
vestigate the efficacy of learning SSMR models from high-
fidelity FEM simulation to be transferred to the real-world.



In this setting, we would employ a hybrid approach where
we extract the linear parts from the finite element model
and then learn nonlinearities from simulation rollouts.
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