
A REAL-TIME FRAMEWORK FOR KINODYNAMIC PLANNING

WITH APPLICATION TO QUADROTOR OBSTACLE

AVOIDANCE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF

AERONAUTICS AND ASTRONAUTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ross E. Allen

June 2016

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Related Work . 5

1.4 Contributions . 9

Nomenclature 1

2 Mathematical Foundations 13

2.1 Fundamentals of Motion Planning . 13

2.1.1 Piano Movers Problem . 13

2.1.2 Configuration Space . 15

2.1.3 Sampling-Based Planning . 17

2.2 Dynamical Systems . 20

2.2.1 Differential Equations . 20

2.2.2 Differential Flatness . 21

2.2.3 Quadrotor . 22

2.2.4 Double Integrator . 23

2.2.5 Dubins Vehicle . 24

2.2.6 Fixed-Wing UAV . 25

v

2.2.7 Gravity-Free Spacecraft . 26

2.3 Optimal Boundary Value Problems 27

2.3.1 Analytical Results . 29

2.3.2 Numerical Techniques . 30

2.3.3 Dubins Vehicle . 32

2.3.4 Control-Penalized Double Integrator 33

2.4 Reachable Sets for Dynamical Systems 34

3 Machine Learning for Real-Time Reachability Analysis 37

3.1 SVM Classification of Reachable Sets 38

3.2 Regression Estimation of Optimal Cost 39

3.3 Numerical Test Cases . 41

3.3.1 Dubins Vehicle . 41

3.3.2 Gravity-Free Spacecraft . 44

3.3.3 Control-Penalized Double Integrator 47

3.3.4 Execution Time and Accuracy 47

4 A Real-Time Framework for Kinodynamic Planning 50

4.1 Real-Time Framework for Kinodynamic Planning 50

4.1.1 Offline Computations . 52

4.1.2 Online Computations . 53

4.1.3 Framework Subroutines . 54

4.1.4 Kinodynamic Fast Marching Tree 55

4.2 Numerical Experiments . 56

4.2.1 Comparison with Existing Techniques 59

4.2.2 Notes on Intermediate Results 59

5 Real-Time Quadrotor Planning and Control 61

5.1 Real-Time Framework for Quadrotor Planning 61

5.1.1 Analytical Solution to OBVPs 66

5.1.2 Machine Learning of Neighborhoods 67

5.1.3 Snap Minimization for Trajectory Smoothing 67

vi

5.1.4 Differentially Flat Mapping 70

5.1.5 Flight Controller . 73

5.2 Numerical Experiments . 75

5.3 Machine Learning of Reachable Sets 82

5.4 Flight Demonstrations . 86

5.4.1 Experimental Flight Setup . 86

5.4.2 Experimental Flight Results 87

5.4.3 Discussion . 93

6 Conclusions 96

6.1 Summary . 96

6.2 Future Work . 97

6.2.1 Extensions in Depth . 97

6.2.2 Extensions in Breadth . 98

6.2.3 Extensions in Theory . 100

Bibliography 101

vii

List of Tables

3.1 Dubins car features from most important to least important. 43

3.2 Deep space spacecraft features, from most important to least important 46

3.3 Average computation time and percent of misclassification for the two-

point boundary value problem solver, the linear regression cost estima-

tion (best fit model using all features), and SVM classification (average

over all 3 cost thresholds). 47

4.1 Comparison of normalized, online computation times for differing levels

of framework complexity. 58

4.2 Final path cost compared with optimal, unobstructed cost. 59

5.1 Trajectory cost and computation time breakdown for the Real-Time

Kinodynamic Framework for a range of design variables 78

5.2 Feature vector for neighbor determination of the double integrator

quadrotor model. 82

5.3 Training and testing accuracy of machine-learning-based neighborhood

classification algorithm . 83

5.4 Computational platform and programming language for the major

components of the real-time framework. 87

5.5 Computation time breakdown for the Real-Time Kinodynamic Frame-

work for differing numbers of sampled states 93

viii

List of Figures

1.1 A . 2

2.1 Illustration of the piano movers problem. Source: Cortes, Juan. Mo-

tion planning algorithms for general closed-chain mechanisms. Diss.

2003. 14

2.2 Constructing a configuration obstacle for rectangular obstacle and tri-

angular robot, where only translation is allowed for the robot. Source:

LaValle 2006 [1]. 16

2.3 Tree (left) and roadmap (right) graphs generated by sampling-based

planning algorithms for a simplistic 2D problem. The graphs gener-

ated can be used to find a feasible/optimal path from the initial state,

shown in green, to the goal region, shown in red, while avoiding the

configuration obstacles, shown in blue. A collision checking module

prevents edges that would intersect obstacles from being incorporated

into the graph. 18

2.4 A tree structure for a differentially constrained planning problem. State

connections interfering with obstacles, as identified by the collision

checker, are indicated in red and would be pruned by the sampling-

based planning algorithm. 19

2.5 Diagram of quadrotor dynamics with world (inertial), body, and nom-

inal reference frames. 22

2.6 Dynamics for the Dubins car model. 25

2.7 Simplified fixed-wing UAV Model. 25

2.8 Dynamics for the gravity-free spacecraft. 26

ix

2.9 Cost-limited reachable set for a two-dimensional system with no differ-

ential constraints of the type that would appear in a geometric planning

problem. 34

2.10 Conceptual representation of a cost-limited reachable set for a notional

2D dynamical system. Formally, a (forward) cost-limited reachable set

is the set of states that can be reached from a given state with a cost

bounded above by a given threshold (denoted as Jth). 35

3.1 Reachability sets for an instance of the Dubins car vehicle (ρmin =

1, v = 1, L = 1) for cost threshold horizon times T ≤ π
2
. 42

3.2 Results of feature selection for the Dubins car showing the average test

error percentage vs number of features used. 43

3.3 Predicted reachability set plotted with true cost for the Dubins Car

with 3 different cost thresholds (black lines). Blue circles = SVM

predicted reachable, red diamonds = SVM predicted non-reachable,

blue dot = linear regression predicted reachable, red cross = linear

regression predicted non-reachable. 45

3.4 Results of feature selection for the deep-space spacecraft showing the

average test error percentage vs number of features used. 46

3.5 Predicted reachability set plotted with true cost for the deep-space

spacecraft with 3 different cost thresholds (black lines). Blue circles

= SVM predicted reachable, red diamonds = SVM predicted non-

reachable, blue dot = linear regression predicted reachable, red cross

= linear regression predicted non-reachable 48

4.1 Flowchart of the Kinodynamic Motion Planning Framework. This dia-

gram also illustrates the extension of prior work where the SVM Clas-

sifier and Motion Planner blocks correlate to [2] and [3], respectively.

. 51
4.2 Time-optimized path for fixed-wing UAV navigating through a forest.

Sharp corners are artifacts of plotting, not true representations of the

trajectory. 57

x

4.3 Time-optimized path for spacecraft navigating around ISS. 58

5.1 The real-time framework for kinodynamic planning and control for a

quadrotor system. 62

5.2 Event-based replanning structure used to account dynamic obstacles. 66

5.3 A instance of one of the simulated flight tests with a 3D maze of wall

structures and randomly placed spherical obstacles. 76

5.4 Average trajectory cost as a function of number of state samples and

number of terminal state neighbors for a fixed obstacle coverage. . . . 77

5.5 Average online computation time as a function of number of state

samples and number of terminal state neighbors for a fixed obstacle

coverage. 77

5.6 Rate of failure to find solution as a function of approximate obstacle

coverage for a range of sample sizes. 79

5.7 Average solution trajectory cost as a function of approximate obstacle

coverage for a range of sample sizes. 80

5.8 Average computation time as a function of approximate obstacle cov-

erage for a range of sample sizes. 80

5.9 Part 1 : Simplified, 2-dimensional reachable set classification. For all

cases, the start state is at the origin with an initial velocity in the

y-direction. The final states all have a velocity of zero. 84

5.10 Part 2 : Simplified, 2-dimensional reachable set classification. For all

cases, the start state is at the origin with an initial velocity in the

y-direction. The final states all have a velocity of zero. 85

5.11 Communication/computation structure for flight tests. 88

5.12 Timelapse of quadrotor navigating static obstacles. 88

xi

5.13 Sequence of images, in order from left to right and down, showing the

quadrotor navigating the two-door environment with a human adver-

sary obstructing one door using a fencing blade. The quadrotor initially

attempts to navigate the door on the right. A human subject can be

seen entering and obstructing the trajectory, causing the quadrotor to

be “pushed back” due to the reactive controller. After several replan-

ning events that attempt to navigate the door on the right, all of which

are obstructed by the human subject, the left door eventually becomes

the optimal solution which is determined by the real-time framework

and subsequently executed by the quadrotor. 90

5.14 Time sequence of real-time planning in “two door” environment with

static and dynamic obstacles. Column 1 gives the online computa-

tion time for the planning event. Column 2 gives screen capture of

the moment of replanning. Column 3 gives the tree explored during

replanning with the preliminary solution in blue. Column 4 gives the

preliminary planning solution and the smoothed trajectory. Obstacles

are represented by red rectangles or spheres 91

5.15 Time sequence of real-time planning in “maze” environment with static

and dynamic obstacles. Column 1 gives the online computation time

for the planning event. Column 2 gives screen capture of the moment

of replanning. Column 3 gives the tree explored during replanning with

the preliminary solution in blue. Column 4 gives the preliminary plan-

ning solution and the smoothed trajectory. Obstacles are represented

by red rectangles or spheres . 92

xii

Chapter 1

Introduction

1.1 Motivation

Any time a robotic system must navigate through an obstructed world to achieve

some objective, it is necessarily solving some form of motion planning problem. These

types of problems are ubiquitous in cutting edge technologies; e.g. an autonomous car

navigating through traffic, an aerial delivery drone avoiding buildings and airspaces,

a robotic spacecraft performing a safe docking manuever, a humanoid robot acting

in close proximity to people, etc. Figure 1.1 gives a few examples of robotic systems

that rely on motion planning, but many more could posed. Let us use the quadrotor

helicopter as an illustrative example.

Due to their ease of use and development along with their wide range of appli-

cations in commercial, military, and recreational settings, quadrotor helicopters have

become the focus of intense research in the last decade [4, 5, 6]. A standing prob-

lem in the field of quadrotor control is the achievement of real-time, high-velocity

obstacle avoidance. More generally, using the robotic motion planning nomenclature,

this problem is referred to as real-time kinodynamic motion planning (“kinodynamic”

meaning that system dynamics are taken into account during the trajectory planning

process). In fact, real-time kinodynamic planning represents an open challenge in

robotics, in general [7].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Current technologies that require the solution to motion planning prob-
lems1.

The challenge of real-time kinodynamic planning can be formulated into two

themes that serve to motivate and guide the work presented in this thesis.

Motivating Theme 1: The development of an algorithmic framework

that provides a real-time approach for solving the kinodynamic motion

planning problem for a general dynamical system.

Motivating Theme 2: Demonstration of real-time motion planning on

a physical, kinodynamic system navigating a dynamic environment.

The first theme addresses an existing gap in theory and practice that is present in

current literature. The second theme addresses an existing gap in robot experimen-

tation.

In response to such motivating themes, this thesis presents a full-stack approach

for kinodynamic motion planning which includes: an offline-online computation paradigm,

1Sources: (upper-left) wired.com/2012/02/autonomous-vehicles-q-and-a/. (upper-right) ama-
zon.com/b?node=8037720011. (lower-left) geek.com/wp-content/uploads/2014/05/dragon2-2.jpg.
(lower-right) https://upload.wikimedia.org/wikipedia/commons/9/92/TOPIO-3.jpg

1.2. PROBLEM STATEMENT 3

sampling-based optimal motion planning, machine learning of reachable sets, trajec-

tory smoothing, trajectory control, and event-based replanning. To further address

the second motivating theme we provide validating experiments of a quadrotor navi-

gating static and dynamic obstacles. This is arguably one of the first - if not the first

- demonstration of truly real-time kinodynamic planning on a quadrotor system.

1.2 Problem Statement

In this section we mathematically formulate the problem we wish to solve. We start

with the definition of the geometric path planning problem, i.e. a motion planning

problem without differential constraints. Let X be the configuration space (discussed

in more detail in Section 2.1.2). Let Xobs be the obstacle region. The obstacle-free

space is defined as Xfree = X \ Xobs. The initial condition xinit is an element of Xfree,

and the goal region Xgoal is a subset of Xfree. A motion planning problem is denoted by

a triplet (Xfree,xinit,Xgoal). A path is denoted by a function x : [0, 1]→ X . A path is

said to be collision-free if x(τ) ∈ Xfree for all τ ∈ [0, 1]. A path is said to be a feasible

path for the planning problem (Xfree,xinit,Xgoal) if it is collision-free, x(0) = xinit, and

x(1) ∈ Xgoal. Let Σ denote the set of all paths. The path planning problem can then

be defined as [3]:

Optimal Path Planning Problem: Given a path planning problem

(Xfree,xinit,Xgoal) and an arc length function c : Σ → R≥0, find a feasible

path x∗ such that c(x∗) = min{c(x) : x is feasible}. If no such path exists,

report failure.

In contrast, the optimal kinodynamic planning problem must account for systems

with differential constraints. The optimal kinodynamic planning problem consists of

the determination of a control function u(t) ∈ Rm, and corresponding state trajec-

tory x(t) ∈ Rn, that minimizes a cost function J (·) while obeying control constraints,

u(t) ∈ U , dynamical (differential) constraints, f [ẋ(t),x(t),u(t), t], and state (obsta-

cle) constraints, i.e. , x(t) ∈ Xfree(t) ⊆ X (where X denotes the state space and

Xfree(t) is the obstacle-free space which is a function of time to account for moving

4 CHAPTER 1. INTRODUCTION

obstacles). The state at the final time must belong to a given goal region, i.e. ,

x(tfinal) ∈ Xgoal ⊆ X . Formally, the problem can be posed as a continuous Bolza

problem:

Optimal Kinodynamic Planning Problem:

Find: u(t)

and corresponding: x(t)

that minimizes: J [x(t),u(t), tfinal]

subject to: u(t) ∈ U ∀t ∈ [tinit, tfinal]

x(t) ∈ Xfree ∀t ∈ [tinit, tfinal]

fl ≤ f [ẋ(t),x(t),u(t), t] ≤ fu ∀t ∈ [tinit, tfinal]

x(tfinal) ∈ Xgoal

(1.1)

where fl and fu are the lower and upper bounds of a differential inclusion

that represents the system dynamics (note that, for generality, the dynam-

ics are represented as a differential inclusion even though the quadrotor

system discussed later is in fact just an ordinary differential system), tinit

represents the given, fixed initial planning time, and tfinal represents the

free final time.

Note that if Xfree(t) can be explicitly represented, then the Optimal Kinodynamic

Planning Problem may best be solved using existing optimal control methods, similar

to what is presented in [8]. However, we are concerned with cases where Xfree(t) is

difficult or not even possible to be explicitly represented (as is typical for kinodynamic

planning problems [1]), and we are only allowed the ability to perform query-based

collision checks.

For the quadrotor planning problem discussed in this thesis, we choose a minimum-

time cost function, that is:

J [x(t),u(t), tfinal] = tfinal. (1.2)

1.3. RELATED WORK 5

In Chapter 5 we specialize the dynamical differential constraints, i.e. , f [ẋ(t),x(t),u(t), t],

to the case of a quadrotor system.

1.3 Related Work

Throughout this thesis we will detail each component of the full-stack planning frame-

work and discuss its relation to the two motivating themes presented in Section 1.1.

First, however, let us build a foundation of prior work that sought to answer sim-

ilar themes. There are two bodies of complementary, yet distinct, literature that

are relevant to the work presented here: those works that address real-time motion

planning in a general sense and those that focus on planning and control for quadro-

tors, specifically. We begin by discussing generalized planning and then move onto

quadrotor-specific works.

Frazzoli et. al. [9] provided some of the pioneering work on real-time kinodynamic

motion planning. This work implemented the RRT algorithm with node connections

achieved by concatenating a small set of motion primitives or “trim trajectories”

between dynamic equilibrium points. Demonstrating on simulations of a small ground

robot and a nonlinear helicopter model, the approach was successful in finding feasible

trajectories through sparse obstacle sets in 10s of milliseconds. The theory was even

applied to dynamic obstacles; however computation times inflated to 10s of seconds.

The major shortcoming of this approach is the restrictive nature of “trim trajectories”

that prevents the motion planner from achieving completeness and is highly reliant

on the user to select appropriate motion primitives. For the helicopter example in

Frazzoli’s work, only 25 different trim trajectories are used for node connections,

all of which being constant speed, level or turning flight. Indeed a helicopter is

capable of much more complex manuevers than those considered. For any given set

of motion primitives, it is argued that a pathological obstacle set could be devised

that confounds this planning process. This effect is likely to blame for the significant

increase in computation time for the dynamic obstacle sets: the motion primitives are

“poorly designed” for this specific case. The work presented in this thesis does not

require the user to select specifically tailored motion primitives, therefore remaining

6 CHAPTER 1. INTRODUCTION

more applicable to arbitrary obstacle sets. Furthermore, it includes a notion of time

optimality.

Leven and Hutchinson developed a real-time path planning framework for chang-

ing environments [10]. Their framework, which appears to be tailored to multi-link

manipulator robots, relied on a preprocessing phase that generated a roadmap of the

unobstructed configurations space (i.e. configuration space with no obstacles present).

It then developed a mapping from nodes in the unobstructed configuration space to

discrete cells in the workspace. When the online phase of the planner, referred to

as the query phase, was initialized and obstacles were introduced, obstructed cells in

the workspace could be mapped to corresponding nodes in the configuration space.

These nodes were then removed from the roadmap and planning could occur on this

augmented roadmap. This approach yielded impressive online planning times of less

than one second.

While Leven’s framework is the most similar in form to that presented in our

current work - consisting of a framework with offline and online phases to minimize

the real-time computations - there are several key differences. Foremost, Leven’s

work centered on kinematically-constrained, but not dynamically-constrained, robot

manipulators. Furthermore they implement a “local planner” that consists of straight-

line connections between sampled nodes in the configuration space, thus neglecting

some of the kinematic constraints that are fundamental to the manipulators. For the

straight-line connection assumption to be valid, they spend considerable time devel-

oping a distance metric that measures the “closeness” between two configurations.

Leven states that the ideal distance metric is swept volume, yet this is too expensive

to calculate in real-time so a set of norms in the configuration and workspace are used

instead [10]. In our work presented here, we seek to address differentially-constrained

systems. To do so we must avoid straight-line approximations for state connections,

instead relying on solving an optimal control problem between states (see Section

2.3). Therefore our distance metric indeed becomes optimal cost. As with Leven’s

work, we face the problem that computing optimal cost maybe too expensive to allow

real-time computation. To this end we implement a machine-learning algorithm to

approximate the optimal cost when real-time calculations are necessary (see Sections

1.3. RELATED WORK 7

2.4 and 3.3.3). If our approach were applied to Leven’s work, they could directly

estimate swept volume instead of relying on norm-based alternatives.

In the context of the second motivating theme, the most relevant and progressive

work in obstacle avoidance and control of quadrotors is, arguably, that of Richter, Bry,

and Roy [11, 12]. Relying on foundational work by Mellinger et. al. [13], Richter’s

work demonstrated aggressive maneuvers for quadrotors flying in obstructed indoor

environments. This was accomplished by generating a set of waypoints through the

workspace and then developing a minimum-snap, polynomial trajectory connecting

these waypoints. This minimum-snap trajectory produces a “graceful” flight pattern

and guarantees dynamic feasibility [13]. Using the differentially flat dynamics of a

quadrotor [13], the trajectory polynomials are used to generate analytical expres-

sions for control inputs that are used in a feedforward fashion in the quadrotor flight

controller [11].

While Richter’s work represented an important step toward quadrotor planning

and control, there remain several critical aspects yet to be achieved. Foremost, the

planning algorithm used, RRT* [14], was not implemented in a real-time fashion.

The planning phase was accomplished offline, with an a priori map of obstacles. This

leaves Richter’s approach unable to handle dynamic obstacles, which is illustrated

in their demonstrations that only feature static obstacles. Furthermore, the RRT*

algorithm used a simple straight-line metric for the initial planning phase to connect

start and goal states; it did not account for the differential motion constraints of

the quadrotor [11]. Therefore the initial planning phase produces waypoints that are

minimum distance, not necessarily minimum time, to the goal. The snap-minimizing,

polynomial trajectories –which guarantee dynamic feasibility– are only produced af-

ter the planning phase, implying that the generated trajectory might be significantly

suboptimal. The work that is presented in this thesis overcomes these shortfalls by

employing a kinodynamic planner in a truly real-time fashion, with obstacle informa-

tion only available during online execution.

Other works have made significant contributions to the theory of quadrotor con-

trol. Sreenath et. al. developed a controller for a quadrotor carrying a cable-

suspended load [15]. Hehn and D’Andrea demonstrated stabilization of an inverted

8 CHAPTER 1. INTRODUCTION

pendulum balanced on a quadrotor [6]. Mellinger et. al. devised a hybrid controller

capable of perching a quadrotor on an over-vertical surface [16]. While important

and impressive in their own right, these works are fundamentally controller designs

that wholly neglect motion planning/obstacle avoidance. The work presented in this

thesis takes kinodynamic planning and flight control as subcomponents of a single

problem and proposes a method for addressing both simultaneously.

Several papers have approached the topic of motion planning for quadrotors, even

so far as real-time planning. Cowling et. al. [17, 18], and Bouktir et. al. [19] both

demonstrate a similar approach that combines trajectory optimization and trajectory

control to accomplish high-speed collision avoidance of quadrotors. These papers,

however, rely on a mathematically explicit representation of obstacles so that the

flight controller can be customized to incorporate these specific obstacles. This limits

the approach to a relatively limited number of obstacle configurations that are well

defined ahead of time. The approach presented in this thesis avoids the explicit

mathematical representation of the obstacle space so as to be applicable to virtually

any obstacle configuration and does not require obstacle information until online

initiation.

Webb and van den Berg made a significant contribution to the field of kinodyanmic

planning with their development of Kinodyanmic RRT* [20]. This work avoided the

explicit obstacle representation found in Bouktir et. al. [19] and Cowling et. al.

[17, 18] and demonstrated kinodynamic planning for a simulated quadrotor system

with linearized dynamics. The Kinodynamic RRT* algorithm is shown to execute in

10s to 100s of seconds; therefore failing to achieve real-time implementation.

An additional, important aspect in this field is validation on a physical system.

The papers Frazzoli et. al. [9], Leven and Hutchinson [10], Cowling et. al. [17, 18],

Bouktir et. al. [19], Webb and van den Berg [20] only provide simulation results,

without a physical demonstration for validation. In contrast Landry produced phys-

ical demonstrations of planning and control of a quadrotor navigating a challenging,

cluttered environment [21]. Landry’s work, however, is not real-time, as it requires the

entire problem to be solved ahead of time before online execution. As with Richter’s

1.4. CONTRIBUTIONS 9

work, Landry’s work is, therefore, limited to static obstacles. Grzonka et. al. devel-

oped an autonomous quadrotor system capable of navigating highly obstructed indoor

environments that executed a variant of the A* algorithm for real-time motion plan-

ning [22]. While this work demonstrated real-time planning, the quadrotor was flown

at speeds low enough such that differential motion constraints of the quadrotor could

be ignored. This implies that the motion planning algorithm demonstrated was in fact

geometric and not kinodynamic. In contrast, our work demonstrates a kinodynamic

planner for quadrotor obstacle avoidance at high speeds.

This thesis is the culmination of the author’s prior works. In Allen et. al. [2]

we introduce the concept of machine learning for rapid estimation of reachable sets

for dynamical systems. In our current work we extend this approach to the control-

penalized double integrator (see Section 2.3.4) and show improved estimation accu-

racy. In Allen and Pavone we first introduce the generalized framework for kinody-

namic planning and show how online computation times can be reduced by several

orders of magnitude for simulated systems [23]. The subsequent paper applied the

kinodynamic planning framework to a quadrotor system and demonstrated real-time

planning on a physical system [24]. In our current work we extend the real-time

framework to dynamic obstacles by developing an effective, event-based replanning

scheme. Furthermore we provide extended simulation results to test the framework in

a wider variety of obstacle sets than is possible in a laboratory environment, allowing

statistical analysis of the framework performance.

1.4 Contributions

In the pursuit of addressing the two motivational themes, this work resulted in three

key contributions. These contributions can be roughly separated into three categories

of theoretical, practical, and experimental components.

Theoretical

We provide a novel machine learning technique for the approximation of cost-limited

reachable sets of dynamical systems. This technique represents a pivotal element of

10 CHAPTER 1. INTRODUCTION

real-time kinodynamic planning as it dramatically decreases the amount of online

computation necessary for the planning process.

Practical

The novel synthesis of existing theoretical results into a coherent, full-stack framework

for kinodynamic planning. It is argued that the framework that emerges from this

synthesis is greater than the sum of its parts; realizing online planning times for

dynamical systems that had yet to be achieved.

Experimental

We produce, arguably, the first demonstration of truly real-time kinodynamic plan-

ning on a physical quadrotor. Demonstrations were performed in environments with

static, dynamic, and even adversarial obstacles.

Chapter 2: Mathematical Foundations.

In this chapter we present a set of mathematical tools and concepts upon which the

rest of the thesis is built. We introduce the field of sampling-based motion planning; a

field that has evolved for the purpose of solving the Optimal Path Planning Problem.

We then introduce a general form of a dynamical system. This system represents

the differential constraints of the kinodynamic planning problem. We then present a

set of example dynamical systems, including the quadrotor system, Dubins Vehicle,

a fixed-wing UAV, and the double integrator system. These example systems serve

as test cases for the kinodynamic planning framework.

Following on from dynamical systems, we introduce the optimal boundary value

problem (OBVP); discussing analytical and numerical results for general and specific

OBVPs. The concept of a cost-limited reachable set is then introduced.

1.4. CONTRIBUTIONS 11

Chapter 3: Machine Learning for Real-Time Reachability Anal-

ysis.

In this chapter we show how machine learning, particularly support vector machines

and weighted linear regression, can be used to approximate the cost-limited reachable

set of a dynamical system. We demonstrate this technique on two simulated robotic

systems and show testing error of less than 10% accompanied with a reduction in

computation time by up to 4 orders of magnitude when compared to numerical so-

lutions for reachable sets. Training data generation and feature vector selection are

also discussed.

Chapter 4: A Real-Time Framework for Kinodynamic Plan-

ning.

In this chapter we propose a framework combining techniques from sampling-based

motion planning, machine learning, and trajectory optimization to address the kino-

dynamic motion planning problem in real-time environments. This framework relies

on a look-up table that stores precomputed optimal solutions to boundary value prob-

lems (assuming no obstacles), which form the directed edges of a precomputed motion

planning roadmap. A sampling-based motion planning algorithm then leverages such

a precomputed roadmap to compute online an obstacle-free trajectory, performing

collision checking in real-time. The machine learning techniques discussed in Chap-

ter 3 are employed to minimize the number of online solutions to boundary value

problems required to compute the neighborhoods of the start state and goal regions.

This approach is demonstrated to reduce online planning times up to 6 orders of

magnitude. Simulation results are presented and discussed. Problem-specific frame-

work modifications are then discussed that would allow further computation time

reductions.

12 CHAPTER 1. INTRODUCTION

Chapter 5: Real-Time Quadrotor Planning and Control.

In this chapter we tailor the real-time planning framework to a quadrotor system

and demonstrate it on a physical robotoic platform. Along with the offline-online

computation paradigm, machine learning of reachable sets, and the sampling-based

planning, the tailored framework also employs trajectory smoothing to achieve real-

time planning for aerial vehicles. This framework accounts for dynamic obstacles with

an event-based replanning structure and a locally reactive control layer that minimizes

replanning events. The approach is demonstrated on a quadrotor navigating moving

obstacles in an indoor space and stands as, arguably, one of the first demonstrations

of full-online kinodynamic motion planning; exhibiting execution cycles of 3-5 Hz.

For the quadrotor, a simplified dynamics model is used during the planning phase

to accelerate online computation. A trajectory smoothing phase, which leverages the

differentially flat nature of quadrotor dynamics, is then implemented to guarantee a

dynamically feasible trajectory.

Chapter 2

Mathematical Foundations

2.1 Fundamentals of Motion Planning

The Optimal Path Planning Problem given in Section 1.2 has been the focus of

research for several decades. As a result many techniques for addressing such prob-

lems have been developed. This section presents a illustrative example of a planning

problem, the foundational concepts and terminology used to discuss planning, and a

general class of planning algorithms that are central to this thesis.

2.1.1 Piano Movers Problem

To help guide our discussion on motion planning, let us first consider a illustrative

example. Imagine you are tasked with moving a piano from one position in a cluttered

apartment to another position. During this move, you must ensure that the piano

does not collide with other furniture, walls, doors, the floor, or the ceiling. This

example is illustrated in Figure 2.1.

The Piano Movers Problem is indeed a canonical motion planning problem. The

concepts of this specific, intuitive problem can be extended to aid discussion of motion

planning in general. Borrowing terminology from LaValle [1], we will refer to the piano

as a robot, symbolized as A which is a subset of R3. The apartment can be considered

the world or workspace, W ∈ R3. The furniture, walls, ceiling, and floor represent

13

14 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Figure 2.1: Illustration of the piano movers problem. Source: Cortes, Juan. Motion
planning algorithms for general closed-chain mechanisms. Diss. 2003.

2.1. FUNDAMENTALS OF MOTION PLANNING 15

the obstacle region, O ⊂ W . The motion planning problem can then be discussed as

the determination of translations and rotations that move A through W \O from an

initial condition to a goal condition or region.

It is important to note that there are several characteristics absent in the Piano

Movers Problem that are central to the types of planning problems discussed in this

thesis. First of which is the idea of differential constraints. It was assumed that there

were no constraints on the motion of the piano so long as it does not interfere with

any obstacles. Many robotic systems – such as cars, spacecraft, or quadrotors – have

constraints on their motion that are dictated by their kinematics and/or dynamics;

see Section 2.2 for more discussion. Furthermore, the Piano Movers problem implied

static obstacles where many important planning problems must address the case of

moving, dynamic obstacles.

2.1.2 Configuration Space

Now that we have an illustrative example of a planning problem and some initial

terminology, we can begin to discuss concepts for solving such problems.

This first important concepts are that of the state of the robot, x, and the state

space, X . The state is a mathematical representation of a specific situation or config-

uration or “state” of the robot. For example, the state of the piano might be defined

by six values; three to define its position and three to define its orientation. The

state of a car robot may be defined as the 2D position, heading angle, and velocity.

A quadrotor robot may require 12 variables to define its state: 3 for position, 3 for

velocity, 3 for orientation, and 3 for angular rates. The state space is the set of all

possible states that the robot can realize, ignoring obstacles. The field of topology

allows for more formal definitions and discussion of these spaces, but such detail is left

to LaValle’s book [1]. A note on terminology: in the planning algorithms literature

the state and state space are commonly referred to as the configuration, q, and con-

figuration space, C, respectively. We will use these terms interchangeably throughout

this work.

The configuration space allows us to map our robot – which may be a 3D object

16 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Figure 2.2: Constructing a configuration obstacle for rectangular obstacle and trian-
gular robot, where only translation is allowed for the robot. Source: LaValle 2006
[1].

in a 3D world – to a single point in the configuration space. This is a vital concept

because now all planning problems, regardless of the shape of the robot, can be solved

by finding a feasible/optimal point trajectory through the configuration space. To

establish an equivalence between planning in the workspace,W , and the configuration

space, C, obstacles must mapped to their appropriate regions in the configuration

space, known as configuration obstacles, Cobs. LaValle gives a simplistic example of

such mapping for a 2D, polygonal obstacle in a 2D world where a 2D, polygonal robot

is only capable of translation, not rotation [1]. Figure 2.2 illustrates how the robot,

A, is “slid” along the boundary of the obstacle, O, to determine the configuration

obstacle, Cobs.
Extending Cobs construction to a more general case is not as simple as Figure 2.2

may imply. If we extend this analysis to a 3D world while maintaining the restric-

tive assumptions of translation-only motion and polyhedron robots and obstacles, a

configuration obstacle can be constructed in O(nm) time, as a worst case, where n

is the number of faces of A and m is the number of faces of O [1]. When we relax

the translation-only assumption, thus increasing the dimension of the configuration

space, the configuration obstacle becomes considerably more complex. To illustrate,

if the simple robot in Figure 2.2 is allowed to rotate, the configuration obstacle can

2.1. FUNDAMENTALS OF MOTION PLANNING 17

be formed as a set of 73 algebraic primitives; which is a surpisingly large number

considering it is a triangular robot and rectangular obstacle [1]. For the more general

and applicable case of a non-polyhedral robot with freedom of rotation, construction

of configuration obstacles is prohibitively computationally expensive. This difficulty

of forming Cobs in higher dimensions motivates the use of sampling-based planning

algorithms.

2.1.3 Sampling-Based Planning

Sampling-based motion planners have become the favored approach for planning in

high-dimensional configuration spaces. This is due to the fact that sampling-based

approaches avoid an explicit representation of the configuration space and instead rely

on sampling configurations and checking for collisions with obstacles using a “black

box” collision checker. Kinodynamic planning problems tend to be high-dimensional

due to the need to capture velocities and orientation rates in the state of the robot;

therefore a sampling-based planner is the logical approach for this type of problem.

This section gives a brief overview of sampling-based planning. For details on the

specific sampling-based algorithm used in this work, refer to Section 4.1.4.

In general sampling-based planners work by randomly or quasi-randomly sampling

configurations from Cfree = C\Cobs and connecting the samples in a graph structure

such that a feasible/optimal path can be found from an initial state, xinit, to a goal re-

gion, Xgoal. Sampling-based algorithms can be broadly classified into groups based on

whether they generate a tree graph (preferred for single-query planning problems),

or a roadmap graph (preferred for multi-query problems). Figure 2.3 gives a con-

ceptual illustration of the graph structures that may arise from implementing these

algorithms on a simple, 2D planning problem.

There are many variations of sampling-based planners that primarily differ in

logic or sequence in which nodes are added to the graph in the configuration space.

Perhaps the most widely known sampling-based planners are the rapidly exploring

random tree (RRT and RRT*) and the probabilistic roadmap (PRM) algorithms; the

work discussed in this thesis implemented the fast marching tree (FMT*) algorithm

18 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Figure 2.3: Tree (left) and roadmap (right) graphs generated by sampling-based
planning algorithms for a simplistic 2D problem. The graphs generated can be used
to find a feasible/optimal path from the initial state, shown in green, to the goal
region, shown in red, while avoiding the configuration obstacles, shown in blue. A
collision checking module prevents edges that would intersect obstacles from being
incorporated into the graph.

which has performance advantages over RRT* and PRM [3]. The details of the RRT

and PRM algorithms are left to existing literature, such as LaValle [1], and the FMT*

algorithm is disucssed in Section 4.1.4.

There are three important concepts that all of these algorithms have in com-

mon: state connections, distance metric, and neighborhoods. State connections –

also referred to as sample connections, node connections, configuration connections,

or graph edges – refer to the way in which edges are formed in the graph between

sampled states in the configuration space. State connections, or graph edges, have

an associated cost or length, commonly referred to as a distance metric. Figure 2.3

represents graph edges as straight lines. For many geometric planning problems, i.e.

planning without differential constraints, state connections would indeed be straight

lines in the configuration space; therefore implying a distance metric of Euclidean

distance. If there are differential constraints, however, state connections must rep-

resent dynamically feasible trajectories for the robot in the configuration space. In

such cases the distance metric is associated with the cost of an optimization problem.

For example, state connections may represent a minimum time or minimum energy

trajectory between states. Therefore, in this work, state connections can be thought

2.1. FUNDAMENTALS OF MOTION PLANNING 19

Figure 2.4: A tree structure for a differentially constrained planning problem. State
connections interfering with obstacles, as identified by the collision checker, are indi-
cated in red and would be pruned by the sampling-based planning algorithm.

as synonymous without optimal boundary value problems (OBVPs), discussed in Sec-

tion 2.3. Figure 2.4 illustrates a tree structure for a differentially constrained planning

problem where sampling occurs in 2D position and 2D velocity.

Another important concept is that of state neighborhoods or cost-limited reachable

sets. This concept, discussed more in Section 2.4, represents the set of states that are

within a given distance or cost of a given state. For sampling-based planners, state

connections are only attempted for states within a neighborhood. This is done for

computational efficiency: if state connections are attempted between highly separated

states, there is a high probability of obstacle collision; thus it represents a “wasted”

computation. The size of the neighborhood, often referred to as the neighborhood

radius, can be user-defined or adaptively generated. Generally speaking, the size of

the neighborhood trades off between optimality of the planner solution and compu-

tational efficiency. A small neighborhood radius will avoid wasted state connections

that are invalid due to obstacle collision but will use more intermediate nodes causing

the solution to be less optimal. A large neighborhood radius will find better state con-

nections, short-cutting intermediate nodes, but will result in more obstacle collisions,

thus higher computational cost.

20 CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.2 Dynamical Systems

This section introduces the concept and general form of a dynamical system along with

the property of differential flatness. Dynamical systems are the distinguishing feature

between kinodynamic motion planning and the more simple problem of geometric

planning. We then present the equations of motion, i.e. dynamics, for the quadrotor

(Section 2.2.3), double integrator (Section 2.2.4), Dubins vehicle (Section 2.2.5), fixed-

wing UAV (Section 2.2.6), and gravity-free spacecraft (Section 2.2.7) robotic systems.

These robotic systems appear throughout this thesis as test cases for the techniques

devloped in Chapters 3, 4, and 5 .

2.2.1 Differential Equations

While the concept of dynamical systems encompasses a wider range of mathematical

systems – including difference equations, integral equations, etc. – we limit our scope

to deterministic differential equations with a single independent variable. Within this

scope, the most general form of a dynamical system we discuss is that of a differential

inclusion, given in the form

fl ≤ f [ẋ(t),x(t),u(t), t] ≤ fu (2.1)

.

Note that, in Equation (2.1), if fl = fu, then our differential inclusion reduces to

a differential algebraic equation and can be written as

f [ẋ(t),x(t),u(t), t] = 0 (2.2)

The specific systems, discussed in Sections 2.2.3 - 2.2.6, all are the form of an ordinary

differential equation which can generally be expressed as

ẋ(t) = f [x(t),u(t), t] (2.3)

2.2. DYNAMICAL SYSTEMS 21

2.2.2 Differential Flatness

We now introduce the concept of differential flatness which can be a powerful tool in

the analysis and treatment of certain dynamical systems; particularly for the quadro-

tor system. A system is said to be differentially flat if its state and control vari-

ables can be represented as explicit functions of a set of “output variables” and their

derivatives [25]. These output variables y, termed the flat output, are represented

mathematically as

y = c
(
x,u, u̇, ü, ...,u(α)

)
y ∈ RNo , (2.4)

where No is the number of output variables. For the system to be differentially flat,

we must be able to find some functions a and b, such that [25]

x = a
(
y, ẏ, ...,y(β)

)
u = b

(
y, ẏ, ...,y(β+1)

)
.

(2.5)

Therefore, if a differentially-constrained system is differentially flat, then it can be

equivalently represented as a non-differentially-constrained system. This implies that

any function in the output space that are differentiable to order β + 1 is guaranteed

to be dynamically feasible in the state and control space. This is a powerful property

because trajectory generation in the flat output space is an unconstrained problem,

therefore simpler than generating a valid trajectory in the state and control space.

Furthermore, the flat output space may be in a reduced dimensional space when

compared to the state and control space.

While recasting an optimal control problem using the flat output space may re-

move dynamic constraints, numerical complications may arise from the nonlinear

transformation of the boundary conditions according to Equation 2.5. The cost func-

tion also undergoes a similar nonlinear tranformation. Instead of solving an optimiza-

tion with, potentially, nonlinear dynamic constraints, the differentially flat mapping

can produce an optimization problem with nonlinear boundary conditions. There-

fore, motion planning for differentially flat systems is not necessarily a simplified

problem. In Chapter 5 we show how, when properly applied, differential flatness can

22 CHAPTER 2. MATHEMATICAL FOUNDATIONS

be leveraged to accelerate computation of motion plans for a quadrotor system.

2.2.3 Quadrotor

A quadrotor is modeled as an underactuated rigid body where net thrust is con-

strained along the −~zB axis. The diagram given in Figure 2.5 represents the relevant

coordinate frames and variables for the quadrotor planning and control problem. The

world frame, W , is an inertial frame, which is implemented in our case with a North-

East-Down (NED) orientation. The body-fixed frame, B, translates and rotates with

the quadrotor. The nominal frame, N , is a target frame for trajectory tracking; there-

fore in perfect trajectory tracking B = N . The quadrotor dynamics are given in Eqn.

(2.6) [26]:

~̇ξB =
dW ~ξB
dt

,

~̈ξB = mg~zW − u1~zB,

ṘBW = RBW Ω̂BW ,

JB ~̇ΩBW =
[
u2
u3
u4

]
− ~ΩBW × JB~ΩBW .

(2.6)

f1

f2
f3

f4

~ξB

~zB

~xB

~yB

~xW
~yW~zW

~ξNψ
~zN

~xN
~yN

Figure 2.5: Diagram of quadrotor dynamics with world (inertial), body, and nominal
reference frames.

The state vector is given by x =
[
~ξB, ~̇ξB, RBW , ~ΩBW

]T

∈ R9 × SO(3) where ~ξB

2.2. DYNAMICAL SYSTEMS 23

is the position of the body frame, ~̇ξB is the velocity of the body frame, RBW is the

rotation matrix from the body frame to the world frame, and ~ΩBW is the angular

velocity of the body frame with respect to the world frame. Gravity acceleration

is given by g and the quadrotor mass is given by m. The control vector is given

by u = [FzB ,MxB ,MyB ,MzB] ∈ R4 where FzB is the force applied along the body

z-axis due to net thrust; and MxB ,MyB , and MzB are the moments about the body

x, y, and z axes, respectively, due to individual rotor thrusts or torque. Note that ·̂
denotes the hat-map (i.e. , an isomorphism between 3 × 3 skew-symmetric matrices

and vectors in R3) [26].

It has been shown that quadrotor dynamics represent a differentially flat system

[13]. It can be shown that a 4D flat output space can be generated with position in

3D and yaw; i.e. y =
[
~ξB, ψ

]
. The mapping between the state and control variables

and the flat output variables is discussed in the context of how it is implemented

during flight control in Chapter 5.

2.2.4 Double Integrator

There are no known analytical solutions to the minimum-time optimal control prob-

lem under the quadrotor’s nonlinear dynamics (2.6). While numerical solutions are

possible [23], they are computationally expensive. To minimize online computation

times we apply an approximator-corrector structure to our framework. The quadrotor

is first approximated as a double integrator system, which allows analytical treatment

for the unobstructed minimal-time control problem (these minimal-time control prob-

lems, which are subproblems to the overall planning problem, serve to connect edges

in the sampling based planner; see Section 2.3.4 for more details) [20]. At the end of

the planning process, the solution trajectory is mapped, or “corrected”, back into the

fully nonlinear dynamics by leveraging the property of differential flatness (Section

24 CHAPTER 2. MATHEMATICAL FOUNDATIONS

5.1.4) [13]. The double integrator dynamics are given as

ẋ(t) = Ax +Bu + c

where: A =

[
0 I

0 0

]
, B =

[
0

I

]
, c =

[
0

g

]
, x =

[
~ξB

~̇ξB

]
∈ R6, u = ~̈ξB ∈ R3.

(2.7)

Note that this approximator-corrector approach for the quadrotor dynamics is one

of several trade-offs that arise from trying to address, simultaneously, both motiva-

tional themes stated in Section 1.1. The framework presented in Chapter 4 is indeed

general enough to accommodate the fully non-linear dynamics of the quadrotor, how-

ever, it is desirable to apply an approximation (along with the later correction) to

improve online performance during physical demonstrations.

2.2.5 Dubins Vehicle

The Dubins car models a simple non-holonomic car-like land vehicle that is con-

strained by a maximum turning angle φmax, and has a fixed forward speed v ∈ R++.

This maximum steering angle imposes a minimum turning radius ρmin on the vehicle.

The dynamics of a Dubins car [27] are given as:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = u =
v

L
tanφ,

where the set of admissible controls is U =
[
− v
L

tanφmax,
v
L

tanφmax

]
. The state is

given by x = [x, y, θ]. The control task is concerned with minimizing the total path

length, which is equivalent to minimizing the traversal time J = tf − t0 since speed

is constant. The scenario is depicted visually in Figure 2.6.

This model is used as a simulation test case for the machine learning techniques

developed in Chapter 3 and the general planning framework developed in Chapter 4.

2.2. DYNAMICAL SYSTEMS 25

Figure 2.6: Dynamics for the Dubins car model.

Figure 2.7: Simplified fixed-wing UAV Model.

2.2.6 Fixed-Wing UAV

The fixed-wing UAV problem seeks to compute a time-optimal path for a point-mass

robot that has Dubins-like dynamics in the xy-plane and single integrator dynam-

ics along the z-axis [28]. This creates a 4-dimensional state space: 3-dimensional

position plus xy-heading. The system has a 2-dimensional control space: z-velocity

and heading turn rate. Rigid body dynamics, gravity, and aerodynamic effects are

ignored. An illustration of the system is given in Fig. 2.7. The equations of motion

and control constraints are given as

ẋ = Vc cos θ ż = uz

ẏ = Vc sin θ θ̇ = uθ

|uθ| ≤ φmax |uz| ≤ Vz,max

(2.8)

26 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Figure 2.8: Dynamics for the gravity-free spacecraft.

where Vc is the constant horizontal speed, φmax is the maximum turning rate, Vz,max

is the maximum climbrate, and θ is the heading angle with respect to the interial

x-axis.

This problem exhibits non-linear dynamics due to the trigonometric terms in x

and y. Additionally, the minimization over time, J = tb, necessitates a free final

time that appears non-linearly in the discrete differentiation operator (See Fahroo

and Ross for details [29]).

2.2.7 Gravity-Free Spacecraft

The gravity-free spacecraft has similar dynamics to the double integrator presented

in Section 2.2.4, however constraints are now imposed on the control variables. The

state space is 6-dimensional - position and velocity in 3D - along with a 4-dimensional

control space - throttle and 3-dimensional pointing vector that is norm-constrained

to unity. Rigid body dynamics and gravitational fields are ignored and the change in

mass from propulsion is assumed to be negligible. The system is illustrated in Figure

2.8.

The equations of motion for the gravity-free spacecraft are given in Equation (2.9).

2.3. OPTIMAL BOUNDARY VALUE PROBLEMS 27

ẋ = vx v̇x = Tx/m

ẏ = vy v̇y = Ty/m

ż = vz v̇z = Tz/m

T = (ηTmax)n̂ 0 ≤ η ≤ 1

(2.9)

where T is the thrust vector in 3D, Tmax is the maximum thrust, η is the throttle, and

m is the mass. While the dynamics and constraints appear to be linear and convex,

respectively, the problem is in fact non-convex due to the norm constrained pointing

vector and the appearance of the free final time in the differentiation operator - as

was the case with the UAV.

2.3 Optimal Boundary Value Problems

As discussed in Section 2.1, sampling-based motion planning consists of generating a

graph structure from a set of sampled states that can be searched for an optimal path.

For kinodynamic planning problems, the edges of the the graph structure represent

solutions to optimal control problems, also referred to as steering problems or optimal

boundary value problems1 (OBVPs). Here we discuss the the general form of an

OBVP and relevant results from the study of optimal control. In Chapters 4 and 5

we will use these results to create a computational subroutine we title SolveOBVP for

solving boundary value problems. The optimal control or OBVP problem is expressed

in Equation (2.10)

1we make a distinction with the commonly used term ’boundary value problem’ (BVP) which
may only refer to a feasibility problem

28 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Optimal Boundary Value Problem:

Find: u∗(t), x∗(t)

that minimizes: J (u) = h (x(tf), tf) +

∫ tf

t0

g(x(t),u(t), t)dt

subject to: ẋ(t) = f(x(t),u(t), t)

u(t) ∈ U

x(t) ∈ X

x∗(t0) = x0, x∗(tf) = xf

(2.10)

where t0 is a specified initial time, tf is a free final time, u∗(t) is the optimal

control function as a function of time, and x∗(t) is the corresponding

optimal state trajectory as a function of time.

Equation (2.10) appears very similar in form to that of the optimal kinodynamic

planning problem, Equation (1.1), but there are several important distinctions. The

most important difference is that of the admissible state trajectory, x(t) ∈ X . This

imposes state constraints, e.g. a bounding box on the trajectory, but ignores config-

uration obstacles, Cobs or Xobs, which represent the crux of the planning problem. If

the configuration obstacles could be explicitly represented, the optimal kinodynamic

planning problem of Equation (1.1) could indeed be mapped to the optimal boundary

value problem of Equation (2.10) and existing optimal control theory could be applied

to solve. As discussed in Section 2.1, constructing the configuration obstacles from

workspace obstacles can be an intractable problem. Therefore, when performing edge

connections in the configuration graph, we resort to solving OBVPs without consid-

eration of configuration obstacles and then perform an a posteriori collision check on

the solution.

To discuss analytical results on Equation (2.10), we’ve applied some assumptions

on the form of the cost functional and system dynamics. We’ve constrained the

dynamics to an ordinary differential equation, ẋ(t) = f(x(t),u(t), t), as opposed to

the more general differential inclusion that was presented in Equation (1.1). For the

cost functional we’ve assumed an integral plus a scalar-valued function of the final

2.3. OPTIMAL BOUNDARY VALUE PROBLEMS 29

conditions: h(x(tf), tf) : Rn×R→ R. The functional integrates over a scalar-valued

function of the time, state, and control variables: g(x(t),u(t), t) : Rn×Rm×R→ R.

This cost functional is general enough to address almost all real-world applications

[30].

2.3.1 Analytical Results

There is no known general solution for the optimization problem given in Equation

(2.10). We can, however, develop a set of necessary conditions for a solution to

Equation (2.10). These necessary conditions can be powerful tools for developing

numerical techniques for approximate solutions or deriving analytical solutions to

specific problems. We briefly present these conditions here, leaving further detail to

Kirk’s book on optimal control [30].

First we introduce the notion of costate variables2, p(t), that arise as Lagrange

multipliers when reforming J into an augmented cost functional

Ja(u) =

∫ tf

t0

{
g(x(t),u(t), t) +

[
∂h

∂x
(x(t), t)

]T

ẋ(t)

+
∂h

∂t
(x(t), t) + pT(t) [f(x(t),u(t), t)− ẋ(t)]

}
dt

.

Now we can define a useful function, H , known as the Hamiltonian[30], which is

given as

H (x(t),u(t),p(t), t) = g(x(t),u(t), t) + pT(t) [f(x(t),u(t), t)] . (2.11)

Now we have the required tools to state, without derivation, the necessary conditions

for a solution to the optimal boundary value problem, Equation (2.10):

2not to be confused with the notation used for the attribute vector that appears in the machine
learning portion of this work, Chapter 3

30 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Necessary Conditions for OBVP Solution:

ẋ∗(t) =
∂H

∂p
(x∗(t),u∗(t),p∗(t), t)

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t)

H (x∗(t),u∗(t),p∗(t), t) ≤H (x∗(t),u∗(t),p(t), t)

(2.12)

for all t ∈ [t0, tf] and the third line, known as Pontryagin’s Minimum

Principle, holds for all admissible u(t), i.e. u(t) ∈ U . Assuming a fixed

final state, yet free final time, satisfaction of the boundary values are

addressed by the condition

H (x∗(tf),u
∗(tf),p

∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0. (2.13)

It is important to note that the necessary conditions do not represent solutions to the

optimal boundary value problem. For one they are necessary but often not sufficient.

Furthermore they represent a set of partial differential equations that they themselves

may require numerical treatment to solve. Instead the necessary conditions can be

useful for verifying a proposed solution to a optimal control problem and developing

numerical techniques for approximate solutions. For a small subset of problems,

we can indeed use the necessary conditions to derive analytical solutions. We now

discuss some numerical techniques and analytical results for the optimal boundary

value problem that are relevant to this thesis.

2.3.2 Numerical Techniques

Many solution techniques exist for approximating the solution to Equation (2.10),

a few of the most prominent approaches being: linearization of dynamics and solu-

tion via analytical results [31], shooting methods, direct trajectory optimization, and

indirect trajectory optimization [32, 8]. For a general optimal control problem it is

not assumed that linearization of dynamics is an acceptable approximation. Shoot-

ing methods lack guarantees on enforcement of final conditions for 2-point boundary

2.3. OPTIMAL BOUNDARY VALUE PROBLEMS 31

value problems, a critical need for the sampling-based algorithm presented in this the-

sis. Indirect trajectory optimization methods are often more computationally costly

than direct methods as they require solutions to the costate variables in addition to

the state variables [33]. This leaves direct trajectory optimization techniques as the

favored choice for the presented work.

Approximate solutions to Equation (2.10) can be achieved by discretizing the

continuous-time problem using the Chebyshev pseudospectral method, transform-

ing it into a nonlinear programming problem (NLP), and solving it using sequential

quadratic programming (SQP). As previously noted, when solving Equation (2.10)

we consider state and control constraints, yet ignore obstacle constraints which are

checked a posteriori.

Pseudospectral Methods

The necessary conditions for a solution to Equation (2.10) are presented in Section

2.3.1, but even with these tools only simplified cases lend themselves to analytical

solution [30]. In general, Equation (2.10) requires a numerical treatment. In this

thesis we apply a solution technique that begins by time-discretizing Equation (2.10)

into N segments using the Chebyshev pseudospectral method and then transforming

it into a nonlinear programming problem. For brevity, the details of this step are

not presented here but are well described by Fahroo and Ross [29]. The result is a

discrete problem of the form:

minimize: JN [x,U , tb] = M [xN , tb] +

tb − ta
2

N∑
k=0

L [xk,uk, tk]wk

subject to: for k = 0, ..., N

fl ≤ f
[

2

tb − ta
dk,xk,uk, tk

]
≤ fu,

gl ≤ g [xk,uk, tk] ≤ gu,

φl ≤ φ [x0,xN , (tb − ta)] ≤ φu

(2.14)

32 CHAPTER 2. MATHEMATICAL FOUNDATIONS

where x = [xT
0 , ...,x

T
N]T and U = [uT

0 , ...,u
T
N]T.

Sequential Convex Programming

Now posed in the discrete form, a solution to Eqn. 2.14 can be attempted using

sequential quadratic programming. Fundamentally, SQPs are a heuristic for solving

non-convex optimization problems and make no guarantees on solutions. In prac-

tice, however, they tend to provide highly reliable results - assuming a reasonable

initial guess is provided by the user - and are commonly used [34, 8]. SQPs work

by iteratively ’convexifying’ Eqn. 2.14 around local trust-region, solving the convex

problem, adjusting the trust-region, and repeating until some user-defined tolerances

are achieved [34].

2.3.3 Dubins Vehicle

The Dubins vehicle introduced in Section 2.2.5 has a known analytical solution for

the optimal path between any two states or configurations. It can be shown that

any two states for a Dubins vehicle can be optimally connected using one of six

trajectory types or words, each trajectory consisting of three maneuvers. The six

possible optimal trajectories can be represented as

{LαRβLγ, RαLβRγ, LαSdLγ, LαSdRγ, RαSdLγ, RαSdRγ} , (2.15)

where L represents a left-turning maneuver of minimum radius, R represents a right

turning maneuver of minimum radius, and S represents a straight path. The angles

α, γ ∈ [0, 2π) and β,∈ (π, 2π) represent the duration of the respective turn and d ≥ 0

is the distance of the straight path [27]. Knowing that the optimal trajectory will be

described by one of the paths in Equation (2.15) the task then becomes determining

which curve with which parameters. A simple approach is to try all such trajectories

with minimum radius turns and bitangent straight sections.

2.3. OPTIMAL BOUNDARY VALUE PROBLEMS 33

2.3.4 Control-Penalized Double Integrator

As explained in Section 2.2.4, we minimize computations by approximating our system

as the double integrator given in Eqn (2.7). This approximation enables analytical

solutions to the optimal boundary value problem between two sampled states, which

is executed in the SolveOBVP algorithm. The approximation is corrected for in Section

5.1.4. The results in this section come from the works [20, 35].

To address control constraints on thrust, a control penalty term is added to the

minimum-time cost function, that is:

J [u, τ] =

∫ τ

0

1 + u[t]TRuu[t] dt, (2.16)

where Ru ∈ Rm×m is symmetric positive definite. For a fixed final time, τ , the optimal

cost J ∗ for the control-penalized double integrator model is given in closed form by

Eqn. (2.17) where Ru = wRI and wR is the control penalty weight [20, 35]:

J ∗[τ] = τ + ‖x− x̄[τ]‖Td[τ]. (2.17)

The corresponding control and state trajectories as functions of time t, for a fixed

final time τ , are given in Eqn. (2.18), respectively [20, 35]:

u[t] = R−1
u BTexp

[
AT(τ − t)

]
d[τ],

x[t] = x̄[t] +G[t]exp
[
AT(τ − t)

]
d[τ],

(2.18)

where

d[τ] = G[τ]−1 (x− x̄[τ]) ,

G[t] =
1

wR


t3/3 0 0 t2/2 0 0

0 t3/3 0 0 t2/2 0

0 0 t3/3 0 0 t2/2

t2/2 0 0 t 0 0

0 t2/2 0 0 t 0

0 0 t2/2 0 0 t

 ,
x̄[t] = exp [At] x0 +

[
0, 0, gt2/2, 0, 0, gt

]T
.

(2.19)

34 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Figure 2.9: Cost-limited reachable set for a two-dimensional system with no differen-
tial constraints of the type that would appear in a geometric planning problem.

Note that Eqns. (2.17) and (2.18) require a fixed final time τ . The optimal final

time, τ ∗ = argminJ [τ], can be solved for via a bisection search of Eqn. (2.17).

2.4 Reachable Sets for Dynamical Systems

As mentioned in Section 2.1 sampling-based motion planners rely on the concept

of neighborhoods to efficiently generate a graph of the configuration space to solve

a planning problem. For geometric planning problems, where the distance metric is

Euclidean distance, a state neighborhood is an n-dimensional sphere. Mathematically

the neighborhood, R, of state xa is given as

R (xa) = {xb ∈ X | ‖xa − xb‖ ≤ Jth} (2.20)

where n is the dimensionality of the configuration space and Jth is a user-defined

radius or “threshold”. The cost-limited reachable set is illustrated in Figure 2.9.

For a differentially-constrained system, such as those discussed in Section 2.2

the cost-limited reachable set, or neighborhood, of state xa may be considerably

more complex. In fact there is no general analytical expressions for the cost-limited

2.4. REACHABLE SETS FOR DYNAMICAL SYSTEMS 35

Figure 2.10: Conceptual representation of a cost-limited reachable set for a notional
2D dynamical system. Formally, a (forward) cost-limited reachable set is the set of
states that can be reached from a given state with a cost bounded above by a given
threshold (denoted as Jth).

reachable sets for systems described by Equation (2.3).

While we may not be able to give an anayltical expression for an arbitrary reach-

able set, we may give a rigorous mathematical definition for a cost-limited reachable

set. First we note that two types of reachable sets may be defined: the forward reach-

able set and the backward reachable set. The mathematical definition of the forward

cost-limited reachable set, or “outgoing neighborhood”, of a state xa is:

Rout (xa,U ,Jth) := {xb ∈ X | ∃u ∈ U and

∃t′ ∈ [t0, tf] s.t. x (t′) = xb and J ∗ ≤ Jth},
(2.21)

where Jth is a user-defined cost threshold. In words, Equation 2.21 states that the

forward reachable set is the union of all states xb ∈ X such that the optimal cost,

J ∗, to steer the system from xa to xb is less than the cost threshold Jth. We can

use Equation (2.21) to define the related concept of a backward reachable set or

“incoming neighborhood”. The backward reachable set of state xb is the union of all

states, xa, such that xb is in the forward reachable set of xa. A conceptual diagram

of a cost-limited reachable set, i.e. neighborhood, of a given state is represented in

Fig. 2.10.

36 CHAPTER 2. MATHEMATICAL FOUNDATIONS

As previously noted, the determination of cost-limited reachable sets is a critical

need for sampling-based motion planning, however this can be a computationally

challenging task. The computational complexity of numerical approximations are

exponential in the dimension of the configuration space [36]. In Chapter 3 we develop

a unique application of machine learning for rapidly approximating Equation 2.21.

Chapter 3

Machine Learning for Real-Time

Reachability Analysis

As was discussed in Section 2.4, the determination of reachability sets for dynamical

systems is a computationally-expensive problem [36]. For problems where real-time

analysis of reachable sets is required, such as for real-time sampling-based motion

planning, we must devise a rapid approximation scheme. In this chapter1, we show

that supervised machine learning techniques [37] can be used to accurately classify

– in a binary, query-based fashion – the cost-limited reachable sets of dynamical

systems in real-time. To elaborate, we seek a function that makes a simple, binary

discrimination:

is the optimal cost to traverse from an arbitrary state xa to an arbitrary

state xb less than a given threshold Jth, or not?

To demonstrate, we use two different machine learning algorithms and compare

the accuracy and efficiency of each. The algorithms employed are (1) a support vector

machine learning algorithm for binary classification of a state’s reachable set, and (2)

a locally-weighted regression algorithm for predicting cost function values between

query points xa and xb, which determines if xb is cost-limited reachable from xa. The

1the content of this chapter is the product of collaboration between the author, Ashley Clark,
and Joseph Starek with guidance from Marco Pavone [2].

37

38CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

approach generalizes to any type of system dynamics so long as cost training data

can be generated. In this chapter we restrict our attention to continuous, nonlinear,

ordinary dynamical systems, and demonstrate our learning strategies on several sys-

tems of interest: the Dubins car model (see Section 2.2.5), a gravity-free spacecraft

model (see Section 2.2.7), and the control-penalized double integrator (see Section

2.2.4). These techniques can asses a classification query on the order of milliseconds;

a improvement of up to 4 orders-of-magnitude over an exact classification.

3.1 SVM Classification of Reachable Sets

To develop such a function, we must first generate training data in the form of a

set of training examples. Since our goal is to predict whether two states are within

some cost threshold of one another, our training data will be generated from solving a

large set of optimal boundary value problems. A training example consists of a initial

state xa, final state xb, and optimal cost of traversal between the two. For each

training example i = 1, . . . , Ntrain where Ntrain ≤ Npair, the initial and final states

are concatenated into an attribute vector p(i). If the optimal cost of the training

example is less than the user-defined threshold, Jth, then it is given a label y(i) = +1;

otherwise it is given label y(i) = −1. The training of the SVM is accomplished with

the optimization given in Eqn. (3.1) [37]:

maximize
α

Ntrain∑
i=1

αi −
1

2

Ntrain∑
i,j=1

y(i)y(j)αiαjK
(
p(i),p(j)

)
subject to 0 ≤ αi ≤ C, i = 1, . . . , Ntrain

m∑
i=1

αiy
(i) = 0

(3.1)

where the αi’s are Lagrange multipliers, C is a user-defined parameter that relaxes

the requirement that the training examples be completely separable, and K(·) is the

kernel function. The vectors corresponding to non-zero Lagrange multipliers αi’s are

3.2. REGRESSION ESTIMATION OF OPTIMAL COST 39

the support vectors. For this work the kernel function, K, has the form

K(p(1),p(2)) =
(
φ
(
p(1)
)T
φ
(
p(2)
)

+ c
)p
,

where φ is a nonlinear mapping of the attribute vector to a feature vector (see Tables

3.1 and 3.2 for examples of feature vectors used), c is a weighting parameter between

first and second order terms, and p is kernel order chosen by the user. Once the sup-

port vectors are obtained, predictions on reachability for a new OBVP, paramaterized

by p̃, can be made with the predictor

sgn

(
Ntrain∑
i=1

αiy
(i)K

(
p(i), p̃

)
+ b

)
. (3.2)

where b is a bias term that is determined as a function of the Lagrange multipliers

[37].

3.2 Regression Estimation of Optimal Cost

For a given system (i.e. , fixed cost function, dynamics, control constraints and state

constraints) each optimal boundary value problem in Equation (2.10) differs only in

the initial and final conditions. As a result, the optimal cost, J ∗, can be thought of

as a function of the boundary states, xa and xb (also referred to as a query pair),

parameterized by system dynamics and constraints. Accordingly we write J ∗ =

J ∗ (xa,xb; f,X ,U). The idea then is interpolate neighboring pre-computed queries

using regression techniques. Due to its robustness and simplicity, we demonstrate the

idea using locally-weighted linear regression, implemented as:

minimize
θ

m∑
i=1

w(i)
(
J ∗(i) − θTφ(x̃(i))

)2

where x̃(i) ∈ Rd is the ith training example (query pair), m is the number of training

examples, θ ∈ Rn is the training parameter vector, φ : Rd → Rn is the feature

mapping, J ∗(i) is the optimal cost of the ith training query, and w(i) is the weight

40CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

given to the ith residual. As it is well known, the solution is

θ∗ =
(
ΦTWΦ

)−1
ΦTWJ∗,

which yields

Ĵ = θ∗Tφ(x̃)

as the estimated cost, where W ∈ Rk×k is a diagonal matrix of weights w(i), J∗ ∈ Rk

is the vector of optimal costs, and Φ ∈ Rk×n is the matrix of all k feature vectors.

Model Selection

To improve interpolation performance, feature vector components are normalized to

unit scaling by defining the weights w(i) as:

w(i) = exp

(∣∣∣∣v(i)
∣∣∣∣2

2τ 2

)
, with v

(i)
k =

φ
(
x̃(i)
)
k
− φ (x̃)k

range (φ (x̃)k)
,

where τ > 0 is the bandwidth parameter, and range (φ (x̃)k) is the maximum extent

of the kth feature (k = 1, . . . , n). Due to the tradeoff between over- and under-fitting

as τ is varied, we ran k-fold cross-validation [37, Ch. 1] to find the value of τ that

yielded the lowest average percent error over all k training queries.

Feature Selection

As previously mentioned, OBVP query pairs are mapped to feature vectors. In order

to more effectively approximate the true cost function, one should carefully choose a

mapping that produces linearly-independent features that are relevant to the given

OBVP (e.g. , endpoint norms, energy values, ratios of boundary states, etc). In

an effort to identify features with the most significant impact on cost approximation

accuracy, we ran a backward feature selection search as part of our cost-prediction

algorithm training. This not only illustrates the trade-off in approximation error and

feature vector size, but also provides feature vector design intuition for the particular

application.

3.3. NUMERICAL TEST CASES 41

3.3 Numerical Test Cases

3.3.1 Dubins Vehicle

The cost-limited reachable set for a given Dubins car is known analytically [38], the

boundary of which can be described by the intersection of two congruent cardiods.

parameterized by:

x(θ) = ρ (2 sin θ − sin(2θ − vt/ρ)) ,

y(θ) = −ρ (2 cos θ − 1− cos(2θ − vt/ρ)) .

The cardiods translate and rotate depending upon the time horizon under considera-

tion. For time horizons and rotation angles that satisfy the inequality 0 ≤ θ ≤ vt/ρ,

the boundary can be simplified and described by:

x(θ) = ρ sin θ + (vt− ρθ) cos θ,

y(θ) = −ρ(1− cos θ) + (vt− ρθ) sin θ.
(3.3)

The projection of this simplified set into the x-y plane is depicted in Figure 3.1.

While heading constraints are accounted for in the analytical solution, they are not

displayed in the figure for the sake of simplicity. The dynamics of the Dubins car

are invariant with respect to its initial state. Therefore, without loss of generality,

we may assume the initial state xa is always the origin, and set the feature vector to

consist of combinations of the target state only.

The results of our training and feature selection for the regression-based approach,

Section 3.2, are listed in Table 3.1 with the features listed in the order of relevance,

from most relevant feature to least relevant feature. The corresponding average cost

estimation error for each group of n most relevant features are shown in Figure 3.2.

Results show that one can achieve 5.3% error2 from the true cost with just twelve

features. Note that, even though the learning algorithm does not have prior knowledge

2Here, error is defined as the difference between the true and predicted costs divided by the true
cost averaged over all training examples.

42CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

Figure 3.1: Reachability sets for an instance of the Dubins car vehicle (ρmin = 1, v =
1, L = 1) for cost threshold horizon times T ≤ π

2
.

of the analytical form of reachable set as given in Equation (3.3), the feature selection

process gives high importance to the terms that appear in the analytical form. This

is a crucial result as it implies that the machine learning approach is robust enough

to generate accurate fits for unknown, nonlinear dynamics and cost functions.

Given the same OBVP training examples as for cost prediction, reachability was

assessed using a nonlinear SVM classifier, Section 3.1, with a 4th-order polynomial

kernel. The classification results on a test set of 100 new query points are shown in

Figure 3.3. Several kernel functions were attempted and the 4-th order kernel proved

to be the most accurate for this system. Test errors3 were 4.17%, 7.29%, and 3.13%

respectively for each of three cost thresholds used to establish the cost-reachable

boundary, namely, J1 = µ−σ,J2 = µ, and J3 = µ+σ, where µ was the training set

mean cost and σ the standard deviation.

Due to the complexity of displaying the final θ-heading values in addition to the x-y

3Here, test error is defined as the number of misclassifications divided by total number of test
examples.

3.3. NUMERICAL TEST CASES 43

Table 3.1: Dubins car features from most important to least important.

1-12 13-24 25-36

cos θ y cos θ 1/ tan θ
sin2 θ yθ x/ tan θ
cos2 θ θ 1/ cos θ

|θ| θ
√
x2 + y2 x/ cos θ

θ2 y sin θ y/ tan θ√
x2 + y2 + θ2 x sin θ 1/ sin θ√

x2 + y2 |x| x/ sin θ
x xy y/ sin θ

x cos θ y2 y tan θ
sin θ x2 y/ cos θ
xθ |y| tan2θ
y tan θ x tan θ

Figure 3.2: Results of feature selection for the Dubins car showing the average test
error percentage vs number of features used.

44CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

position values, these results are not shown directly superimposed on the reachability

set in Figure 3.1. Instead, Figure 3.3 plots the test classifications generated for both

the linear regression and SVM approach with the cost threshold, Jth, shown as a solid

black line. It can be seen that most misclassifications occur in the direct cost-vicinity

of the cost threshold. In simple terms this means that even when the algorithms

misclassify points, they aren’t too far from the actual cost.

One noticeable outlier occurs for the lowest threshold data where the SVM misclas-

sifies a high-cost test case. This misclassification occurred because the final heading

happens to point back toward the initial state for this testing example. Note that

feature selection revealed a high importance of |θ| and θ2. Since −π ≤ θ ≤ π, the

anti-parallel alignment can spoof the SVM into thinking it’s nearly a straight-line

path to the end point when, in fact, it requires almost an entire loop to reach the

final state. Altering the feature vector eliminates this outlier.

3.3.2 Gravity-Free Spacecraft

The gravity-free spacecraft model presented in Section 2.2.7 was used as a second

test case for the machine learning of reachable sets. The features examined for the

spacecraft are shown in Table 3.2, listed in order of importance as determined by our

backwards-search feature selection algorithm. The average weighted-linear regression

estimation error obtained from increasingly large sets of the top-priority features is

depicted in Figure 3.4. Interestingly, it appears that only the top 5 features out of

the original 26 in our feature vector are required for the average cost-estimation error

to fall below 10%, for an unseen OBVP problem.

For the full feature set, the SVM reachability analysis was again implemented with

a 4th-order polynomial kernel, similar to the Dubins car. In both cases, the 4th-order

polynomial kernel seemed to balance the trade-off between bias and variance for the

classifier. The classification of a 100-point test set of new 2PBVP query points can be

seen in Figure 3.5, yielding test errors 8.08%, 11.11%, and 7.07%, respectively, again

for cost thresholds J1 = µ−σ,J2 = µ, and J3 = µ+σ. Figure 3.5 directly compares

the classifications made be the linear regression and SVM algorithms. Again, most

3.3. NUMERICAL TEST CASES 45

Figure 3.3: Predicted reachability set plotted with true cost for the Dubins Car with
3 different cost thresholds (black lines). Blue circles = SVM predicted reachable,
red diamonds = SVM predicted non-reachable, blue dot = linear regression predicted
reachable, red cross = linear regression predicted non-reachable.

46CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

Table 3.2: Deep space spacecraft features, from most important to least important

1-9 10-18 19-26

(x/ẋ)2 y2 ż2

(y/ẏ)2 ||x, y, z|| / ||ẋ, ẏ, ż|| ẏ2

(z/ż)2 z2 ||ẋ, ẏ, ż||
||x/ẋ, y/ẏ, z/ż|| y ẋ

x/ẋ |ż| ẏ
y/ẏ x ż
z/ż |ẋ| ||x, y, z||
z |ẏ| ||x, y, z, ẋ, ẏ, ż||
x2 ẋ2

Figure 3.4: Results of feature selection for the deep-space spacecraft showing the
average test error percentage vs number of features used.

3.3. NUMERICAL TEST CASES 47

Table 3.3: Average computation time and percent of misclassification for the two-
point boundary value problem solver, the linear regression cost estimation (best fit
model using all features), and SVM classification (average over all 3 cost thresholds).

System 2PBVP Solve Lin. Reg. SVM

Time % Err Time % Err Time % Err

Dubins 1.23 s 0.0 9.4 ms 3.8 0.44 ms 4.9
Spacecraft 10.3 s 0.0 9.0 ms 5.8 0.40 ms 8.8

misclassifications occur near the cost threshold.

3.3.3 Control-Penalized Double Integrator

The control-penalized double integrator system discussed in Section 2.2.4 was also

used as a test case for the machine learning of reachable sets. Due to the relevance

to quadrotor planning, results and discussion of the machine learning of reahable sets

for the double integrator system are left to Section 5.3.

3.3.4 Execution Time and Accuracy

Table 3.3 compares the computation time and classification accuracy of each of the

three approaches: 1) truth-value determined by a 2PBVP solver4, 2) locally-weighted

linear regression cost estimation, and 3) support vector machine classification. These

results confirm that machine learning techniques are able to drastically reduce the

computation time for reachability analysis by as much as four orders of magnitude –

which comes at the cost of misclassifying some queries.

By definition, the truth-value calculation produces no misclassifications but take

seconds or tens-of-seconds to perform each classification. Locally-weighted linear re-

gression produces the most accurate classifications of the machine learning techniques

but can take 20x longer per query to compute when compared to the SVM approach.

The relatively large computation time for linear regression is due to the n×n matrix

4As previously mentioned, the techniques used to determine the true classifications are not guar-
anteed to be absolutely correct, but they do represent the state of the art in solving optimal 2PBVPs.
See Section 2.3.2 for more details.

48CHAPTER 3. MACHINE LEARNING FOR REAL-TIME REACHABILITY ANALYSIS

Figure 3.5: Predicted reachability set plotted with true cost for the deep-space space-
craft with 3 different cost thresholds (black lines). Blue circles = SVM predicted
reachable, red diamonds = SVM predicted non-reachable, blue dot = linear regres-
sion predicted reachable, red cross = linear regression predicted non-reachable

3.3. NUMERICAL TEST CASES 49

inversion required for each classification query. This matrix inversion can be avoided

if a non-locally-weighted regression scheme is used, but accuracy of classification is

severely impacted (results are omitted due to page limitations). Linear regression

techniques have the benefit of generating more information by providing an estimate

of the optimal cost. The SVM only returns a binary, true-false result. This cost

estimation may be valuable beyond reachable set analysis, depending on application.

Chapter 4

A Real-Time Framework for

Kinodynamic Planning

In Chapter 1 we introduced the Optimal Kinodynamic Planning Problem in Equation

(1.1). In this chapter we develop a technique for addressing such problems in real-time

environments.

4.1 Real-Time Framework for Kinodynamic Plan-

ning

To solve the Optimal Kinodynamic Planning Problem we apply techniques from opti-

mal control, trajectory optimization and machine learning in an offline/online compu-

tation paradigm. The idea is that much of the computationally expensive elements of

the motion planning problem can be executed offline in the “laboratory” environment

in an effort to minimize the online, “in field” computations. The whole framework

is illustrated in Fig. 4.1. Section 4.1.1 discusses how a priori information, such as

system dynamics and control constraints, can be leveraged to precompute a large

number of boundary value problems which are then stored in a look-up table for

rapid queries during online computations. As discussed in Section 4.1.2, information

that only becomes available at the initiation of online execution – such as obstacle

50

4.1. REAL-TIME FRAMEWORK FOR KINODYNAMIC PLANNING 51

Figure 4.1: Flowchart of the Kinodynamic Motion Planning Framework. This dia-
gram also illustrates the extension of prior work where the SVM Classifier and Motion
Planner blocks correlate to [2] and [3], respectively.

data and terminal states – can then be fused with the precomputed look-up table

using machine learning. Section 4.1.3 discusses the subroutines of this framework

such as the solutions to boundary value problems, machine learning algorithms, and

sampling-based planning scheme.

It is worth noting here that the framework does not have any component or

subroutine dedicated to the problems of sensing, localization, or mapping. This is

due to the fact that this thesis is wholly focused on planning. This is not meant to

diminish the importance or difficulty of estimation, which is a fundamental challenge

for robotics and control, but instead to isolate the two problems of planning and

estimations. Chapter 5 discusses how the challenges of estimation are addressed for

a physical robot using a Vicon motion capture system.

52CHAPTER 4. A REAL-TIME FRAMEWORK FORKINODYNAMIC PLANNING

4.1.1 Offline Computations

During the offline computation phase, which is outlined in Algorithm 1, it is assumed

that there is a known set of system dynamics and constraints - possibly non-linear

- and an unobstructed configuration space, i.e. the configuration space is assumed

to be completely free of obstacles during the offline phase. The algorithm begins

by randomly or quasi-randomly sampling a large number, Nsample, of states from the

unobstructed state space, X , which is accomplished by the subroutine Sample. The

offline phase then proceeds to randomly select a set of states, of size Npair, from the

set of sampled states Vs (with replacement and Npair ≤ N2
sample) which is accomplished

by the SampleData subroutine. These sets are then used to solve many, if not all,

of the optimal 2-point boundary value problems (OBVP)1, ignoring obstacles which

are unknown, between each of the sampled state pairs, represented by the sets A and

B. The solution of these pairs is accomplished with the SolveOBVP subroutine. The

optimal cost and optimal trajectory for each of these unobstructed OBVPs is stored in

a look-up table, denoted by the subroutine Cost, for use during online computations.

In this sense, Cost represents a naive roadmap of the configuration space that is

ignorant of obstacle locations. Cost may also be loosely compared with the notion of

motion primitives, but in a form that is handled numerically instead of analytically,

and can be applied to an general system.

The optimal cost, along with the associated boundary values, are also used to

train a machine learning classification algorithm, such as a support vector machine,

to predict whether a given state is cost-limited reachable from another given state

[2]. The training is accomplished with the subroutine TrainClassifier where Jth is

the cost threshold for cost-limited reachability classification. The machine learning

classifier is denoted Near. The trained SVM, Near, and the optimal cost look-up

table, Cost, become the tools for online computation. The use of these online tools

can be summarized as

efficiency through machine learning, decision making through optimal con-

trol.

1Also known as optimal control problems or steering problems, see Section 2.3.

4.1. REAL-TIME FRAMEWORK FOR KINODYNAMIC PLANNING 53

Algorithm 1 Offline Computations for the Kinodynamic Motion Planning Frame-
work

1 Vs ← Sample(X , Nsample)
2 A← SampleData(Vs, Npair, replace)
3 B ← SampleData(Vs, Npair, replace)
4 Cost← SolveOBVP(A,B)
5 Near← TrainClassifier([A,B], Cost(A,B),Jth)

4.1.2 Online Computations

Upon initiation of online computation the algorithm is presented with the start state,

xinit, goal region, Xgoal, and the obstacles, Xobs, which are all assumed to be unknown

beforehand and the obstacles being too difficult to be represented explicitly2. By

applying the trained SVM, the algorithm proceeds to identify previously sampled

states that are in the cost-limited, outgoing-neighborhood of xinit and the incoming-

neighborhood of Xgoal. For each state classified in the neighborhoods of xinit or Xgoal

an OBVP is solved and recorded in the look-up table. Finally, kino-FMT is called to

optimally and efficiently connects xinit to Xgoal using the Near and Cost subroutines.

The online phase is outlined in Algorithm 2. Its subroutines are discussed in detailed

next.

Algorithm 2 Online Computations for the Kinodynamic Motion Planning Frame-
work

1 Xgoal ← Sample(Xgoal, ngoal)
2 N out

init ← Near(xinit, Vs\{xinit},Jth)
3 N in

goal ← Near(Vs\{Xgoal}, Xgoal,Jth)
4 for x ∈ Vs do
5 if x ∈ N out

init then
6 Cost← SolveOBVP(xinit, x)
7 if x ∈ N in

goal then
8 Cost← SolveOBVP(x,Xgoal)
9 return kino-FMT (Vs, Near, Cost)

2It is noted that if the start state, goal state, and obstacles are known ahead of time, then the
entire motion planning problem can be solved offline and computation time is irrelevant.

54CHAPTER 4. A REAL-TIME FRAMEWORK FORKINODYNAMIC PLANNING

4.1.3 Framework Subroutines

State Connections: SolveOBVP

The objective of the SolveOBVP subroutine is to produce solutions, whether exact or

approximate, to the optimal boundary value problem given in Equation (2.10). The

real-time kinodynamic planning framework is meant to be applicable to an general

robotic system. Therefore we cannot assume an analytical, exact solution exists for

our chosen robotic system and we must develop a subroutine that can give numerical

approximations to a general OBVP. This can be accomplished by implementing the

techniques discussed in Section 2.3.2. To avoid redundancy, please refer to the relevant

section of Chapter 2 for further discussion.

Neighbor Estimation: TrainClassifier and Near

When the boundary states, xinit and Xgoal, are introduced at online initiation they

must be connected to the pre-sampled states before the motion planner can execute.

Naively connecting the terminal states to all pre-sampled states would require O(Ns)

calls to SolveOBVP, which is prohibitively many to execute in real-time. Instead we

seek to only connect the boundary states with their nearest neighbors, as defined by

the cost-limited reachable set as discussed in Section 2.4 and illustrated in Figure

2.10). By limiting edge connections from the boundary states to a fixed number of

states in their respective neighborhoods we have effectively reduced the number of

online OBVPs to O(1). This reduction in online OBVPs lies at the core of achieving

real-time execution of a kinodynamic planner.

The estimation of neighborhoods is accomplished with the subroutine Near. This

machine learning algorithm is trained during the offline phase using the subroutine

TrainClassifier. The training and execution of these subroutines is the discussed

in Chapter 3.

To contrast this approach with that of prior literature, Leven and Hutchinson’s

used a set of norms in the work space and configuration space as a rough surrogate for

their desired distance metric of swept volume [10]. If our machine learning approach

4.1. REAL-TIME FRAMEWORK FOR KINODYNAMIC PLANNING 55

were applied to the work in [10], swept volume reachable sets could be directly ap-

proximated instead of having to devise a surrogate function. This allows the flexibility

in our framework to be applied to a more general set of planning problems.

Note that Near is trained on data in Cost which is generated with no knowledge of

obstacle placement. Therefore, Near has no function in predicting obstacle collisions.

Collision checking is solely within the realm of the sampling-based planner discussed

in Section 4.1.4. Results on training and testing of the SVM classifier for a quadrotor

system are presented in Section 3.3.

Sampling-Based Planner: kino-FMT

Along with the SolveOBVP, TrainClassifier, and Near, subroutines, the sampling-

based motion planner, kino-FMT , acts as a subcomponent of the real-time planning

framework presented in Figure 4.1. We dedicate a separate section to the discussion

of the kino-FMT algorithm; refer to Section 4.1.4.

4.1.4 Kinodynamic Fast Marching Tree

The sampling-based motion planner at the core of our real-time framework is a kin-

odynamic variant of the Fast Marching Tree (FMT∗) algorithm [3], and is presented

in pseudo-code in Algorithm 3. The algorithm works by expanding a tree, stored in

a set of edge connections Es, along the minimum cost-to-come front through the pre-

sampled set of states Vs. The frontier of the tree is stored in set Hs and unconnected

samples are stored in set Ws.

For each iteration of the algorithm, the minimum cost-to-come sample z is used as

a pivot for exploration. The forward-reachable set of z among the sampled states Vs

is stored in the discrete set N out
z . The intersection of N out

z and set Ws is determined

and the result is stored in set Xnear. Each sample, x ∈ Xnear, represents a candidate

for expansion of the tree. For each candidate x the backward reachable set among

sampled states is determined and saved as set N in
x . The set Ynear is determined as the

intersection of Hs and the backward reachable set of x, N in
x . The sample ymin ∈ Ynear

represents the optimal connection point (assuming no obstacles) between x and the

56CHAPTER 4. A REAL-TIME FRAMEWORK FORKINODYNAMIC PLANNING

existing tree. If the connection from ymin to x is free of collisions with obstacles, then

the (ymin, x) edge is added to the tree, x is added to the frontier set Hs and removed

from Ws. Once all nodes in Xnear are analyzed, the pivot node z is removed from the

frontier set and the process is repeated. The algorithm succeeds in finding a path from

xinit to Xgoal as soon as the current pivot, z, is an element of Xgoal. If the frontier set

Hs ever becomes empty, then kino-FMT reports failure. The (asymptotic) optimality

properties of FMT∗ (and its kinodynamic variants) are discussed in [3, 39, 40].

Algorithm 3 Kinodynamic Fast Marching Tree Algorithm (kino-FMT)

1 Vs ← Vs ∪ {xinit} ∪ {Xgoal}
2 Es ← ∅
3 Ws ← Vs\{xinit}; Hs ← {xinit}
4 z ← xinit

5 while z /∈ Xgoal do
6 N out

z ← Near(z, Vs\{z},Jth)
7 Xnear = Intersect(N out

z ,Ws)
8 for x ∈ Xnear do
9 N in

x ← Near(Vs\{x}, x,Jth)
10 Ynear ← Intersect(N in

x , Hs)
11 ymin ← arg miny∈Ynear{Cost(y, T = (Vs, Es))+Cost(yx)}
12 if CollisionFree(ymin, x) then
13 Es ← Es ∪ {(ymin, x)}
14 Hs ← Hs ∪ {x}
15 Ws ← Ws\{x}
16 Hs ← Hs\{z}
17 if Hs = ∅ then
18 return Failure
19 z ← arg miny∈Hs{Cost(y, T = (Vs, Es))}
20 return Path(z, T = (Vs, Es))

4.2 Numerical Experiments

The real-time framework for kinodynamic planning was tested on two simulated dy-

namical systems: a fixed-wing UAV (Section 2.2.6) and a gravity-free spacecraft (Sec-

tion 2.2.7). For both the UAV and Spacecraft problems, the real-time kinodynamic

4.2. NUMERICAL EXPERIMENTS 57

Figure 4.2: Time-optimized path for fixed-wing UAV navigating through a forest.
Sharp corners are artifacts of plotting, not true representations of the trajectory.

motion planning framework demonstrates orders-of-magnitude decrease in computa-

tion time when compared to naive approaches. Table 4.1 summarizes the computation

times for differing levels of complexity of the framework. Both problems where run

with Nsample = 5000. The time unit is normalized by the average time it took to solve

a single OBVP for the system.

The Naive framework relies on computing a complete digraph of the Nsample sam-

pled states; involving N2
sample edge connections3. To run a planning algorithm such

as kino-FMT , we must have knowledge of the neighborhood of a given state, how-

ever a neighborhood cannot be defined until there is information on the cost to reach

every other state; therefore the naive approach must calculate all N2
sample OBVPs

to establish neighborhoods. The Neighborhood Learning framework does not use

3an ’edge connection’ is identical in meaning to a ’OBVP solution’, and a ’node’ is identical to a
’sampled state’

58CHAPTER 4. A REAL-TIME FRAMEWORK FORKINODYNAMIC PLANNING

Figure 4.3: Time-optimized path for spacecraft navigating around ISS.

Table 4.1: Comparison of normalized, online computation times for differing levels of
framework complexity.

Naive Neighborhood Learning Real-time Framework

UAV 2.50× 107 4.62× 103 197
Spacecraft 2.50× 107 4.85× 103 79

precomputation of OBVPs but reduces the number of necessary online OBVP solu-

tions by estimating a given state’s neighborhood with an SVM classifier, and then

only attempting an edge connection for those states in the estimated neighborhood.

The Real-time framework, which is the complete framework as detailed in Section

4.1, reduces computation further by precomputing most of the OBVPs in the offline

phase.

It is noted that only 10.2% and 25.3% of the online computation time for UAV

and Spacecraft problem, respectively, are due to solving OBVPs. The rest of the

computation time is dominated by collision checking. The OBVPs solved online

represent the edge connections between xinit and its out-neighborhood and Xgoal its

4.2. NUMERICAL EXPERIMENTS 59

Table 4.2: Final path cost compared with optimal, unobstructed cost.

Unobstructed [sec] Real-time Framework [sec] % Difference

UAV 9.40 11.07 17.77%
Spacecraft 57.445 140.90 145.3%

in-neighborhood and can all be solved in parallel. Therefore parallel processors could

reduce the online computation time for OBVPs down to the average solution time of

a single OPBVP which is sub-one second for both examples. Further reductions of

online computation time is then left to improvements in collision checking algorithms,

which is outside the scope of this thesis.

To get a measure of how close the real-time framework comes to solving for the

true optimal solution, we compare the final path cost with the optimal cost of the

unobstructed start-to-goal trajectory. The optimal cost of the unobstructed problem

is necessarily a lower limit on the optimal cost of the obstructed problem. Results

are given in Table 4.2.

4.2.1 Comparison with Existing Techniques

It is difficult to draw direct comparisons with existing techniques because we are

proposing a framework, not an explicit algorithm. Existing algorithms for kinody-

namic motion planning, such PRM [41] and RRT* [42], can be substituted in place

of kino-FMT , however they would still just comprise a subcomponent of the frame-

work - not a full alternative to the framework. Comparing these subcomponents has

already been performed in prior work [3] and is not relevant to to evaluating the

framework as a whole.

4.2.2 Notes on Intermediate Results

The objective of this work was to design a generic, problem-agnostic framework.

Starting from this generalized approach, the user can realize further improvements

by tailoring aspects of the framework to a specific problem. Here we give a brief

discussion of potential tailoring techniques.

60CHAPTER 4. A REAL-TIME FRAMEWORK FORKINODYNAMIC PLANNING

The largest room for improvement comes from the large amount of online com-

putation time committed to collision checking. Along with devising a more efficient

collision checking algorithm, this can also be improved by wrapping the framework

with a model predictive control algorithm such that smaller subproblems are solved in

a sequence. Far fewer trajectories would need collision checking in each subproblem.

It was previously noted that parallel processing can greatly reduce the online

computation of OBVPs. For the given example problems, anywhere from 10s to 100s

of parallel processors could be used, depending on the desired computation time and

size of in- and out-neighborhoods of Xgoal and xinit.

We have purposefully chosen examples where favorable dynamics were not present

or ignored (e.g. linearity, convexity, differential flatness, etc.) in an effort to demon-

strate the framework on an general system. If a given problem exhibits any of these

favorable characteristics, the SolveOBVP subcomponent of the framework may be

significantly accelerated. Furthermore, a customized SQP solver can be devised for

a given set of dynamics that utilizes the sparsity pattern of the disctretized NLP

problem; further reducing computation time [43].

The implementation of these improvements and tailoring the framework to a spe-

cific system is presented in Chapter 5.

Chapter 5

Real-Time Quadrotor Planning

and Control

In this chapter we build upon the results of Chapter 4 to demonstrate real-time

planning for a physical, quadrotor system.

5.1 Real-Time Framework for Quadrotor Planning

As discussed in Section 2.1, sampling-based planning algorithms have become the

accepted approach for planning in high-dimensional spaces where state (obstacle)

constraints are only implicitly represented [1]. A critical feature of sampling-based

algorithms is that they avoid the explicit construction of the configuration space

(which can be prohibitive in complex planning problems as discussed in Section 2.1)

and instead conduct a search that either probabilistically or deterministically probes

the configuration space with a sampling scheme. This probing is enabled by a col-

lision detection module, which the motion planning algorithm considers as a “black

box” [1]. In this way, a complex trajectory control problem is broken down into a

series of many smaller, simpler optimal boundary value problems (OBVP) 1 that are

1Note that not all sampling-based planners require the solution to optimal boundary value prob-
lems. State space exploration for the RRT algorithm is often achieved by employing a forward
dynamic propogator based on randomized or deterministically chosen control inputs [44]. These
techniques are prone to “wander” through the state space, lacking the optimality guarantees of

61

62 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.1: The real-time framework for kinodynamic planning and control for a
quadrotor system.

subsequently evaluated a posteriori for obstacle constraint satisfaction and efficiently

strung together into a graph (e.g. tree or roadmap). The primary hurdle for real-time

implementability is that without detailed information about a system’s reachability

set, a naive sampling-based planner may require the solution to O(N2
s) OBVPs during

online execution, where Nsample is the number of sampled states. This is prohibitively

expensive [46].

To address this we wrap a sampling-based planner in a real-time framework, given

in Fig. 5.1, that minimizes the number of OBVPs that need to be solved online. This

framework is an extension of that given in Chapter 4 that is designed to be imple-

mented on a physical system. The broad structure of our framework, featuring an

offline-online computation paradigm, has similarities to that presented by Leven and

algorithms such as RRT*, PRM*, and FMT* [14, 3]. Li et. al. developed the STABLE SPARSE
RRT (SST) algorithm that achieves optimality guarantees without requiring OBVP solutions, only
a forward dynamic propagator, but execution times for a quadrotor system are on the order of 100s
of seconds which is too slow for real-time implementation [45].

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 63

Hutchinson [10]. However the details of framework’s construction and subcompo-

nents, which are considered a novel contribution of this work, differ significantly from

that of Leven’s.

The “philosophy” of the framework can be condensed to:

efficiency through machine learning, decision making through optimal con-

trol, precomputation when possible.

Here the framework developed in Chapter 4 (originally proposed in [23] and fur-

ther expanded in [24]) is revisited in order to tailor it to a physical system. During

execution of the real-time framework, computations are split into offline (Algorithm 4)

and online (Algorithm 5) phases. During the offline phase – which is presented in Sec-

tion 4.1 but repeated here for completeness – the subroutine Sample quasi-randomly

draws Nsample samples from the continuous state space, without any regard to obsta-

cle locations, which are unknown until online initiation. SampleData randomly draws

Npair states –with replacement and Npair ≤ Nsample (Nsample − 1)– from the discrete

set of sampled states Vs, and stores them in two sets A and B. The Npair samples

stored in A and B are then paired and OBVPs are solved for each pair; storing the

solutions for use during the online phase in a look-up table titled Cost. The OBVP

solution subroutine, SolveOBVP, which is often referred to as a “steering function”

in the motion planning literature, is given in Section 2.3.4. The look-up table Cost

can equivalently be thought of as a precomputed, unobstructed roadmap (i.e. it is

wholly ignorant of obstacle information which is not available until online initiation)

through the state space. During the offline phase, a support vector machine (SVM)

classifier, referred to as Near, is trained using the look-up table Cost. The SVM

provides query-based estimates of cost-limited reachable sets (i.e. , neighborhoods)

and is discussed in further details in Section 3.1. The cost threshold of the reachable

set, often referred to a “neighborhood radius” in the motion planning literature, is

the user defined value Jth.

The online phase of computation is given in Algorithm 5; note the subtle dif-

ferences from Algorithm 2 to account for the tailoring to a specific robotic system.

At the initiation of the online phase, obstacle data is presented along with the start

64 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Algorithm 4 Offline Phase for the Kinodynamic Motion Planning Framework

1 Vs ← Sample(X , Ns)
2 A← SampleData(Vs, Npair, replace)
3 B ← SampleData(Vs, Npair, replace)
4 Cost← SolveOBVP(A,B)
5 Near← TrainClassifier([A,B], Cost(A,B),Jth)

state, xinit, and goal region, Xgoal
2. A set of Ngoal states are sampled from the goal

region and stored in the discrete set Xgoal. The SVM classifier is used to rapidly

approximate the outgoing neighborhood of xinit and the incoming neighborhood of

Xgoal among the pre-sampled states; storing the sets in Nout
init and N in

goal, respectively

(see Section 2.4 for discussion on outgoing and incoming neighborhoods). OBVPs are

then solved from xinit and Xgoal to their nearest neighbors and the solutions are stored

in the look-up table. Note that this reduces the number of online OBVPs solved to

O(1)!

The sampling-based planner, kino-FMT , is then called to return the optimal tra-

jectory through the set of sampled states, Vs, using the look-up table, or “roadmap”,

Cost. Though many candidate sampling-based planners could be used to compute a

trajectory across this roadmap, we rely on the asymptotically-optimal FMT∗ algorithm

for its efficiency (see [3] for a detailed discussion of the advantages of FMT∗ over

state-of-the-art counterparts; see and [40] for its kinodynamic extension). The Kino-

dynamic Fast Marching Tree algorithm (kino-FMT) (adapted from [40]) leverages the

roadmap to efficiently determine the optimal sequence of sampled states to connect

xinit and Xgoal, performing collision checking in real-time (see Section 4.1.4).

Finally the sequence of states generated by kino-FMT is used as a set of waypoints

for a path smoothing algorithm that generates a minimum-snap, dynamically feasible

trajectory for the quadrotor (see Section 5.1.3). Mapping the differentially flat output

variables from the smooth trajectory back to the full state and control space (Section

5.1.4), we can provide feedforward terms to the flight controller (Section 5.1.5).

2If this information was available a priori, than all computations could be performed offline and
the real-time implementation would become irrelevant.

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 65

Algorithm 5 Online Phase for the Kinodynamic Motion Planning Framework

1 Xgoal ← Sample(Xgoal, Ngoal)
2 Nout

init ← Near(xinit, Vs\{xinit},Jth)
3 N in

goal ← Near(Vs\{Xgoal}, Xgoal,Jth)
4 for x ∈ Vs do
5 if x ∈ Nout

init then
6 Cost← SolveOBVP(xinit, x)
7 if x ∈ N in

goal then
8 Cost← SolveOBVP(x,Xgoal)
9 Path← kino-FMT (Vs, Cost,xinit, Xgoal)

10 return SmoothPath(Path)

To handle dynamic obstacles we must develop a replanning structure that re-

computes the kinodynamic motion plan as the environment evolves. We choose to

implement an event-based replanner where the existing solution trajectory is contin-

uously checked for collisions with obstacles and replanning is only initiated once the

existing plan becomes obstructed. This replanning structure is represented in Figure

5.2. This event-based replanning is in contrast to a purely time-based, receding hori-

zon replanner more typical for model predictive control. The event-based structure

minimizes the number of replanning events which is desirable due to the “chaotic”

nature of transitioning from one solution trajectory to another; see Section 5.4.2 for

more discussion.

To further reduce the number of replanning events and provide more “graceful”

behavior in proximity to dynamic obstacles we also implement a locally reactive con-

troller. This controller is inspired by the concept of potential fields where nearby

obstacles impose a virtual, repelling force on the autonomous system [47]. This reac-

tive controller is represented in Figure 5.2 and is discussed further in Section 5.1.5.

It is important to note this locally reactive controller is not necessary for the fun-

damental objective of real-time planning in dynamic environments which is achieved

solely based on computation times of the real-time framework. In experimentation,

however, it was shown to greatly improve performance, therefore it is discussed in

this thesis.

We now present the mathematical details for each of the framework components

66 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.2: Event-based replanning structure used to account dynamic obstacles.

(to make the thesis self-contained, we also state a number of results already available

in the literature).

5.1.1 Analytical Solution to OBVPs

In contrast to other works such as Leven and Hutchinson [10] and Richter, Bry, and

Roy [11] that use straight line connections between states, we require the solution

to an optimal boundary value problem to connect sampled states. As explained in

Section 2.2.4, we minimize computations by approximating our system as the double

integrator given in Eqn (2.7). This approximation enables analytical solutions to the

optimal boundary value problem between two sampled states, which is executed in

the SolveOBVP algorithm. The approximation is corrected for in Section 5.1.4. The

results in this section come from the works [20, 35].

The mathematical details for solving OBVPs for double integrator systems are

given in Section 2.3.4.

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 67

5.1.2 Machine Learning of Neighborhoods

As was discussed in Section 4.1.3, the boundary states, xinit and Xgoal, must be

connected to the pre-sampled states in Cost before the kino-FMT motion planner can

execute. This accomplished by training a machine learning algorithm for reachability

estimation. The details of this estimation have already been discussed in Section 4.1.3

and Chapter 3, however it is again noted that the reduction in OBVPs to be solved

for neighborhood connection of xinit and Xgoal lies at the core of achieving real-time

execution.

5.1.3 Snap Minimization for Trajectory Smoothing

Trajectory smoothing is commonly implemented in motion planning to improve the

quality of the trajectory returned by the planner. Furthermore, in our case, we need

to correct for the double integrator approximation previously made. To this end we

improve the sampling-based planner’s solution computed via kino-FMT by connecting

the solution samples with a high-order polynomial spline. Building on Mellinger’s

work [13], Richter et. al. [11] formulate the spline determination as an unconstrained

quadratic programming problem that minimizes the integral of the square of the snap

(i.e. the 4th derivative of position); see Eqn. (5.1). In the unconstrained formulation,

derivatives at samples of the motion plan, i.e. waypoints, are left as free parameters

for optimization. For completeness we present the essential results of Richter as they

are used in our current approach [11, 12].

Our goal in this section is to determine the coefficients of M polynomials of order

N . These polynomials form a spline that is continuous up to the 4th derivative and

passes through the sampled states, or “nodes”, of the solution trajectory determined

in Section 4.1.4. While an infinite number of splines may exist that satisfy these

conditions, we seek the spline that minimizes the integral of the square of the snap.

Let us begin by considering a single polynomial P (t) =
∑N

n=0 pnt
n. The minimum-

snap cost function for a single polynomial is defined as

Jsnap =

∫ T

0

P (4)(t)2 dt = pTQ(T)p, (5.1)

68 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

where Q(T) is the Hessian matrix of Jsnap with respect to the polynomial coefficients,

p is a vector of the N + 1 polynomial coefficients, and T is the polynomial segment

time which is determined by the kinodynamic planner. The superscript (4) implies

the 4th derivative of the polynomial. Without derivation, the Hessian matrix is given

as3

Qi,j(T) = 2

(
3∏

k=0

(i− k)(j − k)

)
T i+j−7

i+ j − 7
for: i ≥ 4 ∧ j ≥ 4,

Qi,j(T) = 0 otherwise.

(5.2)

As previously mentioned, the polynomial is constrained at its terminal points, t = 0

and t = T , to the waypoints of the motion plan determined in Section 4.1.4. The

derivatives of the polynomial at its terminal points can be fixed or left as free param-

eters for optimization. Even as free parameters, however, the derivatives must satisfy

continuity between polynomials in the spline. These constraints can be encoded as

the linear function

Ap = d (5.3)

A =

[
A0

AT

]
, d =

[
d0

dT

]
(5.4)

where the terms are given as

A0i,j =


∏i−1

k=0(i− k) if i = j

0 if i 6= j
(5.5)

d0i = P (i)(0) (5.6)

3Note that we diverge from Richter by only considering the minimization on the 4th derivative,
where Richter leaves the formulation more general as a weighted sum of squares of derivatives.
Furthermore, due to the fact that Richter uses a geometric planner to determine waypoints, his
approach requires a time allocation optimization to determine polynomial segment times, T [11,
12]. In contrast, our work determines the polynomial segment times during the time-minimizing
kinodynamic planning; see Section 4.1.4.

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 69

ATi,j =


(∏i−1

k=0(i− k)
)
T i−j if i ≥ j

0 if i < j
(5.7)

dTi = P (i)(T) (5.8)

Numerical stability can be achieved by reformulating the constrained problem rep-

resented in Eqns. (5.1) and (5.4) as an unconstrained optimization [11, 12]. This

is achieved by optimizing over the polynomial derivatives at the terminal points in-

stead of the polynomial coefficients. Under this reformulation, Eqns. (5.1) and (5.4)

become

Jsnap = dTA−TQ(T)A−1d, (5.9)

and the polynomial coefficients are determined, a posteriori, via inversion of Eqn.

(5.3).

Now that we have formulated the optimization problem for a single polynomial,

we must consider the optimization over the spline of M polynomials. To this end we

form A1...M and Q1...M which are block diagonal matrices composed of the A and Q

matrices for each segment. We could also simply concatenate the derivative vectors

into a vector d1...M , however it is desirable to separate this vector into components

that are fixed and those that are free parameters of optimization. Therefore the

derivative vector for the spline optimization is formed as

dtotal =

[
dfix

dfree

]
. (5.10)

With this reordering of the derivative vector in Eqn. (5.10), an ordering matrix C is

required that preserves the proper relationships with the block matrices A1...M and

Q1...M . Furthermore, the ordering matrix C also encodes the enforcement of continuity

of derivatives at intermediate waypoints. Now the minimum-snap cost function for

the entire spline is given as

Jsnap = dT
totalCA

−T
1...MQ1...MA1...MC

Tdtotal. (5.11)

70 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

For simplicity, define the matrix H = CA−T
1...MQ1...MA1...MC

T and partition it such

that Eqn. (5.11) can be written

Jsnap =

[
dfix

dfree

]T [
H11 H12

H21 H22

][
dfix

dfree

]
. (5.12)

Differentiating and setting to zero solves for the free derivatives at the waypoints

d∗free = −H−1
22 H

T
12dfix. (5.13)

Now that the derivatives at each waypoint are determined, the polynomial coefficients

can be determined by inverting Eqn. (5.3). This process is applied for the determi-

nation of four splines: x, y, and z positions and yaw. These splines correspond to the

differential flat output variables discussed in Section 5.1.4.

It is important to note here that once smoothing is applied, the trajectory is

no longer guaranteed to be collision free. Therefore it is necessary to perform an

additional collision checking phase during the trajectory smoothing phase. If one of

the polynomials in the spline is found to collide with an obstacle, then a new smoothed

trajectory must be determined. This is accomplished by sampling the midpoint of

the underlying motion plan solution which is guaranteed to be collision free (else it

would have not been selected as a valid motion plan). The trajectory smoother than

solves the minimum-snap optimization problem for M + 1 trajectory segments. This

is repeated until the smoothed trajectory is collision free. See Richter et. al. for more

details [11, 12].

5.1.4 Differentially Flat Mapping

The trajectory smoother from Section 5.1.3 produces polynomial splines for position

and yaw that are continuous up to their fourth derivative. Mellinger et. al. showed

that the state and control variables for the nonlinear quadrotor dynamics can be ex-

pressed in terms of ~ξN and ψN and their derivatives up to fourth order; thus proving

Eqn. (2.6) represents a differentially flat system with flat output variables ~ξN and ψN

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 71

[13]. This mathematical property proves that the smoothed trajectory from Section

5.1.3 is guaranteed to be dynamically feasible for the quadrotor; therefore correct-

ing the double-integrator approximation made to solve the planning problem. For

completeness we state the results of Mellinger et. al. for the mapping from the flat

outputs to the nominal state and control variables. Note that, while the following

equations are taken almost directly from [13], there are some subtle coordinate frame

changes.

The nominal position and velocity state variables are identically ~ξN and ~̇ξN , re-

spectively. The thrust control variable is given as

u1ff = −~zB · ~FN , where: ~FN = m~̈ξN −mg~zW (5.14)

The subscript ff indicate that this thrust value appears as a feedforward term in

the flight controller (Section 5.1.5). The nominal orientation matrix is given by the

nominal frame axes represented in world coordinates:

~RN =
[
W~xN ,

W~yN ,
W~zN

]
, (5.15)

where

~zN = −
~FN

‖~FN‖
~yS = [−sinψN , cosψN , 0]T

~xN =
~yS × ~zN
‖~yS × ~zN‖

~yN = ~zN × ~xN .

(5.16)

The nominal angular velocity vector is given by

~ΩNW = pN~xN + qN~yN + rN~zN (5.17)

72 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

where the individual components of nominal angular velocity are

pN = −~hΩ · ~yN
qN = ~hΩ · ~xN
rN = ψ̇N~zW · ~zN

(5.18)

For compactness we have defined

~hΩ =
m

u1ff

((
~ξ

(3)
N · ~zN

)
~zN − ~ξ(3)

N

)
(5.19)

The nominal angular acceleration, used in the calculation of the feedforward moment

terms, is derived to be

~̇ΩNW = α1N~xN + α2N~yN + α3N~zN (5.20)

where the individual components of nominal angular acceleration are

α1N = −~hα · ~yN
α2N = ~hα · ~xN

α3N =
(
ψ̈N~zN − ψ̇N~hΩ

)
· ~zW

(5.21)

Again for compactness we give

~hα = − 1

u1ff

(
m~ξ

(4)
N + ü1ff~zN + 2u̇1ff

~ΩNW × ~zN

+~ΩNW × ~ΩNW × ~zN
) (5.22)

The derivative of the net thrust, which appear in Eqn (5.22), are derived to be

u̇1ff = −m~ξ(3)
N · ~zN

ü1ff = −
(
m~ξ

(4)
N + ~ΩNW × ~ΩNW × ~zN

)
· ~zN

(5.23)

Note that the equations presented in this section are taken almost directly from

Mellinger et. al. [13] but are stated here for completeness of our approach.

5.1. REAL-TIME FRAMEWORK FOR QUADROTOR PLANNING 73

5.1.5 Flight Controller

The flight controller synthesizes work by Lee et. al. [26] with Ge and Cui [47] and

is composed of three parts: a feedforward component, a feedback component, and a

“locally reactive” component. Feedforward inputs, denoted with subscript ff , are

generated from the differentially flat mapping in Section 5.1.4 and feedback terms,

denoted with subscript fb, are generated via proportional-derivative (PD) tracking

of position, velocity, orientation and angular velocity. The locally reactive terms,

denoted with subscript lr, are loosely based on the concept of potential fields where

proximity to obstacles create a virtual force to “push” the quadrotor away (i.e. the

quadrotor reacts to obstacles). The reactive terms were originated from Ge and Cui’s

work, but were modified during experimentation until a desirable behavior was ob-

served. Since these terms were empirically derived, they no longer represent a gradient

of a potential field. As previously noted, the locally reactive terms of the controller

are not necessary to achieve real-time obstacle avoidance as the planning framework

is fast enough to account for dynamic obstacles on its own. During flight tests, how-

ever, the locally reactive controller terms significantly improved the performance of

the quadrotor by generating more predictable, graceful manuevers. Equation (5.24)

gives the net thrust control input due to the feedforward, feedback, and locally reac-

tive components.

u1 = u1ff + u1fbu1lr

= −~zB ·
(
~Fff + ~Ffb + ~Flr

)
= −~zB ·

(
m~̈ξN −mg~zW +Kξ~eξ +Kv~ev + ~Flr

) (5.24)

Equation (5.25) presents the control inputs for the moments about the body axes.

[u2, u3, u4]T = [u2, u3, u4]Tff + [u2, u3, u4]Tfb

= JB

(
RT
BRN

~̇ΩBW − ~ΩBW ×
(
RT
BRN

~ΩBW

))
+ ~ΩBW × JB~ΩBW +KR~eR +KΩ~eΩ

(5.25)

74 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

The error terms for feedback control are given by Eqn. (5.26) [26]

~eξ = ~ξN − ~ξ

~ev = ~̇ξN − ~̇ξ

~eR =
1

2

(
RT
BRD −RT

DRB

)∨
~eΩ = RT

BRD
~ΩD − ~ΩB

(5.26)

where ∨ represents the vee-map; the inverse of the hat-map. The matricesKξ, Kv, KR, KΩ ∈
R3×3 are user-defined gain matrices for PD trajectory tracking.

The rotation matrix RD represents the desired orientation to account for feedback

and locally reactive terms. This is distinct from the nominal orientation RN that is

independent of feedback and obstacle influence. During perfect trajectory tracking

with no nearby obstacles we have RN = RD = RB. The rotation matrix RD is

calculated by substituting ~Fff + ~Ffb + ~Flr into Equation 5.14 and proceeding with

Equations 5.15 and 5.16.

The locally reactive force term, ~Flr, in Equation 5.24 is calculated based on ob-

stacle proximity and velocity via

~Flr =

nobs∑
i=1

1

||~ri||2
(−ηrn̂i + ηvavni

n̂i − ηvpvni
(vni

n̂i − ~vi)) (5.27)

where nobs is the number of obstacles, ~ri is the position of the closest point on the ith

obstacle with respect to the quadrotor body frame, n̂i is the unit vector in the ~ri di-

rection, ~vi is the relative velocity of the ith obstacle with respect to the quadrotor, and

vni
= ~vi · n̂i. The first two terms in Equation (5.27) represents a repulsive force due to

obstacle relative position and velocity, respectively. The third term is a steering term

due to obstacle relative velocity. The variables ηr, ηva, and ηvp are weighting factors

for position, aligned velocity, and perpendicular velocity, respectively. For obstacles

outside of a user-defined influence region, the locally reactive force in Equation (5.27)

is set to zero. Furthermore, if vni
< 0 then the velocity terms of Equation (5.27) are

set to zero. It should be again noted that this locally reactive control is non-essential

for addressing the motivating themes in Section 1.1; however it improves performance

5.2. NUMERICAL EXPERIMENTS 75

during physical demonstrations by minimizing the number of replanning events nec-

essary by avoiding occlusion of the existing motion plan. Distinguishing the locally

reactive control as non-essential is important because it does require additional ob-

stacle information that is not required by the rest of the framework (i.e. position and

velocity data for each obstacle as opposed to just collision detection). Therefore, if

we want to be more strict with our assumptions of obstacle data, we could eliminate

the locally reactive control without sacrificing the real-time planner as a whole.

5.2 Numerical Experiments

While physical demonstrations are the ultimate test of the framework’s effectiveness,

limited laboratory space constrains the number and complexity of obstacles sets that

can be tested. Therefore a simulation with a maze of obstacles is devised to validate

our approach in more complex environments. The simulated environment consists of

a corridor with dimensions 20m× 4m× 4m with the start and goal states randomly

generated from opposing ends of the corridor. Cuboid obstacles are arranged to create

a 3-dimensional “maze”. A fixed number of spherical obstacles with radii of one meter

are placed at random to ensure that we have not inadvertently tailored our algorithm

to this specific cuboid-maze obstacle set4. Figure 5.3 gives an instance of this obstacle

configuration and associated solution. The start state is shown on the left side of the

image and the goal state is obscured by the final obstacle on the right. The initial

motion plan, as returned by kino-FMT (see Sections 2.3.4 and 4.1.4), is indicated in

blue and the smoothed, dynamically feasible trajectory (see Section 5.1.3) is indicated

in multicolor.

The primary performance metrics of the real-time planning framework are con-

sidered the online computation time, solution cost, failure rate, and classification

accuracy of reachable sets by the machine learning algorithm. Here we discuss the

performance in terms of computation time, solution cost, and failure rate; saving

4Note that the framework developed in Chapter 4 is in no way restricted to cuboid and spher-
ical obstacles. For implementation, however, we choose relatively simplistic obstacles because the
development of sophisticated collision checking routines is outside the scope of this thesis

76 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.3: A instance of one of the simulated flight tests with a 3D maze of wall
structures and randomly placed spherical obstacles.

discussion of the machine learning performance for Section 3.3.

Through the simulated test campaign it was determined that the performance

metrics were most dependent upon two design variables : number of sampled states

and number of terminal state neighbor connections; and a third, situation-dependent

variable: obstacle coverage. The simulated test campaign involved selecting values

for the design variables and executing 100 trials for each combination. For each trial

the start state, goal state, and spherical obstacle placement were randomized. We

summarize the trade-offs between design variables and performance metrics in Table

5.1.

Figures 5.4 and 5.5 illustrate the trends of performance metrics as functions of the

design variables. As expected, with increasing number of samples Nsample, the solution

cost, J , decreases while computation time increases. Based on Figure 5.4, we can

see that Nsample = 500 is an acceptable sample density for this obstacle configuration

as there is marginal decrease in solution cost for higher sample numbers. As shown

in Table 5.1, 500 samples corresponds to an average solution time of 0.110 seconds

for a fixed number of terminal state neighbors and 0.154 seconds for a fixed ratio of

terminal state neighbors. It is argued that these computation times represent ’real-

time’ planning; we verify this claim with physical demonstrations in Section 5.4.2 and

compare to computation times in the existing literature in Section 5.4.3.

The effect of neighborhood sizes for the terminal states (i.e. the number of states in

the pre-sampled set Vs for which connections are made to the start and goal states)

5.2. NUMERICAL EXPERIMENTS 77

Figure 5.4: Average trajectory cost as a function of number of state samples and
number of terminal state neighbors for a fixed obstacle coverage.

Figure 5.5: Average online computation time as a function of number of state samples
and number of terminal state neighbors for a fixed obstacle coverage.

78 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Table 5.1: Trajectory cost and computation time breakdown for the Real-Time Kin-
odynamic Framework for a range of design variables

Design Variables Performance Metrics

Samples
Terminal

State
Neighbors

Avg. Trajectory
Cost [s]

Avg.
Computation

Time [s]

F
ix

ed
N

u
m

b
er

s 150 10 8.91 0.060
250 10 8.16 0.067
500 10 7.35 0.110
1000 10 7.14 0.280
2000 10 7.05 0.985
3000 10 6.95 2.289

F
ix

ed
R

at
io

s 150 15 8.58 0.065
250 25 7.85 0.081
500 50 6.79 0.154
1000 100 6.33 0.394
2000 200 5.91 1.268
3000 300 5.80 2.632

is also presented in Figures 5.4 and 5.5. For the fixed number of terminal state

neighbors, the start and goal states are connected to the precomputed roadmap at the

10 closest states in the set of pre-sampled states, Vs; where closeness is approximated

by the machine learning algorithm. For the fixed ratio of terminal state neighbors,

the start and goal states are connected to the closest 10 percent of the set Vs. Each

connection between the terminal states and the precomputed roadmap constitutes

an online OBVP solution; therefore the fixed number corresponds to O(1) online

OBVPs, where the fixed ratio corresponds to O(Nsample) online OBVPs.

This comparison of number of terminal state neighbors is made to determine the

effect of restricting the online OBVP solutions to constant order, which is argued

to be an enabling technique for real-time kinodynamic planning. From Figure 5.5

we see that, indeed, restriction of terminal state neighbors leads to a reduction in

online computation time of up to 15%. While 15% is not a staggering difference

in computation time, it is important to note that this is only representative of the

quadrotor system where much work has been done to minimize the computation time

5.2. NUMERICAL EXPERIMENTS 79

for OBVPs (see Section 2.3.4). For more general systems where OBVPs may be very

computationally expensive, this restriction to O(1) online OBVPs may reduce online

planning times by several orders of magnitude [2]. The decrease in computation time,

however, comes at the expense of increased solution cost as indicated by Figure 5.4.

Another insightful question is, for a given obstacle coverage, what is the appro-

priate number of samples?. As indicated by Figure 5.5, it is desirable to use the

minimum number of samples, Nsample, while still achieving acceptable solution cost,

as this requires the minimum computation. Since the data given in Table 5.1 only

represents a single obstacle coverage, a second test campaign was run to determine

the necessary sample count as a function of obstacle coverage. Figures 5.6, 5.7, and

5.8 summarize the data from this second test campaign. Note that we referred to

approximate obstacle coverage which is measured as the ratio of obstacle volume to

unobstructed workspace volume. This value may be greater than one because obsta-

cles were placed at random and overlapping volumes were double counted.

Figure 5.6: Rate of failure to find solution as a function of approximate obstacle
coverage for a range of sample sizes.

We immediately see several trends in the data that we expect. First, Figure 5.6

shows that as the obstacle coverage increases, we must use larger sample numbers to

prevent planner failure. Lower sample numbers, Nsample < 500, quickly rise to 100%

80 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.7: Average solution trajectory cost as a function of approximate obstacle
coverage for a range of sample sizes.

Figure 5.8: Average computation time as a function of approximate obstacle coverage
for a range of sample sizes.

5.3. MACHINE LEARNING OF REACHABLE SETS 81

failure with increasing obstacle coverage. Note that for sample counts of Nsample =

{1000, 2000, 3000}, the curves diverge from 0% failure at roughly the same obstacle

volume ratio. Therefore, Nsample = 1000 is a favorable sample count because higher

sample counts give no better guarantees for 0% failure at higher obstacle coverage.

Figure 5.7 gives average cost of a solution trajectory as a function of obstacle

coverage and sample count. We see two expected trends: solution cost increases with

increasing obstacle coverage and decreases with increasing samples count (as was

indicated in Figure 5.4). We also see that there is marginal improvement in solution

cost beyond a sample count of 2000.

Figure 5.8 gives the online computation time as a function of sample count and

obstacle coverage. Again we see the expected trends that computation time increases

with increasing obstacle count and with increasing sample count. In more detail, we

see that computation time roughly doubles for each tier of sample counts. This leads

to large increases in computation time for sample counts greater than 1000. Based on

this observation, plus the observation that there is marginal improvement in solution

cost beyond Nsample = 2000, plus the observation that Nsample = {1000, 2000, 3000} all

diverge from 0% failure at the same obstacle coverage, we assert that Nsample = 1000

is the best suited sample count for our physical experiments. Figure 5.8 shows that

computation times for Nsample = 1000 are less than 0.5 seconds, even in the worst

case.

The simulation test campaign verifies that real-time planning framework achieves

computation times of well below 1 second - typically on the order of 0.1 second with 0.5

second as a worst case - for a wide range of obstacle coverage. The test campaign also

gives us the heuristic of Nsample = 1000 as an acceptable sample count for the indoor

environments and obstacle configurations considered in this thesis. Now we test the

effectiveness of the framework on a physical system navigating dynamic obstacles.

82 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Table 5.2: Feature vector for neighbor determination of the double integrator quadro-
tor model.

x1 x2 |∆x| (∆x)2 (∆x)3
√

(∆x)2 + (∆y)2 + (∆z)2

y1 y2 |∆y| (∆y)2 (∆y)3
√

(∆ẋ)2 + (∆ẏ)2 + (∆ż)2

z1 z2 |∆z| (∆z)2 (∆z)3
√

(∆x)2 + (∆y)2 + (∆z)2 + (∆ẋ)2 + (∆ẏ)2 + (∆ż)2

ẋ1 ẋ2 |∆ẋ| (∆ẋ)2 (∆ẋ)3

ẏ1 ẏ2 |∆ẏ| (∆ẏ)2 (∆ẋ)3

ż1 ż2 |∆ż| (∆ż)2 (∆ẋ)3

5.3 Machine Learning of Reachable Sets

Due to the reliance on machine-learning of neighbor sets, it is important to determine

the classification accuracy of the Near algorithm. In this work we apply the Near al-

gorithm (see Section 3.1) to the control-penalized double integrator system presented

in Section 2.2.4. The state space of the double integrator system in Equation (2.7)

is 6-dimensional. The two boundary values for an OBVP are concatenated into a

12-dimensional attribute vector, given as p in Equation (3.1). The feature vector is

a 33-element vector, given in Table 5.2, composed of nonlinear mappings of elements

from the attribute vector. A third order kernel function is chosen; therefore p = 3 in

Eqn. (3.2). For training and testing of the SVM classifier, 50000 OBVPs are solved

from randomly selected pairs of sampled states during the offline computation phase.

A neighbor radius, or cost threshold, is chosen as the 10th quantile of all OBVP costs;

which for this test campaign evaluated to neighbor cost threshold of roughly 0.69

seconds. In other words, for a given state, roughly 10% of all other states are within

0.69 seconds as measured by a minimum-time optimal control problem. To train the

SVM classifier, Ntrain = 20000 of the 50000 OBVP solutions were used with the 0.69

second cost threshold. On average less than one training error occurred per the 20000

training examples.

The algorithm was tested against 30000 additional OBVP examples to ensure

that the SVM was not over-trained to the training set 5. The average testing error

5Typically the training set would be much larger than the testing set, but due to convergence is-
sues while training, the training set was reduced and the remainder of OBVP examples was dedicated
to the testing set.

5.3. MACHINE LEARNING OF REACHABLE SETS 83

Table 5.3: Training and testing accuracy of machine-learning-based neighborhood
classification algorithm

Training
Examples

Avg. #
Training
Errors

Testing
Examples

Avg. #
True

Positives

Avg. #
True

Negatives

Avg. #
False

Positives

Avg. #
False

Negatives

Avg. Testing
Error [%]

20000 0.6 30000 2693 26600.6 371.8 334.6 2.35

was under 3%, well within the acceptable tolerance for the purpose of this work

and a marked improvement over the author’s prior work on machine learning of cost-

limited reachable sets [2]. Table 5.3 gives the training and testing results. A ‘positive’

indicates that Near classified the OBVP example as within the cost threshold, and a

‘negative’ indicates a classification of the OBVP outside of the cost threshold. The

number of true positives is roughly 10% of the number of true negatives; as expected

with the 10th quantile cost threshold. The average number of false positives and false

negatives are approximately equal indicating that the classifier is not biased toward

one classification6.

The information given in Table 5.3 only tells us the rate of neighborhood classifi-

cation error, it does not tell us where in the state space these misclassifications occur.

To form a deeper understanding of where/why misclassification of neigbhors occur,

we illustrate the Near results with a simplified case. Figures 5.9 and 5.10 present a

set of trials for the neighborhood classifier when compressed to 2 spacial dimensions

and one velocity dimensions. Each trial, represented by it’s own image in Figures

5.9 or 5.10, attempts to classify the reachable neighborhood of an initial state. For

each trial, the initial state is the origin with a y-velocity ranging from 0 m/s to 14

m/s. The final states for each classification are spread across the xy-axes and all

have a final velocity of zero. The neighborhood cost threshold is 2.178 seconds which

corresponds to the 10th quantile of costs for this set of training data.

The reachability of each final state is assessed by solving an OBVP, as discussed in

6For example, we could use a trivial classifier that only predicted negatives and it would return
a testing error of 10% because only 10% of cases are positive. This would actually constitute an
acceptable rate of classification error if it were not for the fact that all errors would be false negatives
as the the classifier is trivial. Therefore a well trained classifier should not be biased toward one
type of error.

84 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.9: Part 1 : Simplified, 2-dimensional reachable set classification. For all
cases, the start state is at the origin with an initial velocity in the y-direction. The
final states all have a velocity of zero.

5.3. MACHINE LEARNING OF REACHABLE SETS 85

Figure 5.10: Part 2 : Simplified, 2-dimensional reachable set classification. For all
cases, the start state is at the origin with an initial velocity in the y-direction. The
final states all have a velocity of zero.

86 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Section 2.3.4, between the initial state and each final state. Reachable states are indi-

cated in blue circles and non-reachable are indicated in black triangles. The machine

learning algorithm, Near, is then applied to estimate reachability. Misclassification

of reachability, whether it be a false-positive or false-negative, is indicated by a red

star.

As expected, Figures 5.9 and 5.10 show that the true reachable set shifts further

along the y-axis as the initial velocity in the y-direction increases. We also see that

misclassification of reachability always occurs on the boundary between the reachable

and non-reachable sets. This is a desirable result for a well-trained algorithm. A

poorly-trained algorithm would make classification errors well within the reachable

or non-reachable sets. If a poorly trained neighborhood classifier were used in the

real-time planning framework, we would end up solving OBVPs for states that our

well outside of neighborhood - likely leading to collisions with obstacles, increasing

computation time - or fail to recognize nearby states, thus increasing solution cost of

our trajectory.

It is important to note that an analytical solution exists for the reachable set of

the control penalized double integrator [20]. The question is then, why would you use

the machine learning approximation for reachable sets when an analytical solution

exists? This question lies at the balance point between the two motivating themes

presented in Section 1.1. While we want to demonstrate real-time planning for a

quadrotor, we also want to validate a planning framework that is more applicable to

a more general set of dynamical systems. Since an general dynamical system cannot

be expected to have an analytical solution for reachable sets, we maintain the use of

the machine learning approach in effort to validate it in physical experiments.

5.4 Flight Demonstrations

5.4.1 Experimental Flight Setup

The real-time framework is demonstrated on a Pixhawk autopilot flown on a DJI F-

450 and F-330 frame. Positioning information is provided by a Vicon motion tracker

5.4. FLIGHT DEMONSTRATIONS 87

Table 5.4: Computational platform and programming language for the major com-
ponents of the real-time framework.

Process Reference Processor Language
localization NA workstation C++

precomputations Sec. 4.1.1 workstation MATLAB
neighborhood estimation Chp. 3 workstation MATLAB

OBVP solutions Sec. 2.3.4 workstation MATLAB
sampling-based planning Sec. 4.1.4 workstation C++

min-snap smoothing Sec. 5.1.3 workstation MATLAB
flat-to-nonlinear mapping Sec. 5.1.4 Pixhawk C/C++

flight control Sec. 5.1.5 Pixhawk C/C++

with data streamed to the quadrotor via a Wifly RN-XV module. Currently the

motion planning and path smoothing computations are run in MATLAB/C++ on a

single-threaded Intel Core i7-4790K CPU. The final trajectory is transmitted to the

Pixhawk for low-level flight control. This communication structure is represented in

Fig. 5.11. Table 5.4 gives detailed information on the computational platform and

programming language for each of the major components of the framework discussed

in Section 5.1. Future work will convert all portions of the online phase (see Alg. 5)

to C++ to be run on an embedded processor on the quadrotor.

The quadrotor is navigating an indoor environment with dimensions of approxi-

mately 3m× 4m× 3m. The framework was tested on a range of obstacle sets, two of

which are discussed in detail in Section 5.4.2.

5.4.2 Experimental Flight Results

The real-time kinodynamic planner was successfully demonstrated in a campaign

of flight tests. The test campaign was executed in the indoor environment of the

Autonomous Systems Laboratory at Stanford University. During the campaign the

quadrotor utilized the real-time planner to navigate a set of static and dynamic ob-

stacles. Netting was hung from the ceiling to create maze-like environments while a

human-subject would swing objects to create dynamic obstacles.

88 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.11: Communication/computation structure for flight tests.

Figure 5.12: Timelapse of quadrotor navigating static obstacles.

Figure 5.12 gives a timelapse of the most basic flight test performed: The quadro-

tor navigating a set of parallel walls with no dynamic obstacles present. The walls

are arranged to create a z-shaped corridor 1.5m in width. This test acted as the first

validating experiment for the real-time kinodynamic planner. The solution used 500

sampled states and required 0.313 seconds of online computation time. This test also

demonstrated the agility of the quadrotor platform as indicated by the banged-turns

as it rounded the corners. Building from this initial experiment, originally presented

in Allen and Pavone [23], the planning code was optimized to further reduce compu-

tation times and dynamic obstacles were introduced.

In the first physical experiments with dynamic obstacles, shown in a sequence of

images in Figure 5.13, the autonomous quadrotor is presented with a single obstacle

5.4. FLIGHT DEMONSTRATIONS 89

in between its start state and its goal region. This creates two doors, each roughly one

meter in width, from which the quadrotor can “choose” to navigate. When the real-

time planner completes, the quadrotor begins executing the trajectory through the

nearest of the two doors. Upon nearing the door, a human subject enters and presents

a dynamic obstacle; in this demonstration the obstacle is the point of a fencing blade

which is numerically expanded to a sphere with radius equal to the arm length of the

quadrotor. The human subject continues to approach the quadrotor, causing it to

be “pushed back” due to the reactive controller (see Section 5.1.5), until the existing

trajectory is completely obstructed and replanning is initiated. Figure 5.14 shows

the moment of replanning along with the solution provided by the real-time planning

framework. Due to the proximity to the initially chosen door, the quadrotor executes

three planning cycles that attempt to navigate the initial door and the dynamic

obstacle. Since the dynamic obstacle is acting advicarially, always obstructing the

chosen trajectory, this continues until the quadrotor is forced to a point where the

second door becomes the optimal solution and the quadrotor navigates to the goal

region without further obstruction from the human subject.

Figure 5.15 gives a second scenario where the autonomous quadrotor is tasked with

navigating a parallel-walled maze with a corridor of roughly 1.5m in width. Again,

a human subject introduces a set of dynamic obstacles to force online recomputation

of the motion plan. During this demonstration the dynamic obstacles are presented

immediately before the quadrotor rounds a corner, causing an abrupt replanning

cycle that navigates over- and between the dynamic obstacles and the wall. Because

the human subject does not continue to act advicarially in this case, only a single

recomputation of the motion plan is necessary.

Figures 5.14 and 5.15 show that the online computation times for planning are on

the order of 1/4 of a second.

90 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Figure 5.13: Sequence of images, in order from left to right and down, showing the
quadrotor navigating the two-door environment with a human adversary obstructing
one door using a fencing blade. The quadrotor initially attempts to navigate the door
on the right. A human subject can be seen entering and obstructing the trajectory,
causing the quadrotor to be “pushed back” due to the reactive controller. After
several replanning events that attempt to navigate the door on the right, all of which
are obstructed by the human subject, the left door eventually becomes the optimal
solution which is determined by the real-time framework and subsequently executed
by the quadrotor.

5.4. FLIGHT DEMONSTRATIONS 91

Compu-
tation

Time [s]
Screen Capture Exploration Tree

Solution
Trajectory

∆t =
0.2518

∆t =
0.2474

∆t =
0.2700

∆t =
0.1997

Figure 5.14: Time sequence of real-time planning in “two door” environment with
static and dynamic obstacles. Column 1 gives the online computation time for the
planning event. Column 2 gives screen capture of the moment of replanning. Col-
umn 3 gives the tree explored during replanning with the preliminary solution in
blue. Column 4 gives the preliminary planning solution and the smoothed trajectory.
Obstacles are represented by red rectangles or spheres

92 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

Compu-
tation

Time [s]
Screen Capture Exploration Tree

Solution
Trajectory

∆t =
0.3260

∆t =
0.2968

Figure 5.15: Time sequence of real-time planning in “maze” environment with static
and dynamic obstacles. Column 1 gives the online computation time for the planning
event. Column 2 gives screen capture of the moment of replanning. Column 3 gives
the tree explored during replanning with the preliminary solution in blue. Column 4
gives the preliminary planning solution and the smoothed trajectory. Obstacles are
represented by red rectangles or spheres

5.4. FLIGHT DEMONSTRATIONS 93

Table 5.5: Computation time breakdown for the Real-Time Kinodynamic Framework
for differing numbers of sampled states

of
Samples

Neighbor
Classifier [%]

Neighbor
OBVPs [%]

Kino-FMT*
[%]

Smoothing
[%]

Comms
[%]

500 6.42 37.73 9.43 30.43 25.29
1000 5.31 41.01 13.60 32.70 4.24
2000 4.56 41.65 19.81 26.40 3.38
3000 3.08 53.69 29.74 9.65 1.63

5.4.3 Discussion

A primary goal of this work, the goal that is implied by the second motivating theme in

Section 1.1, was to prove that the entire planning framework can be executed in a real-

time environment. As shown in Figures 5.14 and 5.15, we achieve online computation

times between 0.20 sec and 0.33 sec for 1000 sampled nodes. These computation

times are in good agreement with those presented in Section 5.2 which ranged from

0.11 sec to 0.5 sec for comparable sample counts. The difference in computation

times between simulated and physical experiments are due to differing obstacle sets

(simulated tests being more densely obstructed) and additional computational tasks

for physical experiments (e.g. communication of solution trajectories). To better

understand the breakdown of computation time during physical experiments, Table

5.5 gives the percentage of computation time for separate tasks in the planner for a

range of sample counts.

Referring to Table 5.5, the computation time is broken down into percentages for

the major components of the framework: neighborhood classification for the terminal

states (see Section 3.1); neighborhood OBVP solutions for the terminal states (see

Section 2.3.4); sampling-based motion planning (see Section 4.1.4); path smoothing

to generate a minimum-snap, dynamically feasible trajectory (see Sec. 5.1.3); and

communication (see Sec. 5.4.1). We see that the majority of the computation time is

consumed by the solution of optimal boundary value problems between the terminal

states, xinit and the samples in Xgoal, and their estimated neighborhoods. This result

exemplifies the motivation to minimize the number of online OBVPs to be solved.

94 CHAPTER 5. REAL-TIME QUADROTOR PLANNING AND CONTROL

For the double integrator model of the quadrotor, the average OBVP solution time

is 0.0235 seconds per OBVP solution. In comparison, the average Near classifica-

tion time is 1.95×10−5 seconds per classification; roughly 1200 times, or three orders

of magnitude, faster than OBVP solution. This rapid approximation of neighbor-

hood sets as –opposed to explicit determination via OBVP solutions– is the critically

enabling component for real-time implementation.

To compare the computation times we achieved to those presented in the existing

literature, Webb and van den Berg simulate an almost identical problem; however

they do not perform any path smoothing or communication to a physical quadrotor

[20]. With 1000 sampled states Webb and van den Berg’s solution takes 51.603 sec-

onds; i.e. ∼150x, or 2 orders of magnitude, slower than the technique presented here.

Richter et. al. do not state the computation time for motion planning demonstrated

in their work [11]. They do, however, give the computation time for a simplified, 2-

dimensional problem that incorporates geometric path planning and minimum-snap

path smoothing. Richter’s simplified, 2D planning problem takes 3 seconds of com-

putation time; i.e. ∼9.1x, or 1 order of magnitude, slower than the slowest physical

experiment computation time presented here. Therefore the real-time kinodynamic

framework demonstrates a significant reduction in computation time when compared

to existing techniques.

Frazzoli et. al. boasts the most impressive computation times with sub-second

execution for the similar, but not identical, helicopter system navigating static spher-

ical objects [9]. Computation times for dynamic obstacles rise to 10s of seconds for

a parallel wall obstacle set. Therefore we again see our method produce roughly 2

orders of magnitude improvement in computation time when compared to existing

techniques for dynamic obstacles. Direct comparison with Frazzoli’s work is more

difficult because it only seeks feasible trajectories, not necessarily optimal ones. The

work employs only a small set of motion primitives - avoiding the solution to online

OBVPs all together - to achieve path planning. Restricting trajectories to a small

set of predefined maneuvers limits the technique’s ability to handle novel, complex,

or even pathological obstacle environments.

We note here that our physical demonstrations were not infallible; roughly 50% of

5.4. FLIGHT DEMONSTRATIONS 95

experiments ended in some form of a crash. These failures were found to be due to two

factors: poor system identification of the quadrotor leading to inaccurate dynamic

parameters in the flight controller (see Section 5.1.5), and loss of positioning data due

to exiting Vicon coverage. Both of these failure modes were outside the scope of this

work which was solely focused on developing the real-time planning framework. These

failure modes, do however, motivate future work: advanced system identification

for improved controller performance and robust, onboard estimation/localization to

eliminate reliance on a motion capture system.

As another note on future work, all experiments were conducted in an indoor,

restricted environment. To make this work applicable to a non-laboratory environ-

ment, an environment scaling technique must be developed. As an example, if this

quadrotor was tasked with delivering a package across town, the scale of the town may

be too large to sample states to a sufficient density throughout. The quadrotor must

be able plan on a local scale, for example to navigate power lines or perhaps moving

cars, while also following a global scale plan across the town. A stitching scheme

can be designed that allows for solving problems at such various scales. This scheme

may employ a dense set of local samples that are “dragged” along with the robot as

it moves through a global environment that is too large for adequate resolution of

sampling.

Chapter 6

Conclusions

6.1 Summary

This thesis has produced 3 major contributions, each of which being the respective

focal point of Chapters 3 - 5.

In Chapter 3 we show how machine learning can be used to approximate the

reachable sets for dynamical systems in a query-based fashion. For the range of

systems for which this technique was tested, we showed that a testing error of less

than 10% is achievable, with some system achieving much lower errors. This was

also accompanied by a significant reduction in computation time of up to 3 orders of

magnitude when compared to the numerical solutions for reachable sets. The machine

learning of reachable sets was then used as an pivotal technique for real-time motion

planning for kinodynamic systems.

In Chapter 4 we developed a novel framework for real-time motion planning for

differentially-constrained systems. The framework relied on the Fast Marching Tree

algorithm, an asymptotically optimal sampling-based planner, to solve planning prob-

lems while utilizing a precomputed look-up table of boundary value solutions. The

look-up table was generated by implementing an offline-online computation paradigm

that reduced the number of online OBVP solutions from O(N2) to O(N). Machine

learning of reachable sets, as discussed in Chapter 3, was then used to further reduce

the number of online OBVP solutions to O(1). The framework was shown to reduce

96

6.2. FUTURE WORK 97

the only computation time for kinodynamic planning problems by up to six orders of

magnitude while remaining general enough to be applied to a wide range of problems.

Chapter 5 tailored the general framework from Chapter 4 to the quadrotor system.

Implementing the tailored framework on a physical system produced, arguably, the

first demonstration of real-time kinodynamic planning on a quadrotor robot. The

property of differential flatness was leveraged in the planning framework to minimize

computation time and aid in flight control. By first approximating the quadrotor

as a double-integrator system, solving the planning problem to generate a trajectory

through the flat output space, and then using differentially flat mapping back to the

full state and control space, real-time computation of a kinodynamic motion plan

was realized. Computation times of 0.25 seconds allowed a physical quadrotor robot

to navigate an obstructed indoor environment, even in the presence of dynamic and

adversarial obstacles.

6.2 Future Work

The contributions of this work open the door to many future directions, of which a

few are discussed. We separate the future work into categories based on extensions

in depth, breadth, or theory of the current work.

6.2.1 Extensions in Depth

Chapter 5 presented experimental results on a quadrotor system. There are several

aspects of this experimental work that could be extended to generate a more in depth,

self-contained, fully embedded implementation of the framework.

Currently real-time computations are distributed over a range of processors on-

board and offboard the quadrotor. In future works, all processing will be moved

onboard the quadrotor. Reduction in processing power of the embedded processors

will be compensated by code optimization. Implementation on an embedded GPU

will further accelerate computation times.

Sensing, localization, and mapping are currently achieved with a Vicon motion

98 CHAPTER 6. CONCLUSIONS

capture system. While this has been an important tool for isolation of the planning

problem during labratory-based development, it is an untenable solution for real-

world applications. Therefore the planning framework developed in this thesis must

be fused with a sensing-capable platform, performing localization and obstacle detec-

tion onboard. Since the sensing and planning process are parallel, each can have a

dedicated processor to avoid computational slow-down. This, of course, is at the cost

of added weight and power consumption due to the additional hardware needed.

The planning framework implemented in this work assumed perfect knowledge of

state and obstacles. For real-world applications, this assumption must be relaxed

so that sensing and dynamic system uncertainties can be addressed. The additional

computational complexity introduced by uncertainties can be addressed by using

a parallel sampling-based planning algorithm, such as that developed by Janson,

Schmerling, and Pavone [48].

6.2.2 Extensions in Breadth

While Chapter 5 demonstrated real-time planning for a quadrotor system, the frame-

work developed in Chapeter 4 was designed to be applicable to general robotic sys-

tems. Therefore it is natural to extend the breadth of this work by applying and

demonstrating it on other robots.

Autonomous Cars : While there exists a rich literature in the field of planning

and control for autonomous cars [49], the framework proposed in this thesis has the

potential to contribute further. Due to its focus on kinodynamic planning, as opposed

to geometric planning with smoothing, adapting the framework presented in Chapter

4 to the structured environment of road driving may allow agile maneuvers that

push the dynamic limits of a car’s abilities. This agility could prove to be essential

for incorporating emergency evasive maneuvers into autonomous car planning and

control.

Robotic Spacecraft : Spacecraft represent an important application for robotic mo-

tion planning, especially when considering operations far from Earth that suffer from

6.2. FUTURE WORK 99

long communication delays (e.g. a robotic rendezvous at Mars during a Mars sam-

ple return mission). Spacecraft introduce unique control constraints such as thruster

plume impingement. Furthermore, due to the immense cost of any spacecraft, greater

safety margins and guarantees on non-failure of the planning algorithm must be ad-

dressed.

Humanoid Robotics and Robotic Arms : Humanoid robots and robotic arms often

represent a different, challenging paradigm for motion planning. Instead of pure ob-

stacle avoidance, often humanoid robotics actually want to physically contact their

environments, albeit in a controlled, dexterous fashion. To address this, the frame-

work would need to be tailored around a new notion of collision checking that allow

for environment interaction.

Autonomous Marine Vehicles : Due to their slow maneuvers and large scale, large

marine vehicles – such as cargo ships – may seem to have little in common in fast,

agile robots like quadrotors. In fact, the relatively slow dynamics of a marine craft

do not diminish the complexity of the planning problems they must solve; on the

contrary, it may make them more difficult. Due to their large momentum vectors and

relatively low control authority, marine vehicles would require tailoring the framework

to focus heavily on planning over large time horizons with strong safety margins.

Sling-Load Robots : Robotic cranes could have a dramatic impact on the shipping

industry if, for example, even a modest speed up in unload time for a large cargo

ship could be realized. By casting a robotic crane as a kinodynamic motion planning

problem, highly-dynamic maneuvers could be executed for sling-loaded payloads that

may be multiple times faster than a human operator. The unique challenge of crane

robots comes from the fact that their dynamics typically do not appear as ordinary

differential equations, as given in Equation (2.3), but instead must be represented in

the more general differential algebraic equation (2.2). To implement on a crane robot,

the state connection module of the planning framework would need to be tailored to

address this more complex set of dynamics.

Multi-Class Robotic Infrastructure: the flexibility of this planning framework could

enable robotic infrastructures that are comprised of many different classes of robots.

Each robot would have its own distinct planning problem to be solved, involving

100 CHAPTER 6. CONCLUSIONS

their own set of dynamics and control constraints, but they could all be addressed

with variations of the framework presented in Chapter 4. As an example, one could

imagine a robotic shipping and distribution infrastructure that involved robotic cargo

ships navigating a busy sea port; which are then unloaded by robotic cranes that

must navigate heavy sling-loaded containers to a cluttered dock; which are then

transported to distribution centers via autonomous trucks; where products are finally

delivered using aerial drones. Each of these robots would require the solution to

unique, real-time kinodynamic planning problems which could be achieved by similar

implementations of the same framework.

6.2.3 Extensions in Theory

The results on machine learning presented in Chapter 3 are, in some senses, empirical:

we proposed a new application of machine learning algorithms for reachability analysis

and then showed their effectiveness. In future work, more theoretical detail will be

developed for this component of the planning framework. In particular, bounds on

machine learning accuracy as a function of training sample size will be developed.

Thus far all of the applications considered have involved single agent problems.

Future work could take the framework proposed in Chapters 4 and 5 and apply them

to a multi-agent system. Since the planning framework adjusts to dynamic obstacles

(i.e. other robots) in real-time, it would be interesting to see if any emergent behavior

would appear from many agents selfishly executing their own motion planner, without

any form coordination.

This work relies on a simplistic model of obstacles where only the current state

of the obstacle is accounted for. A more complex approach would be to apply a

game model to the framework so that obstacles could be treated as other players

in a differential game. This would allow for much “smarter” avoidance maneuvers,

particularly in multi-agent systems.

Bibliography

[1] S. Lavalle. Planning Algorithms. Cambridge University Press, 2006.

[2] Ross Allen, Ashley Clark, Joseph Starek, and Marco Pavone. A Machine Learn-

ing Approach for Real-Time Reachability Analysis. In IEEE/RSJ Int. Conf. on

Intelligent Robots & Systems, pages 2202–2208, Chicago, IL, September 2014.

[3] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast

Marching Tree: A Fast Marching Sampling-Based Method for Optimal Mo-

tion Planning in Many Dimensions. International Journal of Robotics Research,

34(7):883–921, 2015.

[4] Gabriel M Hoffmann, Haomiao Huang, Steven L Waslander, and Claire J Tomlin.

Quadrotor helicopter flight dynamics and control: Theory and experiment. In

Proc. of the AIAA Guidance, Navigation, and Control Conference, volume 2,

2007.

[5] Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs LQ control tech-

niques applied to an indoor micro quadrotor. In Intelligent Robots and Systems,

2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,

volume 3, pages 2451–2456. IEEE, 2004.

[6] Markus Hehn and Raffaello D’Andrea. A flying inverted pendulum. In Robotics

and Automation (ICRA), 2011 IEEE International Conference on, pages 763–

770. IEEE, 2011.

[7] S. M. LaValle. Motion planning: Wild frontiers. IEEE Robotics Automation

Magazine, 18(2):108–118, 2011.

101

102 BIBLIOGRAPHY

[8] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, and

Pieter Abbeel. Finding Locally Optimal, Collision-Free Trajectories with Se-

quential Convex Optimization. In Robotics: Science and Systems, volume 9,

pages 1–10. Citeseer, 2013.

[9] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for ag-

ile autonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics,

25(1):116–129, 2002.

[10] Peter Leven and Seth Hutchinson. A framework for real-time path planning

in changing environments. The International Journal of Robotics Research,

21(12):999–1030, 2002.

[11] C. Richter, A. Bry, and N. Roy. Polynomial Trajectory Planning for Aggressive

Quadrotor Flight in Dense Indoor Environments. In International Symposium

on Robotics Research, 2013.

[12] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning

for Quadrotor Flight. In International Conference on Robotics and Automation,

2013.

[13] D. Mellinger and V. Kumar. Minimum Snap Trajectory Generation and Control

for Quadrotors. In Proc. IEEE Conf. on Robotics and Automation, pages 2520–

2525, 2011.

[14] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for Optimal

Motion Planning. International Journal of Robotics Research, 30(7):846–894,

June 2011.

[15] Koushil Sreenath, Taeyoung Lee, and Vipin Kumar. Geometric control and

differential flatness of a quadrotor UAV with a cable-suspended load. In Decision

and Control (CDC), 2013 IEEE 52nd Annual Conference on, pages 2269–2274.

IEEE, 2013.

BIBLIOGRAPHY 103

[16] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation

and control for precise aggressive maneuvers with quadrotors. The International

Journal of Robotics Research, page 0278364911434236, 2012.

[17] Ian D Cowling, Oleg A Yakimenko, James F Whidborne, and Alastair K Cooke.

Direct method based control system for an autonomous quadrotor. Journal of

Intelligent & Robotic Systems, 60(2):285–316, 2010.

[18] Ian D Cowling, Oleg A Yakimenko, James F Whidborne, and Alastair K Cooke.

A prototype of an autonomous controller for a quadrotor UAV. In Control Con-

ference (ECC), 2007 European, pages 4001–4008. IEEE, 2007.

[19] Y Bouktir, M Haddad, and T Chettibi. Trajectory planning for a quadrotor

helicopter. In Control and Automation, 2008 16th Mediterranean Conference

on, pages 1258–1263. IEEE, 2008.

[20] D. J. Webb and J. van den Berg. Kinodynamic RRT*: Optimal Motion Plan-

ning for Systems with Linear Differential Constraints. In Proc. IEEE Conf. on

Robotics and Automation, pages 5054–5061, 2013.

[21] Benoit Landry. Planning and Control for Quadrotor Flight Through Cluttered

Environments. Master’s thesis, Massachusetts Institute of Technology, 2015.

[22] Slawomir Grzonka, Giorgio Grisetti, and Wolfram Burgard. A Fully Autonomous

Indoor Quadrotor. Robotics, IEEE Transactions on, 28(1):90–100, 2012.

[23] Ross Allen and Marco Pavone. Toward a Real-Time Framework for Solving the

Kinodynamic Motion Planning Problem. In Proc. IEEE Conf. on Robotics and

Automation, pages 928–934, Seattle, WA, May 2015.

[24] Ross Allen and Marco Pavone. A Real-Time Framework for Kinodynamic Plan-

ning with Application to Quadrotor Obstacle Avoidance. In AIAA Conf. on

Guidance, Navigation and Control, pages 1–18, San Diego, CA, January 2016.

104 BIBLIOGRAPHY

[25] I Michael Ross and Fariba Fahroo. A perspective on methods for trajectory op-

timization. In Proceedings of the AIAA/AAS Astrodynamics Conference, Mon-

terey, CA, 2002.

[26] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Nonlinear Robust

Tracking Control of a Quadrotor UAV on SE (3). Asian Journal of Control,

15(2):391–408, 2013.

[27] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[28] M. Hwangbo, J. Kuffner, and T. Kanade. Efficient Two-phase 3D Motion Plan-

ning for Small Fixed-Wing UAVs. In Proc. IEEE Conf. on Robotics and Au-

tomation, pages 1035–1041. IEEE, 2007.

[29] F. Fahroo and I. M. Ross. Direct Trajectory Optimization by a Chebyshev

Pseudospectral Method. AIAA Journal of Guidance, Control, and Dynamics,

25(1):160–166, 2002.

[30] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,

2012.

[31] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano Perez. LQR-RRT*:

Optimal sampling-based motion planning with automatically derived extension

heuristics. In Proc. IEEE Conf. on Robotics and Automation, pages 2537–2542,

2012.

[32] J. T. Betts. Survey of Numerical Methods for Trajectory Optimization. AIAA

Journal of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[33] B. A. Conway. Spacecraft Trajectory Optimization, volume 32. Cambridge Uni-

versity Press, 2010.

[34] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2 edition, 2006.

[35] Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal Sampling-Based

Motion Planning under Differential Constraints: the Drift Case with Linear

BIBLIOGRAPHY 105

Affine Dynamics (Extended Version). Available at http://arxiv.org/abs/

1405.7421/, May 2015.

[36] D. M. Stipanovic, I. Hwang, and C. J. Tomlin. Computation of an Over-

Approximation of the Backward Reachable Set Using Subsystem Level Set Func-

tions. Dynamics of Continuous Discrete and Impulsive Systems, 11:397–412,

2004.

[37] Christopher M Bishop. Pattern recognition and machine learning. Springer,

2006.

[38] E. Cockayne. Plane pursuit with curvature constraints. SIAM Journal on Control

and Optimization, 15(6):1511–1516, 1967.

[39] E. Schmerling, L. Janson, and M. Pavone. Optimal Sampling-Based Motion

Planning under Differential Constraints: the Driftless Case. In Proc. IEEE Conf.

on Robotics and Automation, pages 2368–2375, Seattle, WA, May 2015.

[40] E. Schmerling, L. Janson, and M. Pavone. Optimal Sampling-Based Motion

Planning under Differential Constraints: the Drift Case with Linear Affine Dy-

namics. In Proc. IEEE Conf. on Decision and Control, 2015.

[41] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic

motion planning with moving obstacles. The International Journal of Robotics

Research, 21(3):233–255, 2002.

[42] S. Karaman and E. Frazzoli. Sampling-based Optimal Motion Planning for Non-

holonomic Dynamical Systems. In Proc. IEEE Conf. on Robotics and Automa-

tion, pages 5041–5047, 2013.

[43] J. Mattingley and S. Boyd. CVXGEN: a code generator for embedded convex

optimization. Optimization and Engineering, 13(1):1–27, 2012.

[44] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning. Interna-

tional Journal of Robotics Research, 20(5):378–400, May 2001.

http://arxiv.org/abs/1405.7421/
http://arxiv.org/abs/1405.7421/

106 BIBLIOGRAPHY

[45] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Asymptotically optimal

sampling-based kinodynamic planning. arXiv preprint arXiv:1407.2896, 2014.

[46] I Michael Ross and Fariba Fahroo. Issues in the real-time computation of optimal

control. Mathematical and computer modelling, 43(9):1172–1188, 2006.

[47] Shuzhi S. Ge and Yun J Cui. Dynamic motion planning for mobile robots using

potential field method. Autonomous Robots, 13(3):207–222, 2002.

[48] L. Janson, E. Schmerling, and M. Pavone. Monte Carlo Motion Planning for

Robot Trajectory Optimization Under Uncertainty. In International Symposium

on Robotics Research, Sestri Levante, Italy, September 2015.

[49] Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Fraz-

zoli. A Survey of Motion Planning and Control Techniques for Self-driving Urban

Vehicles. arXiv preprint arXiv:1604.07446, 2016.

	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Related Work
	1.4 Contributions

	2 Mathematical Foundations
	2.1 Fundamentals of Motion Planning
	2.1.1 Piano Movers Problem
	2.1.2 Configuration Space
	2.1.3 Sampling-Based Planning

	2.2 Dynamical Systems
	2.2.1 Differential Equations
	2.2.2 Differential Flatness
	2.2.3 Quadrotor
	2.2.4 Double Integrator
	2.2.5 Dubins Vehicle
	2.2.6 Fixed-Wing UAV
	2.2.7 Gravity-Free Spacecraft

	2.3 Optimal Boundary Value Problems
	2.3.1 Analytical Results
	2.3.2 Numerical Techniques
	2.3.3 Dubins Vehicle
	2.3.4 Control-Penalized Double Integrator

	2.4 Reachable Sets for Dynamical Systems

	3 Machine Learning for Real-Time Reachability Analysis
	3.1 SVM Classification of Reachable Sets
	3.2 Regression Estimation of Optimal Cost
	3.3 Numerical Test Cases
	3.3.1 Dubins Vehicle
	3.3.2 Gravity-Free Spacecraft
	3.3.3 Control-Penalized Double Integrator
	3.3.4 Execution Time and Accuracy

	4 A Real-Time Framework for Kinodynamic Planning
	4.1 Real-Time Framework for Kinodynamic Planning
	4.1.1 Offline Computations
	4.1.2 Online Computations
	4.1.3 Framework Subroutines
	4.1.4 Kinodynamic Fast Marching Tree

	4.2 Numerical Experiments
	4.2.1 Comparison with Existing Techniques
	4.2.2 Notes on Intermediate Results

	5 Real-Time Quadrotor Planning and Control
	5.1 Real-Time Framework for Quadrotor Planning
	5.1.1 Analytical Solution to OBVPs
	5.1.2 Machine Learning of Neighborhoods
	5.1.3 Snap Minimization for Trajectory Smoothing
	5.1.4 Differentially Flat Mapping
	5.1.5 Flight Controller

	5.2 Numerical Experiments
	5.3 Machine Learning of Reachable Sets
	5.4 Flight Demonstrations
	5.4.1 Experimental Flight Setup
	5.4.2 Experimental Flight Results
	5.4.3 Discussion

	6 Conclusions
	6.1 Summary
	6.2 Future Work
	6.2.1 Extensions in Depth
	6.2.2 Extensions in Breadth
	6.2.3 Extensions in Theory

	Bibliography

