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Abstract— The future exploration of small Solar System
bodies will, in part, depend on the availability of mobility
platforms capable of performing both large surface coverage
and short traverses to specific locations. Weak gravitational
fields, however, make the adoption of traditional mobility
systems difficult. In this paper we present a planetary mo-
bility platform (called “spacecraft/rover hybrid”) that relies
on internal actuation. A hybrid is a small (∼ 5 kg), multi-
faceted robot enclosing three mutually orthogonal flywheels
and surrounded by external spikes or contact surfaces. By
accelerating/decelerating the flywheels and by exploiting the
low-gravity environment, such a platform can perform both
long excursions (by hopping) and short, precise traverses
(through controlled “tumbles”). This concept has the potential
to lead to small, quasi-expendable, yet maneuverable rovers
that are robust as they have no external moving parts. In the
first part of the paper we characterize the dynamics of such
platforms (including fundamental limitations of performance)
and we discuss control and planning algorithms. In the second
part, we discuss the development of a prototype and present
experimental results both in simulations and on physical test
stands emulating low-gravity environments. Collectively, our
results lay the foundations for the design of internally-actuated
rovers with controlled mobility (as opposed to random hopping
motion).

I. INTRODUCTION

The recent Decadal survey report for planetary science
has prioritized three main cross-cutting themes for plane-
tary exploration: (1) the characterization of the early Solar
System history, (2) the search for planetary habitats, and
(3) an improved understanding about the nature of planetary
processes [1]. A growing number of ground- and space-based
observations indicate that the exploration of a selected subset
of small Solar System bodies would collectively address
all such themes [2]. The exploration of small bodies, such
as Near Earth Objects and Martian moons, is also a key
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component of the flexible path for Human exploration. In
general, science of the early Solar System and the search
for habitats revolve around characterizing planetary material
chemistry (elemental, isotopic, mineralogical, noble gas,
organics, etc.). While some measurements can be obtained
with remote platforms (such as space telescopes or orbiters),
several other measurements require direct contact with (or
close proximity to) the surface for an extended period of
time at multiple locations [2]. This is also the case for
precursor science enabling Human exploration, which re-
quires the characterization of regolith mechanical properties,
dust dynamics and electrostatic charging [3]. Hence, in-situ
exploration of small bodies at multiple designated locations
is an important need in the scientific community and is best
achieved with surface mobility.

On the other hand, weak gravitational fields (micro-g to
milli-g), which are characteristic of small bodies, make the
adoption of traditional mobility systems difficult. Specifi-
cally, mobility mechanisms for micro-gravity environments
can be broadly divided into four classes, namely, mobility
via thrusters, wheeled mobility, legged mobility, and hopping
mobility. Mobility via thrusters (see, e.g., [4]) is char-
acterized by mechanical and operational complexity (e.g.,
hovering at very low gravities is challenging), might lead to
surface contamination (due to firing thrusters), and is likely
to involve risk due to surface ejecta. On the other hand,
in low-gravity environments wheeled vehicles are bound to
extremely low speeds (less than 1.5mm/s [5]) due to low
traction and surface bumps which can cause loss of sur-
face contact and uncontrolled tumbling. Alternatively, legged
systems are mechanically complex and highly dependent on
soil properties [6], [7], which are largely unknown. Finally,
there are two basic principles of hopping: (#1) the hopper
uses a sticking mechanism (thus jumping away from the
surface), and (#2) the hopper moves an internal mass. NASA,
RKA, ESA, and JAXA have all recognized the advantages
of hopping on small bodies. However, both of NASA’s
hopper prototypes [5], [8] (that rely on a combination of
wheels and sticking mechanisms), ESA’s hopper prototype
(that hops by spinning two eccentric masses [9]), RKA’s
lander for the failed exploration of Phobos (that hops by
sticking the surface [10], but was not deployed due to failure
of Phobos 2), and JAXA’s MINERVA lander (that hops
by rotating a single flywheel mounted on a turntable and
did not succeed during its deployment [11]) do not allow
for precise traverses to designated targets in low gravity
environments. Key advantages of hopping platforms include



relatively simple actuation, ability to cover a large surface,
and relative insensitivity to soil characteristics. Furthermore,
internal actuation (when hopping according to principle (#2))
reduces the problem of dust contamination in the actuators
and simplifies thermal control. For these reasons, it has been
argued that, if one is able to include the option of fine mo-
bility, hopping robots with internal actuation could represent
a good trade-off between performance and complexity [12]
(despite issues related to instrument pointing).

Accordingly, in this paper, we study microgravity rovers
that rely on internal actuation (i.e., which propel themselves
by moving/spinning internal masses), and are capable of
performing both large surface coverage and short traverses
to specific locations. Specifically, the contribution of this
paper is fourfold. First, we describe a mobility platform,
called “spacecraft/rover hybrid”, which generates motion via
actuation of three, internal, mutually orthogonal flywheels
(Section II). By accelerating/decelerating the flywheels and
by exploiting the low-gravity environment, a hybrid can
perform both long excursions (by hopping) and short tra-
verses to specific locations (through a sequence of controlled
“tumbles”). Second, we characterize the dynamics of such
platforms, including fundamental limitations of performance,
e.g., in terms of forward speed (Section III), and we discuss
planning and control algorithms (Section IV). Third, we
discuss the development of a prototype and design consider-
ations (Section V). Finally, we present experimental results
both in numerical simulations and on physical test stands
emulating low-gravity environments (VI). Collectively, our
results lay the foundations for the design of internally-
actuated rovers with controlled mobility (as opposed to
random hopping motion) in low-gravity environments.

II. MOBILITY PLATFORM

A spacecraft/rover hybrid is a small (≈ 0.4 m geometrical
diameter, ≈ 5kg even though the design is scalable) multi-
faceted geometric solid that encloses three mutually orthog-
onal flywheels and is surrounded by external spikes or spe-
cialized contact surfaces (see Figure 1, where we consider a
cube geometry; design considerations are discussed in detail
in Section V). Specifically, there is no external propulsion.
The combination of the flywheels with the enclosure- and
spike-geometry enables controlled tumbles, hops, and high-
altitude ballistic flight.

The basic principle behind a flywheel is the conservation
of angular momentum, which ensures that angular momen-
tum can be swapped between the platform and the flywheels.
Specifically, a flywheel consists of a spinning mass with a
substantial amount of inertia. Due to the presence of the
flywheels, the total angular momentum of the platform is
given by (vectors and matrices are represented in boldface):

H = Iplatform ωplatform +

3∑
i=1

Iflywheel,i ωflywheel,i,

where I denotes the inertia matrix and ω denotes the angular
velocity vector. Since, in absence of external torques, the
total angular momentum stays constant, by controlling the

internal torque between the flywheels and the platform one
can control both magnitude and direction of the angular
rotation of the platform. In turn, this angular rotation can
give rise to (controllable) surface reaction forces at contact
points, which lead to either tumbling (i.e., pivoting around a
tip) or hopping (when the reaction forces are large enough).
The next section presents a 2D analytical model (amenable
to analytical treatment) where collisions with ground are
assumed inelastic and impulsive, and a 3D model (studied
numerically) where contact interactions are modeled accord-
ing to a spring-damper combination.

Fig. 1. A spacecraft/rover hybrid is a planetary mobility platform sealed in
one enclosure and actuated through three mutually orthogonal flywheels (for
clarity, internal payload is not shown). By spinning the flywheels, one gives
rise to surface reaction forces that make the rover tumble or hop. External
spikes/feet (not shown here for clarity) are added to protect instruments
and solar panels, and to improve traction. Trade-offs for spike design are
discussed in Section V.

Definition
ϑ hybrid’s angle
ϕ flywheel’s angle
mrw mass of platform
mfw mass of flywheel
l spikes’ length
rrw radius of platform
rfw radius of flywheel
τ flywheel’s torque
2α angle in between

spikes
g gravity acceleration

Fig. 2. Analytical model; collisions with ground are inelastic and impulsive.

III. DYNAMICS OF A HYBRID

In this section we present both a 2D and a 3D model for
a hybrid.

A. 2D Analytical Model

In the analytical model, the hybrid is modeled in 2D as
a disk with equispaced rigid spikes attached to it; a motor,
attached at its center of mass, drives a single disk-shaped
flywheel (see Figure 2). We use a disk shape since this leads
to slightly simpler formulas; the results we obtain, however,
represent a reasonable approximation for other symmetrical
geometries (e.g., squares) with the same geometrical diame-
ter. The key assumptions in this model are: (1) collisions with
ground are inelastic and impulsive (only angular momentum
is conserved around the point of collision, and the spike
sticks to the ground); (2) the stance foot acts as a pin joint



and does not slip, and (3) the transfer of support at the time
of contact is instantaneous (no double support phase). This
model is inspired by work in the field of passive dynamic
walking [13], [14] and, specifically, is based on the model in
[15]. With this model we aim to characterize the 2D tumbling
motion, in particular, required torques, momentum unloading
strategies, and bounds on achievable speeds in microgravity.
Even though the assumptions of this model are somewhat
unrealistic (especially on small bodies), the results we obtain
provide valuable first-order estimates for the aforementioned
quantities (as also confirmed by experiments reported in
Section VI).

1) Tumbling motion: The 2D flywheel-driven hybrid has
two states, namely the angle ϑ between the stance spike
and the vertical and the angle ϕ of a reference point on the
flywheel with respect to the vertical (see Figure 2); note that
we use the convention that angles increase in the clockwise
direction. The parameters of the system are defined in Figure
2.

The goal of the control strategy for the flywheel is to cause
the platform to tumble to the right, stepping from spike to
spike. A complete step is composed of a stride phase and
a collision phase [15]. The stride phase occurs when the
system is supported by a single spike. The collision phase
occurs when the next consecutive spike collides with the
ground. We first consider the stride phase. The equations of
motion are those of an inverted pendulum and can be written
as

ϑ̈(t) =
(mrw +mfw)g l sin(ϑ(t))− Ifwϕ̈(t)

(mrw +mfw)l2 + Irw
. (1)

In our model we assume that the motor is a conventional
DC motor and that, as is typical, there is a fast inner
feedback loop to control the current. Hence, the armature
current is our control input. Since the armature current is
linked to the flywheel’s acceleration (assuming negligible
friction) through a scale factor, henceforth we will consider
as equivalent input the flywheel’s acceleration.

Second, we consider the equations of motion during the
collision phase. The angular momentum (about the contact
point) of the system evolves according to the equation:
L(t) = L(t0) +

∫ t

t0
Text(t) dt, where Text(t) represents the

external torques acting on the system. During impact the
only external torque is due to gravity (all other torques are
internal and cancel each other), and is given by Text(t) =
(mrw + mfw)g l sin(ϑ(t))(−ez) (where ez is the unit nor-
mal vector outward from the plane). Since ‖Text(t)‖ ≤
(mrw+mfw)g l sin(α) and since the collision with the ground
is impulsive (i.e., the collision time dt approaches zero),
during a collision the angular momentum is (approximately)
conserved. The conservation of angular momentum during
collision allows for the determination of the initial state for
the next stride phase. Specifically, the angular momentum
about the collision point of next spike immediately before
collision is L(t−) = (mrw + mfw)ϑ̇(t−)l2 cos(2α)(−ez) +
Irwϑ̇(t−)(−ez)+Ifwϕ̇(t−)(−ez), while the angular momen-

tum about the collision point of next spike immediately
after collision is L(t+) = (mrw + mfw)ϑ̇(t+)l2(−ez) +
Irwϑ̇(t+)(−ez) + Ifwϕ̇(t+)(−ez). Assuming that ϕ̈(t) is a
bounded function (as it is true for any physical system), one
has ϕ̇(t−) = ϕ̇(t+), and therefore equating the magnitudes
of L(t−) and L(t+) one obtains:

ϑ̇(t+) =
(mrw +mfw)l cos(2α) + Irw

(mrw +mfw)l + Irw
ϑ̇(t−). (2)

Hence, the angular velocity for the next stride phase is
reduced (by a factor cos(2α) if Irw is negligible), as it is
expected since collisions are assumed inelastic. As in [13],
[15], we define η as the loss coefficient for the angular speed,
i.e.,

η :=
ϑ̇(t+)

ϑ̇(t−)
=

(mrw +mfw)l cos(2α) + Irw

(mrw +mfw)l + Irw
.

We consider next three cases of increasing complexity,
namely: unactuated flywheel, constant actuation, and time-
varying actuation. When the flywheel is unactuated (i.e., ϕ̈(t)
is identically zero during the stride), the minimum initial
angular speed to vault the hybrid over the stance spike and
take a step is:

ωmin :=

√
2(mrw +mfw)g l(1− cos(α))

(mrw +mfw)l2 + Irw
.

According to the loss equation (2), an unactuated hybrid
will asymptotically come to rest. The aim of the flywheel
controller is then to regain, during the stride phase, the speed
lost during the impact.

The simplest possible actuation for the flywheel is to have
a constant acceleration during the stride phase (i.e., ϕ̈(t) =
ϕ̈ < 0, negative because it is opposite to tumbling direction).
Assume that the angular speed at the beginning of a stride
phase is ϑ̇(0) := ωini ≥ ωmin; by using energy arguments,
one can easily show that the required acceleration to maintain
the same angular speed at the beginning of each subsequent
stride phase is:

ϕ̈ = −ϑ̇2(0)
1
2

[
(mrw +mfw)l2 + Irw

]
(1/η2 − 1)

2αIfw
, (3)

which depends on gravity since we assumed ϑ̇(0) ≥ ωmin.
Figure 3(a) shows the magnitude of the minimum torques for
a Phobos-like environment (i.e. g in the 0.001 m/s2 range).
Assuming that the flywheel is powered by a “conventional”
DC motor, one can conclude that for a gravity level similar
to the one on Phobos the power consumption is about 2 −
5 Watts. The corresponding linear velocity for tumbling is
about 0.05 m/s (Phobos’s escape velocity is about 11 m/s).
Clearly, this control strategy is not physically realizable since
the flywheel will eventually reach a saturation speed. It is of
interest to characterize the number of strides the flywheel can
operate before it saturates. To first order terms, the duration
of a stride is given by τstride = 2α/ϑ̇(0). Hence, if ϕ̇max is
the maximum angular speed of the flywheel, the system can
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(a) Torques for tumbling motion. Left figure: torque vs. spikes’ length
(gravity g = 0.001 m/s2). Right figure: torque vs. gravity (spikes’
length l = 0.4 m).
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(b) Torques for hopping motion. Left figure: torque vs. spikes’ length
(gravity g = 0.001 m/s2). Right figure: torque vs. gravity (spikes’
length l = 0.4 m).

Fig. 3. Minimum torques for tumbling and hopping motion (the y-axis is
in logarithmic scale). System’s parameters: platform’s mass equal to 2.9 kg,
flywheel’s mass equal to 0.1 kg (hence the total mass is 3 kg), radius of
platform equal to 0.2 m, and 4 spikes (hence α = π/4). Longer spikes
facilitate tumbling over large rocks but require higher torques.

operate for a number of cycles (i.e., strides) equal to:

Nmax =
2 ϕ̇max Ifw

ϑ̇(0)[(mrw +mfw)l2 + Irw](1/η2 − 1)
.

For a Phobos-like environment (i.e. g in the 0.001 m/s2

range), assuming that the maximum rpm for the flywheel
motor is 10,000, the maximum number of cycles is then
equal to ' 160 (or about 150 m). A few comments are
in order. First, one can see that with realistic values for the
system parameters (e.g., the gravity acceleration is similar to
that of Phobos) the platform can tumble at an average speed
of 3 cm/s for about 150 m drawing a current of about 0.002
A. Second, the formula for the constant acceleration control
(equation (3)) shows that such value depends quadratically on
the length of the spikes, hence there is an important tradeoff
between the capability of negotiating obstacles (that would
require long spikes) and the amount of actuation (that prefers
short spikes). Third, the actuation level depends quadratically
on the desired angular speed. Fourth, as already mentioned,
the above control strategy has the disadvantage that after
some time the flywheel will reach the saturation limit for its
speed. This issue will be addressed in more detail at then
end of this section.

Finally, by allowing a time-varying actuation for the
flywheel, one can guarantee, perhaps surprisingly, that the
angular speed of both the platform and the flywheel are the
same at the beginning of each stride (i.e., there is forward
motion but no net increase in flywheel’s speed). Following
[15], this can be achieved through a 4-step control strategy:
1) while ϑ is negative the flywheel is negatively accelerated

(ϕ̈ < 0); 2) when ϑ becomes positive the flywheel is
positively accelerated (i.e., ϕ̈ > 0) in such a way that the
rotation of the system is stopped (i.e., ϑ̇ = 0) and for a
certain interval of time (depending on η) angular momentum
is accumulated; 3) the flywheel is negatively accelerated to
quickly reduce its speed to the initial speed; 4) the flywheel
is then left unactuated until collision (i.e., until ϑ = α).

It is of interest to characterize the fundamental limitations
of performance for control policies that avoid a build-up
in flywheel’s velocity. By rather simple angular momentum
arguments (see [15, page 24] for the details of a very similar
derivation), one can show that a hybrid undergoing a steady-
state (i.e., with equal angular velocity at each start of stride)
tumbling motion with zero initial and final flywheel speeds
and with non-negative net flywheel rotation can travel at a
ground speed no larger than:

vmax :=
2l sin(α) (mrw +mfw) g l sin(α)√
2α (1− η)[(mrw +mfw)l2 + Irw]

.

For a Phobos-like environment and hybrid’s parameters as
in Figure 3, vmax ≈ 5 cm/s.

2) Hopping: A very similar analysis can be performed
for the hopping motion. Specifically, we study the following
model: a hybrid starts by rotating around a spike according
to the tumbling motion described in the previous section.
When the next spike impacts the ground, we still assume that
the collision is impulsive and inelastic and that the transfer
of support is instantaneous; however, we do not constrain
the new stance foot to act as a pin joint, and we study the
minimum angular speed that makes the hybrid “hop” or,
more precisely, makes the stance foot complete a rotation
of 2α without contacting the ground. One can show that
hopping is achieved with a constant flywheel deceleration
(assuming no saturation) equal to:

ϕ̈ ≤ − g

Ifw
min

{
(mrw+mfw)l sin(α),

(mrw+mfw)l2+Irw

4 η2 l cos(α)α

}
.

Figure 3(b) shows the magnitude of the minimum torques
for a Phobos-like environment.

3) Desaturation strategies for the flywheel: A key feasi-
bility aspect for such mobility concept is flywheel’s speed
saturation. The simple 2D model suggests several strategies
to mitigate this problem. The first and second strategies
were previously discussed: operate without consideration of
saturation; and careful acceleration and deceleration of the
flywheel such that forward motion is produced without a net
increase in flywheel speed. The first strategy is reasonable
for very low gravity and/or moderate coverage requirements
(≈ 100 m for Phobos-like conditions). The second is most
effective, but requires sophisticated sensing and control.
Third strategy: after a certain number of tumbles/hops, the
flywheel is slowly despun in such a way that the platform
does not tip over. This strategy is simple but substantially
decreases the hybrid’s average speed. Fourth strategy (in
some sense dual of the third strategy): the flywheel is slowly
accelerated (such that the platform does not tip over) and then
decelerated in a very short time interval (by using brakes).



In this way the hybrid starts a hop/tumble with a flywheel
angular velocity of zero. This strategy is further developed
in Section IV.

B. 3D Numerical model

Prior work on microgravity mobility has either simulated
dynamics of rigid bodies without motion planning [9], [16],
or studied planning algorithms for mobility platforms mod-
eled as point masses [17]. In this section we present a
3D model for the hybrids that will be used in Section IV
to develop planning algorithms on a realistic, rigid body
representation of the hybrid. This model allows for the
elimination of some of the assumptions required for the
analytical model (e.g., single contact point acting as a pivot).
By extending the work in [18], the Newtonian equations for
the equations of motion for the hybrid (including the internal
flywheels) are as follows (the notation is defined in Table I):

• Position and velocity:
bṙcm = bvcm,

bv̇cm =
F

mtot
− 2

(
IΩbd × bvcm

)
−

(
Iαbd × brcm

)
−

IΩbd ×
(

IΩbd × bvcm

)
.

• Euler parameters:
bε̇1
bε̇2
bε̇3
bε̇4

 =
1

2


bε4 − bε3

bε2
bε1

bε3
bε4 − bε1

bε2
− bε2

bε1
bε4

bε3
− bε1 − bε2 − bε3

bε4




bω1
bω2
bω3
0

 .
• Angular velocities:
I1 0 0 JBβB1 JCβC1 JDβD1

0 I2 0 JBβB2 JCβC2 JDβD2

0 0 I3 JBβB3 JCβC3 JDβD3

βB1 βB2 βB3 1 0 0
βC1 βC2 βC3 0 1 0
βD1 βD2 βD3 0 0 1




Iω̇1
Iω̇2
Iω̇3
sω̇B
sω̇C
sω̇D

 =



M1 + (I2 − I3) Iω̇2
Iω̇3 +

∑
k = B,C,D

(
Jk

sωk
(
βk2

Iω3 − βk3
Iω2

))
M2 + (I3 − I1) Iω̇3

Iω̇1 +
∑

k = B,C,D

(
Jk

sωk
(
βk3

Iω1 − βk1
Iω3

))
M3 + (I1 − I2) Iω̇1

Iω̇2 +
∑

k = B,C,D

(
Jk

sωk
(
βk1

Iω2 − βk2
Iω1

))
sMB · ~βB

JB
sMC · ~βC

JC
sMD · ~βD

JD


.

The external loads, F, and external moments, M, are cal-
culated according to a simple spring-damper-friction contact
model. The force normal to the ground is modeled as a
spring-damper system and transverse forces are calculated
using a Coulomb friction model. While these models are
reasonably accurate for hard surfaces, soft, granular media
(as it is the case for regoliths) requires a more sophisticated
contact model, which is left for future work.

In the above dynamics equations, except for the terms
sMk · ~βk, all of the variables are either state variables, or
contact forces that are found by solving the set of differential
equations, or terms that are known a priori. Each sMk · ~βk
term represents the torque applied along the central axis of

Definition
brcm position of spacecraft cm w.r.t. celestial body
bvcm velocity of spacecraft cm w.r.t. celestial body
F net external force on spacecraft
mtot total mass of spacecraft w/ flywheels
IΩbd angular velocity of celestial body w.r.t. inertial
Iαbd angular acceleration of celestial body w.r.t. inertial
bεi ith Euler orientation parameter w.r.t. celestial body
bωi ith angular velocity of craft w.r.t. celestial body
Iωi ith angular velocity of craft w.r.t. inertial
Ii ith principle MOI of craft about cm
Jk axial MOI of flywheel k (k = B, C, D )
~βk axis of rotation of flywheel k w.r.t. spacecraft
sωk angular velocity of flywheel k w.r.t. spacecraft
sMk torque on flywheel k from spacecraft
Mk ith component of net external torque on spacecraft

TABLE I
NOTATION FOR THE DYNAMICS EQUATIONS.

the kth flywheel and acts as one of the control inputs to
the system. A predetermined profile of the control variables
must be fed into the system (open-loop control), or closed-
loop control must be used to generate these values during the
simulation. Section IV details a closed-loop, hybrid approach
for the flywheels to achieve waypoint tracking.

IV. PLANNING AND CONTROL

The current computational model is restricted to uniform
gravity fields and perfectly spherical terrain. Even under
these idealized conditions, motion planning and control is
still a significant challenge. The main difficulties stem from
the gyroscopic coupling of the rotational degrees of freedom
due to flywheel motion, and the unpredictable nature of
hopping/bouncing due to the hybrid’s non-spherical shape.

Our approach consists of a simple 3-mode hybrid control
algorithm, whereby the flywheels are slowly accelerated to
a desired angular velocity (referred to as “objective net
angular velocity”), and then impulsively braked to generate
the torque needed to produce hopping/tumbling. Figure 4
diagrams the control modes and the switching conditions.

Specifically, the key idea behind the proposed motion
planning algorithm is that the net angular velocities of the
flywheels prior to braking should form a vector that is
mutually orthogonal to both the heading and local gravity
vectors. In this way, the torque from braking the flywheels
causes the hybrid to tumble or hop in the general direction
of the next waypoint. Deviations from the intended hopping
direction, caused by a non-spherical geometry (e.g. edges,
spikes), are compensated for by applying this approach to a
sequence of hops/tumbles. Accordingly, the direction of the
objective net flywheel angular velocity prior to braking is

ω̂objective =
~h× ~g∣∣∣~h× ~g∣∣∣ , (4)

where ω̂objective is the unit vector of the objective net angular
velocity of flywheels, ~g is the local gravity vector, and ~h
is the heading vector to the next waypoint (see Figure 5).



Fig. 4. Hybrid control algorithm: controlled mobility is achieved by
slowly accelerating and then impulsively braking the flywheels. The angular
velocity to which each flywheel is accelerated is determined by the hybrid
orientation and intended heading. Additional control is used to ensure
unwanted tumbling does not occur during the Spin-up mode.

The magnitude Ω of the objective net angular velocity of
the flywheels is calculated according to two rather natural
guidelines: (1) the hybrid attempts to travel from its current
location to the next waypoint via an ideal hop (45◦ launch
vector), and (2) the rotational kinetic energy stored in the
flywheels before braking is approximated as equal to the
translational kinetic energy of the hybrid after braking. A
brief comment on these guidelines: they are fundamentally
approximations (i.e. the hybrid does not travel to each
waypoint via a single hop and the two energy terms are not
exactly equal), however their enforcement leads to a simple,
yet effective computation of the control inputs. Specifically,
let v0 be the velocity of the hybrid just after braking;
according to guideline (1), v20 = gh, where h is the distance
to be traveled. Applying guideline (2), we obtain:

1

2
kpmtotv

2
0︸ ︷︷ ︸

translational

=
∑ 1

2
Ikω

2
k︸ ︷︷ ︸

rotational

,

where ωk is the angular velocity of the kth flywheel
prior to braking, mtot is the total mass of the hybrid
(mrw +

∑
mfw,k), and the control gain kp is used to account

for energy losses. Since, by definition, ωk = Ω ω̂objective · ~ζk,
where ~ζk is the unit vector of the kth flywheel’s central axis,
one can readily solve for Ω as

Ω =

√√√√ kpmtot gh∑
Ik

(
ω̂objective · ~ζk

)2 .
The objective angular velocity for each flywheel is then:

ωk =

√√√√ kpmtot gh∑
Ik

(
ω̂objective · ~ζk

)2
 ω̂objective · ~ζk. (5)

Once the objective angular velocities are determined (by
using equations (4) and (5)), the flywheels are slowly ac-
celerated to these velocities so as to ensure that unwanted
tumbling (i.e. tumbling away from the next waypoint) does

Fig. 5. The net angular velocities of the flywheels prior to braking
(ω̂objective) should form a vector that is roughly anti-parallel to the net torque
on the flywheels during braking (yellow arrow in above figure). This set of
vectors is defined to be mutually orthogonal to both the heading and local
gravity vectors according to equation (4).

not occur. The analytical model of the hybrid (see Section
III) is used to estimate the maximum torque that does not
induce tumbling. Feedback control is then used to ensure
that tumbling does not occur during the flywheel spin-up.
Once the objective angular velocities are reached, brakes are
applied to the flywheels to induce hopping motion. An upper
bound is put on the flywheel velocities to model flywheel
saturation and a lower bound is imposed on the objective
angular velocity to ensure that some motion occurs for each
spin-and-brake sequence. No control is applied while the
hybrid is in ballistic flight or while it is coming to a rest.
This process is repeated until the hybrid comes to rest within
a tolerance region of each waypoint. Successful execution
of this algorithm for four arbitrary waypoints is displayed
and discussed in Figure 6. Our simulation results assume a
smooth surface; future work will address the case of rocky
terrains and non-uniform gravity levels.

V. PROTOTYPE AND DESIGN CONSIDERATIONS

A first generation of spacecraft/rover hybrids was devel-
oped to validate the results of the computer simulations.
The prototype and CAD models for the structure and the
flywheels are given in Figure 7. The design includes one
internal motor/flywheel combination aligned with the uncon-
strained rotational degree of freedom on the passive gravity
off-load test stand (that consists of a gravity off-load system
of pulleys and a counterweight; more details about the test
stand are provided in Section VI). The test vehicle also
includes an Arduino microcontroller to coordinate motion
and capture data, an 11.9V DC battery for power, and an
electronic speed controller. An optical rpm sensor measures
and records flywheel speeds, and the torques applied during
experimentation are calculated as τapplied = Ifwαfw.

The motor/flywheel subsystem consists of a brushless DC
motor capable of spinning the flywheel at up to 12,000
rpm. All components in the system were designed with that
maximum speed in mind. The flywheel was designed to be
as close as possible to the center of the vehicle without
interfering with the proposed additional flywheels in the full
3-axis vehicle. The result is a tapered flywheel that balances



Fig. 6. Demonstration of controlled mobility (as opposed to random
hopping motion): the plots represent the application of the motion planning
and control algorithm under Phobos-like conditions (i.e., gravity levels in
the order of mm/s2). Waypoints were selected to demonstrate short and
long traverses and directional changes. The hybrid averages a velocity of
≈ 1.6cm/s over the 1770 seconds it takes to visit the four waypoints. This
velocity compares well with the analytical result from Section III which
established a maximum achievable tumbling velocity of ≈ 5cm/s.

Fig. 7. Prototype and CAD models (not to scale). The prototype, without
the flywheel, has a mass of 1.39 kg and a moment of inertia about the
axis of rotation of ≈ 0.054 kg m2. The flywheel is 0.57 kg and 8.07 ×
10−4 kg m2.

minimization of the system’s moment of inertia and mass
with maximization of the flywheel’s moment of inertia.

The overall structure and frame of the system consists of
a cube with a 20 cm edge and with 4 spikes per face. The
spikes include a bend to create a regular octagon with 20 cm
on each side. Additional mass was added to balance the
vehicle around the rotation axis as well as across the vehicle
left to right. No attempt was made to balance the weight
around the vertical z-axis on this initial prototype. The design
and the geometry of the spikes require a special discussion.
Computational studies showed that distributing the contact
forces over the maximum area (i.e. direct contact between
the vehicle’s enclosure and terrain; no spikes) make for the

Fig. 8. Second prototype of the hybrid. Note the lilypad design of the tips
of the spikes.

most robust mobility in varying terrain conditions (e.g. soft
regolith, hard rocks), see [16]. On the other hand, spikes
are needed to form a stand-off distance so that solar panels
and instruments are protected from unintended impacts with
hard rock fragments, and to negotiate large obstacles. As
a compromise, spikes should be employed with properly
designed feet to increase contact area and avoid sinkage in
loose terrain. This design compromise is represented in the
second prototype of the hybrid that uses spikes with lilypad-
like tips (see Figure 8). Next section discusses experimental
results from a 3 degree of freedom (DOF) test stand.

VI. EXPERIMENTAL RESULTS

We performed experiments on a low-gravity 3DOF test
stand to further characterize the dynamics of the hybrids
and to assess the validity of the models presented in Section
III. The test stand consists of a gravity off-load system with
pulleys and a counterweight. Two off-load cables are used
to prevent rotation about the vertical axis due to gyroscopic
precession. The effective gravity is determined both stati-
cally, with a high precision scale, as well as dynamically by
collecting data while dropping the test vehicle on the stand
and measuring its vertical acceleration. Two configurations
were used, a 2m test stand and a 5m test stand. Experi-
ments were run by programming a pre-defined acceleration
(therefore torque) profile into the Arduino microcontroller
(that runs the flywheel’s DC motor). The experimental torque
profiles were then used in the 3D simulation environment to
control a model of the prototype. The goal of these tests
was to compare the torque levels at which hopping/tumbling
are initiated both during the experiments and in simulation
(some disagreement is expected due to modeling approxima-
tions and the pendulum dynamics introduced by the pulley
mechanism of the test stand). Specifically, if behaviors did
not match (e.g. experiment demonstrated tumbling but the
simulation did not), then the torque profile would be ampli-
fied or attenuated until similar behavior was observed. Figure
9 summarizes the results from the experiment-simulation
comparisons. The key result is that an average torque ampli-
fication of only 6% is required for the simulation to emulate
the experiments.

We also developed a 3 DOF test stand that relies on a



Fig. 9. Experiment-Simulation comparison: values indicate the amount by
which the torque profile had to be modified in simulation to match motion
observed in experiments. The effective gravity for this set of experiments
was 0.235 m/s2 .

β

Free-floating
robot

Tilted table

Emulated gravity ∝ β

Fig. 10. 3 DOF test stand on a frictionless table; by tilting the granite
table, one can create a “small” force that emulates a low gravity field.

frictionless table and does not require any pulley system (and,
hence, does not introduce any exogenous dynamics). The test
stand consists of a metallic plate that is air-bearing supported
over a table and a flywheel attached at the top. The table is
slightly tilted in order to emulate a low-gravity environment
in 2D (with an emulated gravity of about 0.05 m/s2), see
Figure 10. Baking flour is used as a simulant for regolith
found in microgravity environments. We recorded tumbling
speeds of ≈ 2 cm/s and hops up to distances of ≈ 0.5 m
(longer hops were theoretically possible, but could not be
implemented due to the size of the granite table). In general,
experimental results on this test stand are in agreement with
the results from the pulley system test stand, the analytical
model results, and the numerical simulation results; such
results, however, are not discussed here due to space lim-
itations.

VII. CONCLUSIONS

In this paper we presented a planetary mobility platform
that relies on internal actuation and can perform both long
excursions (by hopping) and short, precise traverses (through
controlled “tumbles”) in low-gravity environments. We have
discussed dynamical properties of the platform, planning
and control algorithms, the design of a first prototype, and
initial experimental results. Collectively, our results lay the
foundations for the design of internally-actuated rovers with
controlled mobility (as opposed to random hopping motion).
This paper leaves numerous important extensions open for
further research. First, we seek to refine our planning and

control algorithms to reliably maneuver on rocky terrains
and to minimize a given cost criterion (e.g., time or energy
expenditure). Second, it is important to develop appropriate
contact models for the interaction with loose, granular media
typically encountered on small bodies. Third, while we
already have first-order estimates (not discussed here due to
space limitations) for critical subsystems (e.g., power, ther-
mal, and communication), we plan to refine subsystem design
and select an appropriate scientific payload for potential
exploration targets (e.g., Phobos). Finally, we plan to develop
an actively controlled, 5 DOF test stand that allows for more
thorough investigation of motion planning techniques and
continued validation of computational models.
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[16] F. Herrmann, S. Kuß, and B. Schäfer. Mobility challenges and possible
solutions for low-gravity planetary body exploration. In ESA/ESTEC,
Noordwijk, Netherlands, April 2011.

[17] Bellerose. J. and D. Scheeres. Dynamics and Control for Surface
Exploration of Small Bodies. In AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, number 6251, Honolulu, HI, August 2008.

[18] T. Kane, P. Likins, and D. Levinson. Spacecraft Dynamics, pages
218–223. The Internet-First University Press, 2005.

http://solarsystem.nasa.gov/2013decadal/
http://science.nasa.gov/media/medialibrary/2012/05/04/HEOMD_Strategic_Knowledge_Gaps_--_Mike_Wargo.pdf 
http://science.nasa.gov/media/medialibrary/2012/05/04/HEOMD_Strategic_Knowledge_Gaps_--_Mike_Wargo.pdf 
http://science.nasa.gov/media/medialibrary/2012/05/04/HEOMD_Strategic_Knowledge_Gaps_--_Mike_Wargo.pdf 
http://hayabusa.jaxa.jp/e/index.html

	Introduction
	Mobility Platform
	Dynamics of a Hybrid
	2D Analytical Model
	Tumbling motion
	Hopping
	Desaturation strategies for the flywheel

	3D Numerical model

	Planning and Control
	Prototype and Design Considerations
	Experimental Results
	Conclusions
	References

