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The objective of this paper is to present a full-stack, real-time motion planning frame-

work for kinodynamic robots and then show how it is applied and demonstrated on a physical

quadrotor system operating in a laboratory environment. The proposed framework utilizes

an offline-online computation paradigm, neighborhood classification through machine learn-

ing, sampling-based motion planning with an optimal cost distance metric, and trajectory

smoothing to achieve real-time planning for aerial vehicles. This framework accounts for dy-

namic obstacles with an event-based replanning structure and a locally reactive control layer

that minimizes replanning events. The approach is demonstrated on a quadrotor navigating

moving obstacles in an indoor space and stands as, arguably, one of the first demonstrations

of full-online kinodynamic motion planning, with execution cycles of 3 Hz to 5 Hz. For the

quadrotor, a simplified dynamics model is used during the planning phase to accelerate online

computation. A trajectory smoothing phase, which leverages the differentially flat nature of

quadrotor dynamics, is then implemented to guarantee a dynamically feasible trajectory.

Keywords: motion planning; kinodynamic; real-time; obstacle avoidance; quadrotor; unmanned aerial vehicle;
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I. INTRODUCTION

Due to their ease of use and development along with their wide range of applications in commercial, military, and

recreational settings, quadrotor helicopters have become the focus of intense research in the last decade [1–3]. A

standing problem in the field of quadrotor control is the achievement of real-time, high-velocity obstacle avoidance, as
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conceptually represented in Figure 1. More generally, using the robotic motion planning nomenclature, this problem is

referred to as real-time kinodynamic motion planning (“kinodynamic” meaning that system dynamics are taken into

account during the trajectory planning process), which is an open challenge in robotics, not just for quadrotor control

[4]. The challenge of real-time kinodynamic planning can be formulated into two questions that serve as the motivation

for the work presented in this paper:

Motivating Question 1: Can we develop an algorithm/framework that provides real-time solutions to the

kinodynamic planning problem for general dynamical systems?

Motivating Question 2: Given such a generalized approach to kinodynamic planning, can it be shown to

work effectively on a real-world, physical system, such as a quadrotor?

In response to such motivating questions, this paper presents a full-stack approach for kinodynamic motion planning

which includes: an offline-online computation paradigm, sampling-based optimal motion planning, machine learning

of reachable sets, trajectory smoothing, trajectory control, and event-based replanning. To further address the second

motivating question we provide validating experiments of a quadrotor navigating static and dynamic obstacles. This

is arguably one of the first—if not the first—demonstrations of truly real-time kinodynamic planning on a quadrotor

system navigating a dynamic environment.

Fig. 1 Conceptual diagram of a quadrotor tracking a kinodynamic motion plan through an obstructed envi-
ronment.

Related Work

Throughout this paper we will detail each component of the full-stack planning framework and discuss its relation

to the two motivating questions. First, however, let us build a foundation of prior work that sought to answer similar
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questions. There are two bodies of complementary, yet distinct, literature that are relevant to the work presented here:

those works that address real-time motion planning in a general sense and those that focus on planning and control for

quadrotors, specifically. We begin by discussing generalized planning and then move onto quadrotor-specific works.

Frazzoli et al. provided some of the pioneering work on real-time kinodynamic motion planning [5]. This work

implemented the RRT algorithm with node connections achieved by concatenating a small set of motion primitives or

“trim trajectories” between dynamic equilibrium points. Demonstrated on simulations of a small ground robot and a

nonlinear helicopter model, the approach was successful in finding feasible trajectories through sparse obstacle sets in

10s of milliseconds. The theory was even applied to dynamic obstacles; however computation times inflated to 10s of

seconds. The major shortcoming of this approach is the restrictive nature of “trim trajectories” that prevents the motion

planner from achieving completeness, requires that subsequent trajectories are tied together at dynamic equilibrium

points, and is highly reliant on the user to select appropriate motion primitives. For the helicopter example in the work

of Frazzoli et al. only 25 different trim trajectories are used for node connections, all of which being constant speed,

level or turning flight. Indeed a helicopter is capable of much more complex maneuvers than those considered. For

any given set of motion primitives, it is argued that a pathological obstacle set could be devised that confounds this

planning process. This effect is likely to blame for the significant increase in computation time for the dynamic obstacle

sets: the motion primitives are inadequate for this specific case. The work presented in our paper includes a notion of

time optimality and does not require the user to select specifically tailored motion primitives, therefore remaining more

applicable to arbitrary obstacle sets. Furthermore, our work does not require a motion plan to be stitched together at

dynamic equilibrium points, thus allowing for arbitrarily complex/acrobatic motion plans.

Leven and Hutchinson developed a real-time path planning framework for changing environments [6]. Their

framework, which appears to be tailored to multi-link manipulator robots, relied on a preprocessing phase that generated

a roadmap of the unobstructed configurations space (i.e., configuration space with no obstacles present). It then

developed a mapping from nodes in the unobstructed configuration space to discrete cells in the workspace. When the

online phase of the planner, referred to as the query phase, was initialized and obstacles were introduced, obstructed

cells in the workspace could be mapped to corresponding nodes in the configuration space. These nodes were then

removed from the roadmap and planning could occur on this augmented roadmap. This approach yielded impressive

online planning times of less than one second.

While Leven and Hutchinson’s framework is the most similar in form to that presented in our current work—consisting

of a framework with offline and online phases to minimize real-time computations—there are several key differences.

Foremost, Leven and Hutchinson’s work centered on kinematically-constrained, but not differentially-constrained,

robot manipulators. Furthermore they implement a “local planner” that consists of straight-line connections between

sampled nodes in the configuration space, thus neglecting some of the kinematic constraints that are fundamental to

the manipulators. For the straight-line connection assumption to be valid, they spend considerable time developing a
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distance metric that measures the “closeness” between two configurations. Leven and Hutchinson state that the ideal

distance metric is swept volume, yet this is too expensive to calculate in real-time so a set of norms in the configuration

and workspace are used instead [6]. In our work presented here, we seek to address differentially-constrained systems.

To do so we must avoid straight-line approximations for state connections, instead relying on solving an optimal control

problem between states (See III.C and IV.C). Therefore our distance metric indeed becomes optimal cost. As with

Leven and Hutchinson’s work, we face the problem that computing optimal cost may be too expensive to allow real-time

computation. To this end we implement a machine-learning algorithm to approximate the optimal cost when real-time

calculations are necessary (see III.B). If our approach were applied to Leven and Hutchinson’s work, they could directly

estimate swept volume instead of relying on norm-based alternatives.

Singh et al. utilized contraction theory to extend the feedback motion planning and robust control work of Tedrake et

al. to be implementable in an online fashion without prior knowledge of obstacle sets [7, 8]. Given a nominal, feasible

trajectory for a kinodynamic system navigating a cluttered environment, the work of Singh et al. produces a “tube”

through the state space in which the system is guaranteed to remain even in the presence of bounded disturbances. While

the work of Tedrake et al. and Singh et al. are important contributions to the robust control of kinodynamic systems in

obstructed environments, they do not seek to answer the initial question of how to generate a nominal, feasible trajectory;

instead considering this portion of the motion planning process as a “black box” [7]. In contrast, the work presented

here explicates a framework for generating such a nominal trajectory in real-time. Thus this work can be thought of as

the inner workings of such a “black box” referenced by Singh et al.

Since the publication of the authors’ prior works [9–11], other groups have started to adopt similar approaches to

solving the kinodynamic motion planning problem. Pendleton et al. develop a “reachability-guided” sampling-based

planning approach to differentially constrained problems that mirrors the authors’ approach in several regards [12].

Similar to the approach presented in this paper and prior works, Pendleton et al. uses an offline, precomputation phase

to generate a “reachable map” to be used in the online execution of the planner. The primary difference with the work of

Pendleton et al. is that it employs control sampling and state propagation to approximate reachability sets, whereas our

approach estimates reachability sets using machine learning algorithm (see III.B).

In the theme of the second motivating question, the most relevant and progressive work in obstacle avoidance and

control of quadrotors is, arguably, that of Richter et al. [13, 14]. Relying on foundational work by Mellinger and

Kumar [15], the work of Richter et al. demonstrated aggressive maneuvers for quadrotors flying in obstructed indoor

environments. This was accomplished by generating a set of waypoints through the workspace and then developing a

minimum-snap, polynomial trajectory connecting these waypoints. This minimum-snap trajectory produces a “graceful”

flight pattern and guarantees dynamic feasibility [15]. Using the differentially flat dynamics of a quadrotor [15], the

trajectory polynomials are used to generate analytical expressions for control inputs that are used in a feedforward fashion

in the quadrotor flight controller [13]. While the work of Richter et al. represented an important step toward quadrotor
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planning and control, there remain several critical aspects yet to be achieved. Foremost, the planning algorithm used,

RRT* [16], was not implemented in a real-time fashion. The planning phase was accomplished offline, with an a priori

map of obstacles. This leaves the approach in Richter et al. unable to handle dynamic obstacles, which is illustrated in

their demonstrations that only feature static obstacles. Furthermore, the RRT* algorithm used a simple straight-line

metric for the initial planning phase to connect start and goal states; it did not account for the differential motion

constraints of the quadrotor [13]. Therefore the initial planning phase produces waypoints that are minimum distance,

not necessarily minimum time, to the goal. The snap-minimizing, polynomial trajectories—which guarantee dynamic

feasibility—are only produced after the planning phase, implying that the generated trajectory might be significantly

suboptimal. The work that is presented in this paper overcomes these shortfalls by employing a kinodynamic planner in

a truly real-time fashion, with obstacle information only available during online execution.

Other works have made significant contributions to the theory of quadrotor control. Sreenath et al. developed a

controller for a quadrotor carrying a cable-suspended load [17]. Hehn and D’Andrea demonstrated stabilization of

an inverted pendulum balanced on a quadrotor [3]. Mellinger et al. devised a hybrid controller capable of perching

a quadrotor on an over-vertical surface [18]. While important and impressive in their own right, these works are

fundamentally controller designs that wholly neglect motion planning/obstacle avoidance. The work presented in this

paper takes kinodynamic planning and flight control as subcomponents of a single problem and proposes a method for

addressing both simultaneously.

Several papers have approached the topic of motion planning for quadrotors, even so far as real-time planning.

Cowling et al. [19, 20], and Bouktir et al. [21] both demonstrate a similar approach that combines trajectory optimization

and trajectory control to accomplish high-speed collision avoidance of quadrotors. These papers, however, rely on a

mathematically explicit representation of obstacles so that the flight controller can be customized to incorporate these

specific obstacles. This limits the approach to a relatively limited number of obstacle configurations that are well defined

ahead of time. The approach presented in our paper avoids the explicit mathematical representation of the obstacle

space so as to be applicable to virtually any obstacle configuration and does not require obstacle information until online

initiation.

Webb and van den Berg made a significant contribution to the field of kinodyanmic planning with their development

of Kinodyanmic RRT* [22]. This work avoided the explicit obstacle representation found in Bouktir et al. [21] and

Cowling et al. [19, 20] and demonstrated kinodynamic planning for a simulated quadrotor system with linearized

dynamics. The Kinodynamic RRT* algorithm is shown to execute in 10s to 100s of seconds; therefore failing to achieve

real-time implementation.

An additional, important aspect in this field is validation on a physical system. The papers Frazzoli et al. [5],

Leven and Hutchinson [6], Cowling et al. [19, 20], Bouktir et al. [21], Webb and van den Berg [22] only provide

simulation results, without a physical demonstration for validation. In contrast Landry produced physical demonstrations
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of planning and control of a quadrotor navigating a challenging, cluttered environment [23]. Landry’s work, however, is

not real-time, as it requires the entire problem to be solved ahead of time before online execution. As with the work of

Richter et al., Landry’s work is, therefore, limited to static obstacles. Grzonka et al. developed an autonomous quadrotor

system capable of navigating highly obstructed indoor environments that executed a variant of the A* algorithm for

real-time motion planning [24]. While this work demonstrated real-time planning, the quadrotor was flown at speeds

low enough such that differential motion constraints of the quadrotor could be ignored. This implies that the motion

planning algorithm demonstrated was in fact geometric and not kinodynamic, leaving it capable of only navigating

static or very slow dynamic obstacles. In contrast, our work demonstrates a kinodynamic planner for quadrotor obstacle

avoidance capable of navigating high-speed, even adversarial, dynamic obstacles∗

This paper is the culmination of the authors’ prior works. In Allen et al. we introduce the concept of machine

learning for rapid estimation of reachable sets for dynamical systems [9]. In our current work we extend this approach to

the control-penalized double integrator (see Section IV.C) and show improved estimation accuracy. In Allen and Pavone

[10] we first introduce the generalized framework for kinodynamic planning and show how online computation times

can be reduced by several orders of magnitude for simulated systems. The subsequent paper applied the kinodynamic

planning framework to a quadrotor robot and demonstrated real-time planning on this physical system in the presence of

static obstacles [11]. In our current work we extend the real-time framework to dynamic obstacles by developing a

“locally reactive” control layer and an event-based replanning scheme. Furthermore we provide extended simulation

results to test the framework in a wider variety of obstacle sets than is possible in a laboratory environment, allowing

statistical analysis of the framework performance.

Contribution

In the pursuit of addressing the two motivational questions, this work results in three key contributions. Theoretical:

we show that machine learning of reachable sets for dynamical systems is an enabling concept for real-time motion

planning. Practical: we present a newly developed reactive controller and event-based replanning structure which are

synthesized with our prior work and existing theoretical results into a coherent, full-stack framework for kinodynamic

planning. While the reactive controller and event-based replanner are pragmatic contributions—as opposed to more

broadly applicable theoretical contributions—they are vital to the implementation of the planning framework on physical

hardware. Experimental: arguably the first demonstration of truly real-time planning on a physical quadrotor capable of
∗ A note on terminology: throughout this work the terms “dynamic” and “adversarial” are used to describe the behavior of obstacles present in the

environment which take the form of human actors interacting with the quadrotor. The term dynamic is meant to imply that the obstacles are moving
through the environment, sometimes at high speed. The term adversarial is meant to imply that the obstacles may actively attempt to obstruct the path
of the autonomous robot, as opposed to simply interfering by incident. It is important to understand the implications of these terms within this work
so as not to confuse them with similar terms used in other literature. Firstly, planning literature sometimes refers to “dynamic obstacles” in order to
imply that the motion planner attempts to create temporal models of obstacles in order to predict future states. This is not the case for this work;
instead obstacles are modeled as static at every planning cycle and very rapid replanning is used to account for the fact that the obstacles are in fact
dynamic. Secondly, machine learning literature may use the term “adversary” to imply that an autonomous agent may update its policy based on the
observed behavior of an external agent. Within this work, no such adversary-modeling occurs. The human actor obstructing the motion plan is merely
treated as a physical obstacle at each planning cycle.
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navigating dynamic, even adversarial, obstacles∗.

Organization

The paper is structured as follows. Section II gives a formal definition of the kinodynamic planning problem we

wish to solve. Section III seeks to address Motivating Question 1 by developing the real-time kinodynamic planning

framework in a form that is generally applicable to dynamic systems. Section III then proceeds to detail two major

components of the generalized framework: the sampling-based planning algorithm (Section III.A) and machine learning

for state neighborhood estimation (Section III.B). Section IV addresses Motivating Question 2 by detailing how the

real-time kinodynamic planning framework and its subcomponents can be tailored to a quadrotor system in order

to maximize performance and minimize computation time. Section V presents the experimental setup and results,

validating the framework. Finally, in Section VI we draw our conclusions and present directions for future research.

II. PROBLEM STATEMENT
The optimal kinodynamic planning problem consists of the determination of a control function u(t) ∈ Rm, and

corresponding state trajectory x(t) ∈ Rn, that minimize a cost function J(·)while obeying control constraints, u(t) ∈ U,

dynamical (differential) constraints, f [ Ûx(t), x(t), u(t), t], and state (obstacle) constraints, i.e., x(t) ∈ Xfree(t) ⊆ X (where

X denotes the state space and Xfree(t) is the obstacle-free space which is a function of time to account for moving

obstacles). The state at the final time must belong to a given goal region, i.e., x(tfinal) ∈ Xgoal ⊆ X. Formally, the

problem can be posed as a continuous Bolza problem:

Optimal Kinodynamic Planning Problem:

Find: u(t)

that minimizes: J[x(t), u(t), tfinal]

subject to: u(t) ∈ U ∀t ∈ [tinit, tfinal]

x(t) ∈ Xfree(t) ∀t ∈ [tinit, tfinal]

fl ≤ f [ Ûx(t), x(t), u(t), t] ≤ fu ∀t ∈ [tinit, tfinal]

x(tfinal) ∈ Xgoal

(1)

where fl and fu are the lower and upper bounds for the system dynamics described by a differential

inclusion (note that, for generality, the dynamics are represented as a differential inclusion even though the

quadrotor system discussed later is in fact just an ordinary differential system), tinit represents the fixed start

time, and tfinal represents the free final time.
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Fig. 2 The real-time framework for kinodynamic planning and control is split into offline and online computa-
tion phases. Information that is generated in the offline phase serves two purposes: 1. develop a precomputed
roadmap of the state space (however, this roadmap lacks information on obstacle placementwhich is not available
until online initiation); and 2. train a machine learning algorithm to rapidly approximate state neighborhoods
of newly sampled states that are not part of the precomputed roadmap (i.e. initial state and goal regions which
are not known until online initiation). When obstacle information and terminal states are presented at online
initiation, the online phase of the framework executes a sequence of computations that consist of 1. leveraging
the machine learning algorithm to rapidly connect terminal states to the precomputed roadmap; 2. calculate the
optimal trajectory between terminal states using an asymptotically optimal motion planning algorithm, such as
kino-FMT∗ , which leverages the precomputed roadmap as a look-up table for dynamically feasible trajectories
to connect states, performing collision checking in real-time; and 3. “post-process” the the motion plan with a
path smoother and translate the result to a low-level controller for execution on the robot.

Note that if Xfree(t) can be explicitly represented, then the Optimal Kinodynamic Planning Problem in Eqn. (1) may

best be solved using existing optimal control methods, similar to what is presented in Schulman et al. [25]. However,

we are concerned with cases where it is intractable to explicitly represent Xfree(t) and we are only allowed the ability to

perform query-based collision checks. The inability to explicitly represent Xfree(t) is often the case for even modestly

complex planning problems due to the immense challenge of representing obstacles in the configuration space [26].

Note that, for the quadrotor planning problem discussed in Section IV, we choose a minimum-time cost function,

that is:

J[x(t), u(t), tfinal] = tfinal. (2)
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III. GENERALIZED REAL-TIME KINODYNAMIC PLANNING FRAMEWORK
In this section we seek to address Motivating Question 1 by developing a framework for solving the general form of

the kinodynamic planning problem presented in Eqn (1). Note that this section expands on the authors’ prior work by

introducing, for the first time, an event-based replanning structure to account for dynamic obstacles [11].

In order to “construct” a real-time framework for solving the kinodynamic planning problem, we begin with the

current state-of-the-art approach: sampling-based planning. Sampling-based planning algorithms have become the

accepted approach for planning in high-dimensional spaces. In a nutshell, the key idea behind sampling-based algorithms

is to avoid the explicit construction of the configuration space (which can be prohibitive in complex planning problems)

and instead conduct a search that either probabilistically or deterministically probes the configuration space with a

sampling scheme. This probing is enabled by a collision detection module, which the motion planning algorithm

considers as a “black box” [26]. In this way, a complex trajectory control problem is broken down into a series

of many smaller, simpler optimal boundary value problems (OBVP)† that are subsequently evaluated a posteriori

for obstacle constraint satisfaction and efficiently strung together into a graph (e.g., tree or roadmap). The primary

hurdle for real-time implementability is that—without detailed information about a system’s reachability set—a naive

sampling-based planner may require the solution to O(N2
s ) OBVPs during online execution, where Ns is the number of

sampled states. It is prohibitively expensive to solve such a number of OBVPs in real-time even for the most modestly

sized planning problems [30].

To address this we wrap a sampling-based planner in a real-time framework, given in Figure 2, that minimizes the

number of OBVPs that need to be solved online. The broad structure of our framework, featuring an offline-online

computation paradigm, has similarities to that presented by Leven and Hutchinson [6]. However the details of

framework’s construction and subcomponents, which are considered a novel contribution of this work, differ significantly

from that of Leven and Hutchinson.

The “philosophy” of our framework can be condensed to:

efficiency through machine learning, decision making through optimal control, precomputation when

possible.

To elaborate more, the framework (originally proposed in our earlier work [10] and further expanded in [11]) splits

computation into offline (Algorithm 1) and online (Algorithm 2) phases. During the offline phase the subroutine

Sample quasi-randomly draws Ns samples from the continuous state space, without any regard to obstacle locations,

which are unknown until online initiation. SampleData randomly draws Npair states—with replacement and such
†Note that not all sampling-based planners require the solution to optimal boundary value problems. State space exploration for the RRT

algorithm is often achieved by employing a forward dynamic propogator based on randomized or deterministically chosen control inputs [27]. These
techniques are prone to “wander” through the state space, lacking the optimality guarantees of algorithms such as RRT*, PRM*, and FMT* [16, 28].
Li et al. developed the STABLE SPARSE RRT (SST) algorithm that achieves optimality guarantees without requiring OBVP solutions, only a forward
dynamic propagator, but execution times for a quadrotor system are on the order of 100s of seconds which is too slow for real-time implementation
[29].
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that Npair ≤ Ns (Ns − 1)—from the discrete set of sampled states V , and stores them in two sets A and B. The Npair

samples stored in A and B are then paired and OBVPs are solved for each pair; storing the solutions for use during the

online phase in a look-up table titled Cost. The OBVP solution subroutine, SolveOBVP, which is often referred to as a

“steering function” in the motion planning literature, is discussed in Section III.C for a general system and Section IV.C

for the quadrotor-specific implementation. The look-up table Cost can equivalently be thought of as a precomputed,

unobstructed roadmap (i.e. it is wholly ignorant of obstacle information which is not available until online initiation)

through the state space. During the offline phase, a support vector machine (SVM) classifier, referred to as NearSVM, is

trained using the look-up table Cost. The SVM provides query-based estimates of cost-limited reachable sets (i.e.,

neighborhoods) and is discussed in further details in Section III.B. The cost threshold of the reachable set, often referred

to a “neighborhood radius” in the motion planning literature, is a user-defined value Jth.

Algorithm 1 Offline Phase for the Kinodynamic Motion Planning Framework
1 V ← Sample(X, Ns)

2 A← SampleData(V, Npair, replace)
3 B← SampleData(V, Npair, replace)
4 Cost← SolveOBVP(A, B)
5 NearSVM← TrainClassifier([A, B], Cost(A, B), Jth)

At the initiation of the online phase, obstacle data is presented along with the start state, xinit, and goal region,

Xgoal
‡. A set of Ngoal states are sampled from the goal region and stored in the discrete set Xgoal. The SVM classifier is

used to rapidly approximate the outgoing neighborhood of xinit and the incoming neighborhood of Xgoal among the

pre-sampled states; storing the sets in Nout
init and N in

goal, respectively (see Section III.B for discussion on outgoing and

incoming neighborhoods). OBVPs are then solved from xinit and Xgoal to their nearest neighbors and the solutions are

stored in the look-up table. Note that this reduces the number of online OBVPs to be solved from O
(
N2
s

)
to O(1).

This reduction in online OBVP solutions is one of the defining characteristics of the planning framework that enables

real-time execution§!

The sampling-based planner, kino-FMT∗ , is then called to return the optimal trajectory through the set of sampled

states, V , using the look-up table, or “roadmap”, Cost. Though many candidate sampling-based planners could be used

to compute a trajectory across this roadmap, we rely on the asymptotically-optimal FMT∗ algorithm for its efficiency (see

[28] for a detailed discussion of the advantages of FMT∗ over state-of-the-art counterparts; see [31] for its kinodynamic

extension). The Kinodynamic Fast Marching Trees algorithm (kino-FMT∗ ) (adapted from [31]) leverages the roadmap
‡If this information was available a priori, than all computations could be performed offline and the real-time implementation would become

irrelevant.
§It is noted that most modern sampling-based motion planners attemptO (Ns logNs ) state connections, where Ns is the number of sampled

states. This result, however, is based on the assumption that state connections are only attempted between states that are within a user-specified
neighborhood of one another. As previously noted, this assumption breaks down for many kinodynamic systems where explicit neighborhood
evaluation may require solving optimal boundary value problems, which is identical to evaluating a state connection. Under these circumstances a
“bare” sampling-based planner (i.e. one that does not leverage other components of the framework presented in this paper) would indeed require
O

(
N2

s

)
state connections; not the O (Ns logNs ) that is often quoted. Thus why we use O

(
N2

s

)
as the benchmark to show the improvement in

computational performance offered by our framework.
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to efficiently determine the optimal sequence of sampled states to connect xinit and Xgoal, performing collision checking

in real-time (see Section III.A).

Algorithm 2 Online Phase for the Kinodynamic Motion Planning Framework
1 Xgoal ← Sample(Xgoal, Ngoal)
2 Nout

init ← NearSVM(xinit,V\{xinit}, Jth)
3 N in

goal ← NearSVM(V\{Xgoal}, Xgoal, Jth)
4 for x ∈ V do
5 if x ∈ Nout

init then
6 Cost← SolveOBVP(xinit, x)
7 if x ∈ N in

goal then
8 Cost← SolveOBVP(x, Xgoal)
9 Path← kino-FMT∗ (V, Cost, xinit, Xgoal)
10 return SmoothPath(Path)

Finally the sequence of states generated by kino-FMT∗ can be used as a set of waypoints for a path smoothing

algorithm. For the quadrotor system discussed in Section IV the path smoothing algorithm generates a minimum-snap,

dynamically feasible trajectory for the (see Section IV.D). Mapping the differentially flat output variables from the

smooth trajectory back to the full state and control space (Section IV.E), we can provide feedforward terms to the flight

controller (Section IV.F).

To handle dynamic obstacles we must develop a replanning structure that recomputes the kinodynamic motion plan

as the environment evolves. We choose to implement an event-based replanner where the existing solution trajectory

is continuously checked for collisions with obstacles and replanning is only initiated once the existing plan becomes

obstructed. This replanning structure is represented in Figure 3. This event-based replanning is in contrast to a purely

time-based, receding horizon replanner more typical for model predictive control. The event-based structure minimizes

the number of replanning events which is desirable since even minor communication latency can cause overly aggressive

maneuvers when transitioning from one solution trajectory to another; see Section V.C for more discussion.

To further reduce the number of replanning events and provide more “graceful” behavior in proximity to dynamic

obstacles we also implement a locally reactive controller. This controller is inspired by the concept of potential fields

where nearby obstacles impose a virtual, repelling force on the autonomous system [32]. This reactive controller is

represented in Figure 3 and is discussed further in Section IV.F. It is important to note this locally reactive controller is

not necessary for the fundamental objective of real-time planning in dynamic environments which is achieved solely

based on computation times of the real-time framework. In experimentation, however, it was shown to greatly improve

performance, therefore it is discussed in this paper.

We now present the mathematical details for each of the framework components (to make the paper self-contained,

we also state a number of results already available in the literature).
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Fig. 3 The event-based replanning structure used to account for dynamic obstacles works by continuously
checking themost recent motion plan and re-executing the online phase of the kinodynamic planning framework
when necessary. This approach is termed “event-based” because the online portion of the planning framework
is only executed when the robot becomes obstructed from the existing motion plan, thus indicating a dynamic
obstacle has interfered and a new motion plan is required.

III.A. Sampling-Based Planner

The sampling-based motion planner at the core of our real-time framework is a kinodynamic variant of the Fast

Marching Tree (FMT∗ ) algorithm [28], and is presented in pseudo-code in Algorithm 3. The algorithm works by

expanding a tree, stored in a set of edge connections E , along the minimum cost-to-come front through the pre-sampled

set of states V . The frontier of the tree is stored in set H and unconnected samples are stored in set W .

For each iteration of the algorithm, the minimum cost-to-come sample z is used as a pivot for exploration. The

forward-reachable set of z among the sampled states V is stored in the discrete set Nout
z . The intersection of Nout

z and set

W is determined and the result is stored in set Xnear. Each sample, x ∈ Xnear, represents a candidate for expansion of the

tree. For each candidate x the backward reachable set among sampled states is determined and saved as set N in
x . The set

Ynear is determined as the intersection of H and the backward reachable set of x, N in
x . The sample ymin ∈ Ynear represents

the optimal connection point (assuming no obstacles) between x and the existing tree. If the connection from ymin to x

is free of collisions with obstacles, as determined by function CollisionFree¶, then the (ymin, x) edge is added to the

tree, x is added to the frontier set H and removed from W . Once all nodes in Xnear are analyzed, the pivot node z is

removed from the frontier set and the process is repeated. The algorithm succeeds in finding a path from xinit to Xgoal as

soon as the current pivot, z, is an element of Xgoal. If the frontier set H ever becomes empty, then kino-FMT∗ reports

failure. The (asymptotic) optimality properties of FMT∗ (and its kinodynamic variants) are discussed in [28, 31, 33].
¶Note that the details of the collision checking function CollisionFree are outside the scope of this work, therefore not discussed. For our

purposes it is considered a “black box” function that reports whether a given path or trajectory intersects an obstacle.
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Algorithm 3 Kinodynamic Fast Marching Tree Algorithm (kino-FMT∗ )
1 V ← V ∪ {xinit} ∪ {Xgoal}
2 E ← ∅
3 W ← V\{xinit}; H ← {xinit}
4 z ← xinit
5 while z < Xgoal do
6 Nout

z ← Near(z,V\{z}, Jth)
7 Xnear = Intersect(Nout

z ,W)
8 for x ∈ Xnear do
9 N in

x ← Near(V\{x}, x, Jth)
10 Ynear ← Intersect(N in

x ,H)
11 ymin ← arg miny∈Ynear {Cost(y,T = (V, E))+Cost(yx)}
12 if CollisionFree(ymin, x) then
13 E ← E ∪ {(ymin, x)}
14 H ← H ∪ {x}
15 W ← W\{x}
16 H ← H\{z}
17 if H = ∅ then
18 return Failure
19 z ← arg miny∈H {Cost(y,T = (V, E))}
20 return Path(z,T = (V, E))

III.B. Machine Learning of Neighborhoods

This section details the use of machine learning algorithms for rapid approximation of reachable sets of dynamical

systems; i.e. “state neighborhoods”. We argue that this concept—which was introduced in the authors’ prior work

[9]—stands an important contribution of this body of work.

When the terminal states, xinit andXgoal, are introduced at online initiation they must be connected to the pre-sampled

states before the motion planner can execute. Naively connecting the terminal states to all pre-sampled states would

require O(Ns) calls to SolveOBVP, which is prohibitively many to execute in real-time. Instead we seek to only

connect the terminal states with their nearest neighbors, as defined by the cost-limited reachable set (see Figure 4). By

limiting edge connections from the terminal states to a fixed number of states in their respective neighborhoods we have

effectively reduced the number of online OBVPs to O(1). This reduction in online OBVPs lies at the core of achieving

real-time execution of a kinodynamic planner‖.

A conceptual diagram of a cost-limited reachable set, i.e. neighborhood, of a given state is represented in Figure 4.

The mathematical definition of the “outgoing neighborhood” or forward cost-limited reachable set of a state xa is:

Rout (xa,U, Jth) := {xb ∈ X | ∃u ∈ U and ∃t ′ ∈
[
t0, t f

]
s.t. x (t ′) = xb and J ∗ ≤ Jth}, (3)

‖It is worth noting here that, while classification of reachable sets can be leveraged to guarentee execution of the real-time planning framework in
O(1) time, it does not guarentee that a solution will be found inO(1) time. Due to the fact that the machine learning algorithms are not infallible and
misclassifications occur, it is possible that no feasible planning solution will be found even if one exists. Under these circumstances, however, failure
of the planning framework will still be reported withO(1) OBVP evaluations. We spend much of Section V.E discussing the rate of such machine
learning failures and their effect on implementation of the planning framework on physical robots.
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Fig. 4 Conceptual representation of a cost-limited reachable set for a notional 2D dynamical system. Formally,
a (forward) cost-limited reachable set is the set of states that can be reached from a given state with a cost
bounded above by a given threshold (denoted as Jth).

where Jth is a user-defined cost threshold. In plain English, the forward reachable set is the union of all states xb ∈ X

such that the optimal cost, J ∗, to steer the system from xa to xb is less than the cost threshold Jth. Also of importance

is the concept of an “incoming neighborhood” or backward reachable set. The backward reachable set of state xb is the

union of all states, xa, such that xb is in the forward reachable set of xa.

In general the determination of reachability sets is a computationally-expensive problem [34], therefore the real-time

planning framework applies an approximation to the reachable sets based on machine learning. During the offline phase

a support vector machine (SVM) is trained with data stored in Cost and provides a query-based classification of nearest

neighbors. This approach leverage the authors’ prior work [9], which demonstrated the accuracy and efficiency of this

procedure for a number of nonlinear dynamical systems. To elaborate, we seek a function that makes a simple, binary

discrimination:

is the optimal cost to traverse from an arbitrary state xa to an arbitrary state xb less than a given threshold

Jth, or not?

To develop such a function, we leverage the data in Cost to provide training examples. A training example consists of a

initial state xa, final state xb , and optimal cost of traversal between the two. For each training example i = 1, . . . , Ntrain

where Ntrain ≤ Npair, the initial and final states are concatenated into an attribute vector p(i). If the optimal cost of the

training example is less than the user-defined threshold, Jth, then it is given a label y(i) = +1; otherwise it is given label

y(i) = −1. The training of the SVM is accomplished with the optimization given in Eqn. (4) [35]:
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maximize
α

Ntrain∑
i=1

αi −
1
2

Ntrain∑
i, j=1

y(i)y(j)αiαjK
(
p(i), p(j)

)
subject to 0 ≤ αi ≤ C, i = 1, . . . , Ntrain

m∑
i=1

αiy
(i) = 0

(4)

where the αi’s are Lagrange multipliers, C is a user-defined parameter that relaxes the requirement that the training

examples be completely separable, and K(·) is the kernel function. The vectors corresponding to non-zero Lagrange

multipliers αi’s are the support vectors. For this work the kernel function, K , has the form

K(p(1), p(2)) =
(
φ

(
p(1)

)T
φ

(
p(2)

)
+ c

)p
,

where φ is a nonlinear mapping of the attribute vector to a feature vector (see Table 4 for an example of feature vector

used in this work), c is a weighting parameter between first and second order terms, and p is the kernel order chosen by

the user. Once the support vectors are obtained, predictions on reachability for a new OBVP, paramaterized by p̃, can be

made with the predictor

sgn

(
Ntrain∑
i=1

αiy
(i)K

(
p(i), p̃

)
+ b

)
, (5)

where b is a bias term that is determined as a function of the Lagrange multipliers [35].

To contrast this approach with that of prior literature, Leven and Hutchinson used a set of norms in the workspace

and configuration space as a rough surrogate for their desired distance metric of swept volume [6]. If our machine

learning approach were applied to the work in [6], swept volume reachable sets could be directly approximated instead

of having to devise a surrogate function. This allows the flexibility in our framework to be applied to a more general set

of planning problems.

It is important to note that NearSVM is trained on data in Cost which is generated with no knowledge of obstacle

placement. Therefore, NearSVM has no function in predicting obstacle collisions. Collision checking is solely within

the realm of the sampling-based planner discussed in Section III.A. Results on training and testing of the SVM classifier

for a quadrotor system are presented in Section V.E.

III.C. Solving Optimal Boundary Value Problems

In order to train the NearSVM algorithm for state neighborhood estimation, it is necessary to solve a large number of

optimal boundary value problems for the system of interest in order to produce “true” examples of steering problems with
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known optimal cost. As previously noted, solving the large number of OBVPs is accomplished during the offline-phase

of the planning framework, the results of which are stored in the Cost data structure. Until this point, though, we have

not discussed how such OBVPs may be solved. Sections IV.B and IV.C detail the solution to OBVPs for a quadrotor

system; however this is not generally applicable to all dynamic systems. In order to address Motivating Question 1 in

Section I, here we dedicate discussion to the solution of OBVPs for a general system with dynamics described by Eqn.

(1) (we again emphasize that this section does not consider the obstacles presented in Eqn. (1), just the differential

constraints). Note that this section is a restatement of material described in the authors’ prior work [9], but it is included

here for completeness.

The solution to an optimal boundary value problem with differential constraints described in Eqn. (1) is obtained in

a two-step fashion. First the continuous-time problem is time-discretized and transformed into a nonlinear programming

problem (NLP). Subsequently an NLP solution technique, such as sequential quadratic programming (SQP) [36, Ch.

18], is employed to solve the NLP and, therefore, approximate the solution to the original optimal control problem. The

time-discretization method chosen for our work is the Chebyshev Pseudospectral Method [37] because of its accuracy

and ability to extend to more general dynamic constraints (e.g. differential-algebraic equations or differential inclusions).

This method works by approximating the state, x(t), and control, u(t), trajectories with nth degree Lagrange polynomials

and then only enforcing the dynamic constraints, fl ≤ f [ Ûx(t), x(t), u(t), t] ≤ fu , at the Chebyshev-Gauss-Lobatto (CGL)

points. This creates a NLP problem where the solution vector contains the values of the state and control variables at

these CGL points. As shown in [37], the NLP transformation of an optimal boundary value problem is given as:

minimize
X,U

Jn
[
X,U, τf

]
subject to gl ≤ g [xk, uk, τk] ≤ gu

f

[
2

τb − τa
dk, xk, uk, τk

]
= 0

x (τ0) = xa, x
(
τf

)
= xb

for k = 0, ..., n,

(6)

where Jn is the nth order approximation of the cost function, xk ∈ X and uk ∈ U are the state and control values at

the CGL points, X = [x0, . . . , xn] andU = [u0, . . . , un], τ is a transformed time variable, g is a condensed representation

of the state and control constraints, and dk is a product of a differentiation operation. For brevity we omit some of the

details of Eqn. (6); however these details are well discussed in Fahroo and Ross [37]. Even though we have successfully

discretized the OBVP, there is no known analytical solution to the resulting nonlinear programming problem. As

previously mentioned, sequential quadratic programming (SQP) is a well-established technique for such problems, and

although it offers no guarantees of a solution, the technique is commonly used [36, Ch. 18]. Attempting to solve the
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NLP presented in equation (6) with use of a SQP technique requires an initial guess. For the cases studied in the authors’

prior work [9], a linear interpolation between boundary values proved sufficient for such a guess.

For the training of the machine learning algorithm in Section III.B, any OBVPs with infinite cost—i.e. those

with no feasible solution to the NLP given in equation (6)—should be neglected from the training set. To ensure a

well-distributed sampling of the training queries, training data can be generated using the Halton sequence, assuming a

hypercubical state space.

It is worth again noting that the approach to solving OBVPs found here in Section III.C is later superseded by the

quadrotor-specific approach found in Section IV; however Section III.C is included for completeness in addressing

Motivating Question 1.

IV. REAL-TIME QUADROTOR PLANNING FRAMEWORK
In this section we seek to address Motivating Question 2 by detailing the steps necessary to apply the generalized

framework developed in Section III to a quadrotor system. Sections IV.A and IV.B present a nonlinear and linearized

dynamics model of the quadrotor system, respectively. Section IV.C then provides an analytical solution to boundary

value problems described by the linearized quadrotor model in Section IV.B. Sections IV.D and IV.E detail the

differentially flat properties of the quadrotor system and how this can be utilized for trajectory smoothing and control.

Section IV.F describes how the motion plan is communicated to- and executed on the low level flight controller.

Note that Sections IV.A, IV.B, IV.C, IV.D, and IV.E are included here for completeness but do not represent new

contributions on our part. For the most part these sections constitute restatements of existing literature with slight

modifications on notation to suit our purposes.

In contrast, Section IV.F details a newly devised quadrotor flight controller architecture that blends control inputs

from polynomial spline trajectories with a “locally reactive” forcing function to produce smooth, reliable path following

behavior in the presence of dynamic obstacles. Section IV.F constitutes an important contribution of this paper in terms

of achieving physical demonstrations of kinodynamic planning and obstacle avoidance.

IV.A. Nonlinear Quadrotor Dynamics

A quadrotor is modeled as an underactuated rigid body where net thrust is constrained along the −®zB axis (see Figure

5). The diagram given in Figure 5 represents the relevant coordinate frames and variables for the quadrotor planning and

control problem. The world frame, W , is an inertial frame, which is implemented in our case with a North-East-Down

(NED) orientation. The body-fixed frame, B, translates and rotates with the quadrotor. The nominal frame, N , is a

target frame for trajectory tracking; therefore in perfect trajectory tracking B = N . The quadrotor dynamics are given in
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Eqn. (7) [38]:
Û®ξB =

dW ®ξB
dt

,

Ü®ξB = mg®zW − u1®zB,

ÛRBW = RBW Ω̂BW ,

JB
Û®ΩBW =

[ u2
u3
u4

]
− ®ΩBW × JB ®ΩBW .

(7)

f1

f2f3

f4

®ξB

®zB

®xB

®yB

®xW
®yW ®zW

®ξNψ
®zN

®xN
®yN

Fig. 5 Diagram of quadrotor dynamics with world (inertial), body, and nominal reference frames.

The state vector is given by x =
[
®ξB,
Û®ξB, RBW , ®ΩBW

]T
∈ R9 × SO(3) where ®ξB is the position of the body frame,

Û®ξB is the velocity of the body frame, RBW is the rotation matrix from the body frame to the world frame, ®ΩBW is the

angular velocity of the body frame with respect to the world frame, and g is the gravity acceleration. The quadrotor

mass is given by m. The control vector is given by u =
[
FzB, MxB, MyB, MzB

]
∈ R4 where FzB is the force applied

along the body z-axis due to net thrust; and MxB, MyB, and MzB are the moments about the body x, y, and z axes,

respectively, due to individual rotor thrusts or torque. Note that ·̂ denotes the hat-map (i.e., an isomorphism between

3 × 3 skew-symmetric matrices and vectors in R3) [38].

IV.B. Approximate Quadrotor Dynamics

There are no known analytical solutions to the minimum-time optimal control problem under the quadrotor’s

nonlinear dynamics represented in Eqn. (7). While numerical solutions are possible using the techniques to solve general

OBVPs described in Section III.C, we can reduce computation time by customizing our approach to the quadrotor

system. To minimize online computation times we apply an approximator-corrector structure to our framework. The

quadrotor is first approximated as a double integrator system, which allows analytical treatment for the unobstructed

minimal-time control problem. These minimal-time control problems, which are subproblems to the overall planning

problem, serve to connect edges in the sampling based planner; see Section III.A and IV.C for more details. At the end
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of the planning process, the solution trajectory is mapped, or “corrected”, back into the fully nonlinear dynamics by

leveraging the property of differential flatness; see Section IV.E and Mellinger and Kumar [15]. The double integrator

dynamics are given as

Ûx(t) = Ax + Bu + c

where: A =


0 I

0 0

 , B =


0

I

 , c =


0

g

 , x =


®ξB

Û®ξB

 ∈ R
6, u = Ü®ξB ∈ R3.

(8)

Note that this approximator-corrector approach for the quadrotor dynamics is one of several trade-offs that arise

from trying to address, simultaneously, both motivational questions stated in Section I. The framework presented is

indeed general enough to accommodate the fully nonlinear dynamics of the quadrotor, however, it is desirable to apply

an approximation (along with the later correction) to improve online performance during physical demonstrations.

IV.C. Solving the Minimum-Time Double Integrator OBVP

In contrast to other works such as Leven and Hutchinson [6] and Richter et al. [13] that use straight line connections

between states, we require the solution to an optimal boundary value problem to connect sampled states. As explained

in Section IV.B, we minimize computations by approximating our system as the double integrator given in Eqn (8). This

approximation enables partial-analytical solutions to the optimal boundary value problem between two sampled states,

which is executed in the SolveOBVP algorithm. The approximation is corrected for in Section IV.E. The results in this

section come from the works [22, 39].

To address control constraints on thrust, a control penalty term is added to the minimum-time cost function, that is:

J[u, τ] =
∫ τ

0
1 + u[t]TRuu[t] dt, (9)

where Ru ∈ R
m×m is symmetric positive definite. For a fixed final time, τ, the optimal cost J ∗ for the control-penalized

double integrator model is given in closed form by Eqn. (10) where Ru = wR I and wR is the control penalty weight

[22, 39]:

J ∗[τ] = τ + (x − x̄[τ])T d[τ]. (10)

The corresponding control and state trajectories as functions of time t, for a fixed final time τ, are given in Eqn.

(11), respectively [22, 39]:
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u[t] = R−1
u BTexp

[
AT(τ − t)

]
d[τ],

x[t] = x̄[t] + G[t]exp
[
AT(τ − t)

]
d[τ],

(11)

where

d[τ] = G[τ]−1 (x − x̄[τ]) ,

G[t] =
1
wR


t3/3 0 0 t2/2 0 0

0 t3/3 0 0 t2/2 0
0 0 t3/3 0 0 t2/2

t2/2 0 0 t 0 0
0 t2/2 0 0 t 0
0 0 t2/2 0 0 t


,

x̄[t] = exp [At] x0 +
[
0, 0, gt2/2, 0, 0, gt

]T
.

(12)

Note that Eqns. (10) and (11) require a fixed final time τ. The optimal final time, τ∗ = argminJ[τ], can be solved

for via a bisection search of Eqn. (10).

At this point the reader may question the need for the machine learning techniques discussed in Section III.B if state

connections for quadrotor planning are to be resolved with a minimum-time double integrator boundary value problem

for which the solution has just been given. In response to this potential question, two notes are to be made. First, the

solution to the minimum-time OBVP is not entirely analytical, requiring a bisection search to optimize for time. While

the bisection search is relatively fast compared to attempting the solution of a nonlinear OBVP, it is still slower than the

machine learning approach; see Section V.E for numerical results. As a second note, this again highlights the balancing

act attempted between Motivating Questions 1 and 2, whereby the general framework developed in Section III—that

relies heavily on the use of machine learning to estimate state neighborhoods for systems that lack analytical solutions

for OBVPs—is customized to a specific system that admits analytical treatment (i.e. the quadrotor) in order to maximize

performance.

IV.D. Minimum-Snap Trajectory Smoother

Trajectory smoothing is commonly implemented in motion planning to improve the quality of the trajectory returned

by the planner. Furthermore, in our case, we need to correct for the double integrator approximation previously made. To

this end we improve the sampling-based planner’s solution computed via kino-FMT∗ by connecting the solution samples

with a high-order polynomial spline. Building on Mellinger and Kumar’s work [15], Richter et al. [13] formulate the

spline determination as an unconstrained quadratic programming problem that minimizes the integral of the square of

the snap (i.e. the 4th derivative of position); see Eqn. (13). In the unconstrained formulation, derivatives at samples of

the motion plan, i.e. waypoints, are left as free parameters for optimization. For completeness we present the essential
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results of Richter et al. as they are used in our current approach [13, 14].

Our goal in this section is to determine the coefficients of M polynomials of order N . These polynomials form

a spline that is continuous up to the 4th derivative and passes through the sampled states, or “nodes”, of the solution

trajectory determined in Section III.A. While an infinite number of splines may exist that satisfy these conditions, we

seek the spline that minimizes the integral of the square of the snap. Let us begin by considering a single polynomial

P(t) =
∑N

n=0 pntn. The minimum-snap cost function for a single polynomial is defined as

Jsnap =
∫ T

0
P(4)(t)2 dt = pTQ(T)p, (13)

where Q(T) is the Hessian matrix of Jsnap with respect to the polynomial coefficients, p is a vector of the N + 1

polynomial coefficients, and T is the polynomial segment time which is determined by the kinodynamic planner. The

superscript “(4)” implies the 4th derivative of the polynomial. Without derivation, the Hessian matrix is given as∗∗

Qi, j(T) = 2

( 3∏
k=0
(i − k)( j − k)

)
T i+j−7

i + j − 7
for: i ≥ 4 ∧ j ≥ 4,

Qi, j(T) = 0 otherwise.

(14)

As previously mentioned, the polynomial is constrained at its terminal points, t = 0 and t = T , to the waypoints of the

motion plan determined in Section III.A. The derivatives of the polynomial at its terminal points can be fixed or left as

free parameters for optimization. Even as free parameters, however, the derivatives must satisfy continuity between

polynomials in the spline. These constraints can be encoded as the linear function

Ap = d (15)

A =


A0

AT

 , d =


d0

dT

 , (16)

where the terms are given as

A0i, j =


∏i−1

k=0(i − k) if i = j

0 if i , j
(17)

d0i = P(i)(0) (18)
∗∗Note that we diverge from Richter et al. by only considering the minimization on the 4th derivative, where Richter et al. leaves the formulation

more general as a weighted sum of squares of derivatives. Furthermore, due to the fact that Richter et al. uses a geometric planner to determine
waypoints, his approach requires a time allocation optimization to determine polynomial segment times, T [13, 14]. In contrast, our work determines
the polynomial segment times during the time-minimizing kinodynamic planning; see Section III.A.
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ATi, j =


(∏i−1

k=0(i − k)
)

T i−j if i ≥ j

0 if i < j
(19)

dTi = P(i)(T) (20)

Numerical stability can be achieved by reformulating the constrained problem represented in Eqns. (13) and (16) as an

unconstrained optimization [13, 14]. This is achieved by optimizing over the polynomial derivatives at the terminal

points instead of the polynomial coefficients. Under this reformulation, Eqns. (13) and (16) become

Jsnap = dTA−TQ(T)A−1d, (21)

and the polynomial coefficients are determined, a posteriori, via inversion of Eqn. (15).

Now that we have formulated the optimization problem for a single polynomial, we must consider the optimization

over the spline of M polynomials. To this end we form A1...M and Q1...M which are block diagonal matrices composed

of the A and Q matrices for each segment. We could also simply concatenate the derivative vectors into a vector d1...M ,

however it is desirable to separate this vector into components that are fixed and those that are free parameters of

optimization. Therefore the derivative vector for the spline optimization is formed as

dtotal =


dfix

dfree

 . (22)

With this reordering of the derivative vector in Eqn. (22), an ordering matrix C is required that preserves the

proper relationships with the block matrices A1...M and Q1...M . Furthermore, the ordering matrix C also encodes the

enforcement of continuity of derivatives at intermediate waypoints. Now the minimum-snap cost function for the entire

spline is given as

Jsnap = dTtotalCA−T1...MQ1...M A1...MCTdtotal. (23)

For simplicity, define the matrix H = CA−T1...MQ1...M A1...MCT and partition it such that Eqn. (23) can be written

Jsnap =


dfix

dfree


T 

H11 H12

H21 H22



dfix

dfree

 . (24)

Differentiating and setting to zero solves for the free derivatives at the waypoints

d∗free = −H−1
22 HT

12dfix. (25)
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Now that the derivatives at each waypoint are determined, the polynomial coefficients can be determined by inverting

Eqn. (15). This process is applied for the determination of four splines: x, y, and z positions and yaw. These splines

correspond to the differential flat output variables discussed in Section IV.E.

It is important to note here that once smoothing is applied, the trajectory is no longer guaranteed to be collision

free. Therefore it is necessary to perform an additional collision checking phase during the trajectory smoothing phase.

If one of the polynomials in the spline is found to collide with an obstacle, then a new smoothed trajectory must be

determined. This is accomplished by sampling the midpoint of the underlying motion plan solution which is guaranteed

to be collision free (else it would have not been selected as a valid motion plan). The trajectory smoother than solves the

minimum-snap optimization problem for M + 1 trajectory segments. This is repeated until the smoothed trajectory is

collision free. See Richter et al. for more details [13, 14].

IV.E. Differentially Flat Mapping

The trajectory smoother from Section IV.D produces polynomial splines for position and yaw that are continuous up

to their fourth derivative. Mellinger and Kumar showed that the state and control variables for the nonlinear quadrotor

dynamics can be expressed in terms of ®ξN and ψN and their derivatives up to fourth order; thus proving Eqn. (7)

represents a differentially flat system with flat output variables ®ξN and ψN [15]. This mathematical property proves

that the smoothed trajectory from Section IV.D is guaranteed to be dynamically feasible for the quadrotor; therefore

correcting the double-integrator approximation made to solve the planning problem. For completeness we state the

results of Mellinger and Kumar for the mapping from the flat outputs to the nominal state and control variables. Note

that, while the following equations are taken almost directly from [15], there are some subtle coordinate frame changes.

The nominal position and velocity state variables are identically ®ξN and Û®ξN , respectively. The thrust control variable

is given as

u1ff = −®zB · ®FN, where: ®FN = m Ü®ξN − mg®zW . (26)

The subscript ff indicate that this thrust value appears as a feedforward term in the flight controller (Section IV.F).

The nominal orientation matrix is given by the nominal frame axes represented in world coordinates:

®RN =
[
W ®xN, W ®yN, W ®zN

]
, (27)

where
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®zN = −
®FN

‖ ®FN ‖

®yS = [−sinψN, cosψN, 0]T

®xN =
®yS × ®zN
‖ ®yS × ®zN ‖

®yN = ®zN × ®xN .

(28)

The nominal angular velocity vector is given by

®ΩNW = pN ®xN + qN ®yN + rN ®zN, (29)

where the individual components of the nominal angular velocity are

pN = −®hΩ · ®yN

qN = ®hΩ · ®xN

rN = ÛψN ®zW · ®zN

(30)

For compactness we have defined

®hΩ =
m

u1ff

((
®ξ
(3)
N · ®zN

)
®zN − ®ξ

(3)
N

)
. (31)

The nominal angular acceleration, used in the calculation of the feedforward moment terms, is derived to be

Û®ΩNW = α1N ®xN + α2N ®yN + α3N ®zN, (32)

where the individual components of the nominal angular acceleration are

α1N = −
®hα · ®yN

α2N =
®hα · ®xN

α3N =
(
ÜψN ®zN − ÛψN

®hΩ
)
· ®zW

(33)

For compactness we again define a new variable

®hα = −
1

u1ff

(
m ®ξ(4)N + Üu1ff ®zN + 2 Ûu1ff

®ΩNW × ®zN + ®ΩNW × ®ΩNW × ®zN
)
. (34)

The derivatives of the net thrust, which appear in Eqn (34), are derived to be
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Ûu1ff = −m ®ξ(3)N · ®zN

Üu1ff = −
(
m ®ξ(4)N + ®ΩNW × ®ΩNW × ®zN

)
· ®zN

(35)

Note that the equations presented in this section are taken almost directly from Mellinger and Kumar [15] but are stated

here for completeness of our approach.

IV.F. Flight Controller

In this section we describe how the results of the real-time kinodynamic planner are interpreted by the quadrotor’s

flight controller. Additionally we present new, previously unpublished work on a “locally reactive” control function that

enables more reliable, graceful flight maneuvers in close proximity to obstacles.

The flight controller synthesizes work by Lee et al. [38] with Ge and Cui [32] and is composed of three parts: a

feedforward component, a feedback component, and a “locally reactive” component. Feedforward inputs, denoted with

subscript “ff”, are generated from the differentially flat mapping in Section IV.E and feedback terms, denoted with

subscript “fb”, are generated via proportional-derivative (PD) tracking of position, velocity, orientation and angular

velocity. The locally reactive terms, denoted with subscript “lr”, are loosely based on the concept of potential fields

where proximity to obstacles create a virtual force to “push” the quadrotor away (i.e. the quadrotor reacts to obstacles).

The reactive terms were originated from Ge and Cui’s work, but were modified during experimentation until a desirable

behavior was observed. Since these terms were empirically derived, they no longer represent a gradient of a potential

field. As previously noted, the locally reactive terms of the controller are not necessary to achieve real-time obstacle

avoidance as the planning framework is fast enough to account for dynamic obstacles on its own. During flight tests,

however, the locally reactive controller terms significantly improved the performance of the quadrotor by generating

more predictable, graceful manuevers. Equation (36) gives the net thrust control input due to the feedforward, feedback,

and locally reactive components.

u1 = u1ff + u1fb + u1lr

= −®zB ·
(
®Fff + ®Ffb + ®Flr

)
= −®zB ·

(
m Ü®ξN − mg®zW + Kξ ®eξ + Kv ®ev + ®Flr

) (36)

Equation (37) presents the control inputs for the moments about the body axes.

[u2, u3, u4]
T = [u2, u3, u4]

T
ff + [u2, u3, u4]

T
fb

= JB
(
RT
BRN

Û®ΩBW − ®ΩBW ×

(
RT
BRN

®ΩBW

))
+ ®ΩBW × JB ®ΩBW + KR ®eR + KΩ ®eΩ.

(37)

The error terms for feedback control are given by Eqn. (38) [38]
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®eξ = ®ξN − ®ξ

®ev =
Û®ξN −

Û®ξ

®eR =
1
2

(
RT
BRD − RT

DRB

)∨
®eΩ = RT

BRD
®ΩD − ®ΩB

(38)

where ∨ represents the vee-map; the inverse of the hat-map. The matrices Kξ,Kv,KR,KΩ ∈ R3×3 are user-defined gain

matrices for PD trajectory tracking.

The rotation matrix RD represents the desired orientation to account for feedback and locally reactive terms. This is

distinct from the nominal orientation RN that is independent of feedback and obstacle influence. During perfect trajectory

tracking with no nearby obstacles one has RN = RD = RB. The rotation matrix RD is calculated by substituting

®Fff + ®Ffb + ®Flr into Equation 26 and proceeding with Equations 27 and 28.

The locally reactive force term, ®Flr, in Equation 36 is calculated based on obstacle proximity and velocity via

®Flr =

nobs∑
i=1

1
| |®ri | |

2
(
−ηr n̂i + ηvavni n̂i − ηvpvni

(
vni n̂i − ®vi

) )
, (39)

where nobs is the number of obstacles, ®ri is the position of the closest point on the ith obstacle with respect to the

quadrotor body frame, n̂i is the unit vector in the ®ri direction, ®vi is the relative velocity of the ith obstacle with respect to

the quadrotor, and vni = ®vi · n̂i . The first two terms in Equation 39 represents a repulsive force due to obstacle relative

position and velocity, respectively. The third term is a steering term due to obstacle relative velocity. The variables ηr ,

ηva, and ηvp are weighting factors for position, aligned velocity, and perpendicular velocity, respectively. For obstacles

outside of a user-defined influence region, the locally reactive force in Equation 39 is set to zero. Furthermore, if vni < 0

then the velocity terms of Equation 39 are set to zero.

It should be again noted that this locally reactive control is non-essential for addressing the motivating questions in

Section I; however it improves performance during physical demonstrations by minimizing the number of replanning

events necessary by avoiding occlusion of the existing motion plan. Distinguishing the locally reactive control as

non-essential is important because it does require additional obstacle information that is not required by the rest of

the framework; that is position and velocity data for each obstacle as opposed to just collision detection. Fortunately,

the formulation of the locally reactive control layer only utilizes obstacle information in the workspace, not in the

configuration space, therefore requiring very little computational overhead. However, if we want to be more strict with

our assumptions of obstacle data, we could eliminate the locally reactive control without sacrificing the real-time planner

as a whole.
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Fig. 6 An instance of one of the simulated flight tests with a 3D maze of wall structures and randomly placed
spherical obstacles.

V. EXPERIMENTAL VALIDATION
We validate the proposed real-time framework in both simulation and physical experiments. In this section we

describe the results of these test campaigns.

V.A. Simulated Results

While physical demonstrations are the ultimate test of the framework’s effectiveness, limited laboratory space

constrains the number and complexity of obstacles sets that can be tested. Therefore a simulation with a maze of

obstacles is devised to validate our approach in more complex environments. The simulated environment consists of a

corridor with dimensions 20m × 4m × 4m with the start and goal states randomly generated from opposing ends of the

corridor. Cuboid obstacles are arranged to create a 3-dimensional “maze”. A fixed number of spherical obstacles with

radii of one meter are placed at random to ensure that we have not inadvertently tailored our algorithm to this specific

cuboid-maze obstacle set††. Figure 6 gives an instance of this obstacle configuration and associated solution. The start

state is shown on the left side of the image and the goal state is obscured by the final obstacle on the right. The initial

motion plan, as returned by kino-FMT∗ (see Section III.A), is indicated in blue and the smoothed, dynamically feasible

trajectory (see Section IV.D) is indicated in multicolor.

To asses the performance of the real-time motion planner, we consider the following metrics: (1) online computation

time, (2) solution cost, (3) failure rate, and (4) classification accuracy of reachable sets by the machine learning algorithm.

In Sections V.A - V.D we explain the experimental setup and discuss the performance in terms of computation time,

solution cost, and failure rate; saving discussion of the machine learning performance for Section V.E.

Through the simulated test campaign it was determined that the performance metrics were most dependent upon

two design variables: number of sampled states and number of terminal state neighbor connections; and a third,
††Note that the framework developed in Sections III and IV is in no way restricted to cuboid and spherical obstacles. For implementation, however,

we choose relatively simplistic obstacles because the development of sophisticated collision checking routines is outside the scope of this paper.
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Table 1 Trajectory cost and computation time breakdown for the Real-Time Kinodynamic Framework for a
range of design variables

Design Variables Performance Metrics

# Samples
# Terminal

State
Neighbors

Avg. Trajectory
Cost [s]

Avg.
Computation

Time [s]

Fi
xe
d
N
um

be
rs

150 10 8.91 0.060
250 10 8.16 0.067
500 10 7.35 0.110
1000 10 7.14 0.280
2000 10 7.05 0.985
3000 10 6.95 2.289

Fi
xe
d
R
at
io
s

150 15 8.58 0.065
250 25 7.85 0.081
500 50 6.79 0.154
1000 100 6.33 0.394
2000 200 5.91 1.268
3000 300 5.80 2.632

situation-dependent variable: obstacle coverage. The simulated test campaign involved selecting values for the design

variables and executing 100 trials for each combination. For each trial the start state, goal state, and spherical obstacle

placement were randomized. We summarize the trade-offs between design variables and performance metrics in Table 1.

Figures 7 and 8 illustrate the trends of performance metrics as functions of the design variables. As expected, with

increasing number of samples Ns , the solution cost, J , decreases while computation time increases. Based on Figure 7,

we can see that Ns = 500 is an acceptable sample density for this obstacle configuration as there is marginal decrease in

solution cost for higher sample numbers. As shown in Table 1, 500 samples corresponds to an average solution time

of 0.110 seconds for a fixed number of terminal state neighbors and 0.154 seconds for a fixed ratio of terminal state

neighbors. It is argued that these computation times represent “real-time” planning; we verify this claim with physical

demonstrations in Section V.C and compare to computation times in the existing literature in Section V.D.

The effect of neighborhood sizes for the terminal states (i.e., the number of states in the pre-sampled set V for which

connections are made to the start and goal states) is also presented in Figures 7 and 8. For the fixed number of terminal

state neighbors, the start and goal states are connected to the precomputed roadmap at the 10 closest states in the set

of pre-sampled states, V ; where closeness is approximated by the machine learning algorithm. For the fixed ratio of

terminal state neighbors, the start and goal states are connected to the closest 10 percent of the set V . Each connection

between the terminal states and the precomputed roadmap constitutes an online OBVP solution; therefore the fixed

number corresponds to O(1) online OBVPs, where the fixed ratio corresponds to O(Ns) online OBVPs.

This comparison of number of terminal state neighbors is made to determine the effect of restricting the online
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Fig. 7 Average trajectory cost as a function of number of state samples and number of terminal state neighbors
for a fixed obstacle coverage.

Fig. 8 Average online computation time as a function of number of state samples and number of terminal state
neighbors for a fixed obstacle coverage.
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Fig. 9 Rate of failure to find solution as a function of approximate obstacle coverage for a range of sample
sizes.

OBVP solutions to constant order, which is argued to be an enabling technique for real-time kinodynamic planning.

From Figure 8 we see that, indeed, restriction of terminal state neighbors leads to a reduction in online computation

time of up to 15%. While 15% is not a staggering difference in computation time, it is important to note that this is only

representative of the quadrotor system where much work has been done to minimize the computation time for OBVPs

(see Section IV.C). For more general systems where OBVPs may be very computationally expensive, this restriction to

O(1) online OBVPs may reduce online planning times by several orders of magnitude [9]. The decrease in computation

time, however, comes at the expense of increased solution cost as indicated by Figure 7.

Another insightful question is, for a given obstacle coverage, what is the appropriate number of samples?. As

indicated by Figure 8, it is desirable to use the minimum number of samples, Ns, while still achieving acceptable

solution cost, as this requires the minimum computation. Since the data given in Table 1 only represents a single obstacle

coverage, a second test campaign was run to determine the necessary sample count as a function of obstacle coverage.

Figures 9, 10, and 11 summarize the data from this second test campaign. Note that we referred to approximate obstacle

coverage which is measured as the ratio of obstacle volume to unobstructed workspace volume. This value may be

greater than one because obstacles were placed at random and overlapping volumes were double counted.

We immediately see several trends in the data that we expect. First, Figure 9 shows that as the obstacle coverage

increases, we must use larger sample numbers to prevent planner failure. Lower sample numbers, Ns < 500, quickly

rise to 100% failure with increasing obstacle coverage. Note that for sample counts of Ns = {1000, 2000, 3000}, the

curves diverge from 0% failure at roughly the same obstacle volume ratio. Therefore, Ns = 1000 is a favorable sample

count because higher sample counts give no better guarantees for 0% failure at higher obstacle coverage.

Figure 10 gives average cost of a solution trajectory as a function of obstacle coverage and sample count. We see

two expected trends: solution cost increases with increasing obstacle coverage and decreases with increasing samples

count (as was indicated in Figure 7). We also see that there is marginal improvement in solution cost beyond a sample
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Fig. 10 Average solution trajectory cost as a function of approximate obstacle coverage for a range of sample
sizes.

Fig. 11 Average computation time as a function of approximate obstacle coverage for a range of sample sizes.
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count of 2000.

Figure 11 gives the online computation time as a function of sample count and obstacle coverage. Again we see the

expected trends that computation time increases with increasing obstacle count and with increasing sample count. In

more detail, we see that computation time roughly doubles for each tier of sample counts. This leads to large increases

in computation time for sample counts greater than 1000. Based on this observation, plus the observation that there

is marginal improvement in solution cost beyond Ns = 2000, plus the observation that Ns = {1000, 2000, 3000} all

diverge from 0% failure at the same obstacle coverage, we assert that Ns = 1000 is the best suited sample count for our

physical experiments. Figure 11 shows that computation times for Ns = 1000 are less than 0.5 seconds, even in the

worst case. One unexpected feature of Figure 11 that should be explained is the slight decrease in computation time

with increase in obstacle volume ratio beyon 1.0 for the 3000 sample set of trials. This effect is due to cases where the

planner fails to find a solution (see Figure 9). After we reach an obstacle coverage threshold where the planner starts to

fail to find a solution, adding more obstacle coverage can cause the planner to fail even earlier in the planning process,

thus slightly reducing the average computation time.

The simulation test campaign verifies that real-time planning framework achieves computation times of well below 1

second—typically on the order of 0.1 second with 0.5 second as a worst case—for a wide range of obstacle coverage.

The test campaign also gives us the empirically derived value of Ns = 1000 as an acceptable sample count for the indoor

environments and obstacle configurations considered in this paper. Now we test the effectiveness of the framework on a

physical system navigating dynamic obstacles.

V.B. Experimental Flight Setup

The real-time framework is demonstrated on a Pixhawk autopilot flown on a DJI F-450 and F-330 frame. Positioning

information is provided by a Vicon motion tracker with data streamed to the quadrotor via a Wifly RN-XV module.

Currently the motion planning and path smoothing computations are run in MATLAB/C++ on a single-threaded Intel

Core i7-4790K CPU. The final trajectory is transmitted to the Pixhawk for low-level flight control. This communication

structure is represented in Figure 12. Table 2 gives detailed information on the computational platform and programming

language for each of the major components of the framework discussed in Sections III and IV. Future work will convert

all portions of the online phase (see Alg. 2) to C++ to be run on an embedded processor on the quadrotor.

The quadrotor is navigating an indoor environment with dimensions of approximately 3m×4m×3m. The framework

was tested on a range of obstacle sets, two of which are discussed in detail in Section V.C.

V.C. Experimental Flight Results

The real-time kinodynamic planner was successfully demonstrated in a campaign of flight tests. The test campaign

was executed in the indoor environment of the Autonomous Systems Laboratory at Stanford University. During the
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Table 2 Computational platform and programming language for the major components of the real-time
framework.

Process Reference Processor Language
localization NA workstation C++

precomputations III & IV workstation MATLAB
neighborhood estimation III.B workstation MATLAB

OBVP solutions IV.C workstation MATLAB
sampling-based planning III.A workstation C++
min-snap smoothing IV.D workstation MATLAB

flat-to-nonlinear mapping IV.E Pixhawk C/C++
flight control IV.F Pixhawk C/C++

Fig. 12 Communication/computation structure for flight tests.
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Fig. 13 Timelapse of quadrotor navigating static obstacles.

campaign the quadrotor utilized the real-time planner to navigate a set of static and dynamic obstacles. Netting was

hung from the ceiling to create maze-like environments while a human-subject would swing objects to create dynamic

obstacles.

Figure 13 gives a timelapse of the most basic flight test performed: The quadrotor navigating a set of parallel walls

with no dynamic obstacles present. The walls are arranged to create a z-shaped corridor 1.5m in width. This test acted

as the first validating experiment for the real-time kinodynamic planner. The solution used 500 sampled states and

required 0.313 seconds of online computation time. This test also demonstrated the agility of the quadrotor platform as

indicated by the banked turns as it rounded the corners. Building from this initial experiment, originally presented in

Allen and Pavone [10], the planning code was optimized to further reduce computation times and dynamic obstacles

were introduced.

In the first physical experiments with dynamic obstacles, shown in a sequence of images in Figure 14, the autonomous

quadrotor is presented with a single obstacle in between its start state and its goal region. This creates two doors, each

roughly one meter in width, from which the quadrotor can “choose” to navigate. When the real-time planner completes,

the quadrotor begins executing the trajectory through the nearest of the two doors. Upon nearing the door, a human

subject enters and presents a dynamic obstacle; in this demonstration the obstacle is the point of a fencing blade which

is numerically expanded to a sphere with radius equal to the arm length of the quadrotor. The human subject continues

to approach the quadrotor, causing it to be “pushed back” due to the reactive controller (see Section IV.F), until the

existing trajectory is completely obstructed and replanning is initiated. Figure 14 shows the moment of replanning along

with the solution provided by the real-time planning framework. Due to the proximity to the initially chosen door, the

quadrotor executes three planning cycles that attempt to navigate the initial door and the dynamic obstacle. Since the

dynamic obstacle is acting adversarially, always obstructing the chosen trajectory, this continues until the quadrotor is

forced to a point where the second door becomes the optimal solution and the quadrotor navigates to the goal region

without further obstruction from the human subject.
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Table 3 Computation time breakdown for the Real-Time Kinodynamic Framework for differing numbers of
sampled states

# of
Samples

Neighbor
Classifier [%]

Neighbor
OBVPs [%]

Kino-FMT*
[%]

Smoothing
[%]

Comms
[%]

500 6.42 37.73 9.43 30.43 25.29
1000 5.31 41.01 13.60 32.70 4.24
2000 4.56 41.65 19.81 26.40 3.38
3000 3.08 53.69 29.74 9.65 1.63

Figure 15 gives a second scenario where the autonomous quadrotor is tasked with navigating a parallel-walled

maze with a corridor of roughly 1.5m in width. Again, a human subject introduces a set of dynamic obstacles to force

online recomputation of the motion plan. During this demonstration the dynamic obstacles are presented immediately

before the quadrotor rounds a corner, causing an abrupt replanning cycle that navigates over- and between the dynamic

obstacles and the wall. Because the human subject does not continue to act adversarially in this case, only a single

recomputation of the motion plan is necessary. Figures 14 and 15 show that the online computation times for planning

are on the order of 1/4 of a second.

Video of some of the flight experiments can be found here:

https://www.youtube.com/watch?v=fv_6KB2eEFc

V.D. Discussion

A primary goal of this work—the goal that is implied by Motivating Question 2 in Section I—is to prove that the

entire planning framework can be executed in real-time on a physical robot. As shown in Figures 14 and 15, we achieve

online computation times between 0.20 sec and 0.33 sec for 1000 sampled nodes. These computation times are in

good agreement with those presented in Section V.A which ranged from 0.11 sec to 0.5 sec for comparable sample

counts. The difference in computation times between simulated and physical experiments are due to differing obstacle

sets (simulated tests being more densely obstructed) and additional computational tasks for physical experiments (e.g.

communication of solution trajectories). To better understand the breakdown of computation time during physical

experiments, Table 3 gives the percentage of computation time for separate tasks in the planner for a range of sample

counts.

Referring to Table 3, the computation time is broken down into percentages for the major components of the

framework: neighborhood classification for the terminal states (see Section III.B); neighborhood OBVP solutions for

the terminal states (see Section IV.C); sampling-based motion planning (see Section III.A); path smoothing to generate

a minimum-snap, dynamically feasible trajectory (see Section IV.D); and communication (see Section V.B). We see that

the majority of the computation time is consumed by the solution of optimal boundary value problems between the

terminal states, xinit and the samples in Xgoal, and their estimated neighborhoods. This result exemplifies the motivation
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Computation
Time [s] Screen Capture Exploration Tree Solution Trajectory

∆t = 0.2518

∆t = 0.2474

∆t = 0.2700

∆t = 0.1997

Fig. 14 Time sequence of real-time planning in “two door” environment with static and dynamic obstacles.
Column 1 gives the online computation time for the planning event. Column 2 gives screen capture of the
moment of replanning. Column 3 gives the tree explored during replanning with the preliminary solution in
blue. Column 4 gives the preliminary planning solution and the smoothed trajectory. Obstacles are represented
by red rectangles or spheres.
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Computation
Time [s] Screen Capture Exploration Tree Solution Trajectory

∆t = 0.3260

∆t = 0.2968

Fig. 15 Time sequence of real-timeplanning in “maze” environmentwith static anddynamic obstacles. Column
1 gives the online computation time for the planning event. Column 2 gives screen capture of the moment of
replanning. Column 3 gives the tree explored during replanning with the preliminary solution in blue. Column
4 gives the preliminary planning solution and the smoothed trajectory. Obstacles are represented by red
rectangles or spheres.
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to minimize the number of online OBVPs to be solved. For the double integrator model of the quadrotor, the average

OBVP solution time is 0.0235 seconds per OBVP solution. In comparison, the average NearSVM classification time is

1.95×10−5 seconds per classification; roughly 1200 times, or three orders of magnitude, faster than OBVP solution.

This rapid approximation of neighborhood sets—in contrast to the explicit neighborhood determination via OBVP

solutions—is the critically enabling component for real-time implementation.

To compare the computation times we achieved to those presented in the existing literature, Webb and van den

Berg simulate an almost identical problem; however they do not perform any path smoothing or communication to a

physical quadrotor [22]. With 1000 sampled states Webb and van den Berg’s solution takes 51.603 seconds; i.e. ~150x,

or 2 orders of magnitude, slower than the technique presented here. Richter et al. do not state the computation time

for motion planning demonstrated in their work [13]. They do, however, give the computation time for a simplified,

2-dimensional problem that incorporates geometric path planning and minimum-snap path smoothing. The simplified,

2D planning problem in Richter et al. takes 3 seconds of computation time; i.e. ~9.1x, or 1 order of magnitude, slower

than the slowest physical experiment computation time presented here. Therefore the real-time kinodynamic framework

demonstrates a significant reduction in computation time when compared to existing techniques.

Frazzoli et al. boasts the most impressive computation times with sub-second execution for the similar, but not

identical, helicopter system navigating static spherical objects [5]. Computation times for dynamic obstacles rise to 10s

of seconds for a parallel wall obstacle set. Therefore we again see our method produce roughly 2 orders of magnitude

improvement in computation time when compared to existing techniques for dynamic obstacles. There are important

caveats to mention when trying to make such a direct comparison with the results of Frazzoli et al. First of all Frazzoli et

al. was written in 2002 and therefore implemented on less advanced computational platforms. Secondly, Frazzoli et al.

only tested simulated systems and did not have to account for the additional computational burdens of implementation

on a physical system; i.e. path smoothing and communication. Furthermore the approach in Frazzoli et al. only sought

feasible trajectories, not necessarily optimal ones. The work employs only a small set of motion primitives—avoiding

the solution to online OBVPs all together–to achieve path planning. Restricting trajectories to a small set of predefined

maneuvers limits the technique’s ability to handle novel, complex, or even pathological obstacle environments.

We note here that our physical demonstrations were not infallible; roughly 50% of experiments ended in some

form of a crash. These failures were found to be due to two factors: poor system identification of the quadrotor

leading to inaccurate dynamic parameters in the flight controller (see Section IV.F), and loss of positioning data due to

exiting Vicon coverage. Both of these failure modes were outside the scope of this work which was solely focused on

developing the real-time planning framework. These failure modes, do however, motivate future work: advanced system

identification for improved controller performance and robust, onboard estimation/localization to eliminate reliance on a

motion capture system.
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Table 4 Feature vector for neighbor determination of the double integrator quadrotor model.

x1 x2 |∆x | (∆x)2 (∆x)3
√
(∆x)2 + (∆y)2 + (∆z)2

y1 y2 |∆y | (∆y)2 (∆y)3
√
(∆ Ûx)2 + (∆ Ûy)2 + (∆ Ûz)2

z1 z2 |∆z | (∆z)2 (∆z)3
√
(∆x)2 + (∆y)2 + (∆z)2 + (∆ Ûx)2 + (∆ Ûy)2 + (∆ Ûz)2

Ûx1 Ûx2 |∆ Ûx | (∆ Ûx)2 (∆ Ûx)3

Ûy1 Ûy2 |∆ Ûy | (∆ Ûy)2 (∆ Ûx)3

Ûz1 Ûz2 |∆ Ûz | (∆ Ûz)2 (∆ Ûx)3

Table 5 Training and testing accuracy of machine-learning-based neighborhood classification algorithm

# Training
Examples

Avg. #
Training
Errors

# Testing
Examples

Avg. #
True

Positives

Avg. #
True

Negatives

Avg. #
False

Positives

Avg. #
False

Negatives

Avg. Testing
Error [%]

20000 0.6 30000 2693 26600.6 371.8 334.6 2.35

V.E. Results for Machine Learning of Reachable Sets

Due to the reliance on machine-learning of neighbor sets, it is important to determine the classification accuracy

of the NearSVM algorithm. In this work we apply the NearSVM algorithm (see Section III.B) to the control-penalized

double integrator system presented in Section IV.C. The state space of the double integrator system in Equation 8 is

6-dimensional. The two boundary values for an OBVP are concatenated into a 12-dimensional attribute vector, given

as p in Equation 4. The feature vector is a 33-element vector, given in Table 4, composed of nonlinear mappings of

elements from the attribute vector. A third order kernel function is chosen; therefore p = 3 in Eqn. (5). For training and

testing of the SVM classifier, 50000 OBVPs are solved from randomly selected pairs of sampled states during the offline

computation phase. A neighbor radius, or cost threshold, is chosen as the 10th quantile of all OBVP costs; which for this

test campaign evaluated to neighbor cost threshold of roughly 0.69 seconds. In other words, for a given state, roughly

10% of all other states are within 0.69 seconds as measured by a minimum-time optimal control problem. To train the

SVM classifier, Ntrain = 20000 of the 50000 OBVP solutions were used with the 0.69 second cost threshold. On average

less than one training error occurred per the 20000 training examples.

The algorithm was tested against 30000 additional OBVP examples to ensure that the SVM was not over-trained to

the training set ‡‡. The average testing error was under 3%, well within the acceptable tolerance for the purpose of this

work and a marked improvement over the author’s prior work on machine learning of cost-limited reachable sets [9].

Table 5 gives the training and testing results. A ‘positive’ indicates that NearSVM classified the OBVP example as within

the cost threshold, and a ‘negative’ indicates a classification of the OBVP outside of the cost threshold. The number of

true positives is roughly 10% of the number of true negatives; as expected with the 10th quantile cost threshold. The

average number of false positives and false negatives are approximately equal indicating that the classifier is not biased
‡‡Typically the training set would be much larger than the testing set, but due to convergence issues while training, the training set was reduced

and the remainder of OBVP examples was dedicated to the testing set.
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toward one classification§§.

The information given in Table 5 only tells us the rate of neighborhood classification error, it does not tell us where

in the state space these misclassifications occur. To form a deeper understanding of where/why misclassification of

neigbhors occur, we illustrate the NearSVM results with a simplified case. Figure 16 presents a set of trials for the

neighborhood classifier when compressed to two spatial dimensions and one velocity dimension. Each trial, represented

by its own image in Figure 16, attempts to classify the reachable neighborhood of an initial state. For each trial, the

initial state is the origin with a y-velocity ranging from 0 m/s to 14 m/s. The final states for each classification are

spread across the xy-axes and all have a final velocity of zero. The neighborhood cost threshold is 2.178 seconds which

corresponds to the 10th quantile of costs for this set of training data.

The reachability of each final state is assessed by solving an OBVP, as discussed in Section IV.C, between the initial

state and each final state. Reachable states are indicated in blue circles and non-reachable are indicated in black triangles.

The machine learning algorithm, NearSVM, is then applied to estimate reachability. Misclassification of reachability,

whether it be a false-positive or false-negative, is indicated by a red star.

As expected, Figure 16 shows that the true reachable set shifts further along the y-axis as the initial velocity in the

y-direction increases. We also see that misclassification of reachability always occurs on the boundary between the

reachable and non-reachable sets. This is a desirable result for a well-trained algorithm. A poorly-trained algorithm

would make classification errors well within the reachable or non-reachable sets. If a poorly trained neighborhood

classifier were used in the real-time planning framework, we would end up solving OBVPs for states that our well

outside of neighborhood—likely leading to collisions with obstacles, increasing computation time—or fail to recognize

nearby states, thus increasing solution cost of our trajectory.

It is important to note that an analytical solution exists for the reachable set of the control penalized double integrator

[22]. The question is then, why would you use the machine learning approximation for reachable sets when an analytical

solution exists? This question lies at the balance point between the two motivating questions presented in Section I.

While we want to demonstrate real-time planning for a quadrotor, we also want to validate a planning framework that is

applicable to a more general set of dynamical systems. Since an arbitrary dynamical system cannot be expected to have

an analytical solution for reachable sets, we maintain the use of the machine learning approach in effort to validate it in

physical experiments.

VI. CONCLUSIONS
This work was motivated by two related, yet distinct, questions: 1. can we produce an algorithmic framework

for solving a general kinodynamic planning problem in real-time; and 2. can such a framework be implemented on
§§For example, we could use a trivial classifier that only predicted negatives and it would return a testing error of 10% because only 10% of cases

are positive. This would actually constitute an acceptable rate of classification error if it were not for the fact that all errors would be false negatives as
the the classifier is trivial. Therefore a well trained classifier should not be biased toward one type of error.
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Fig. 16 Simplified, 2-dimensional reachable set classification. For all cases, the start state is at the origin with
an initial velocity in the y-direction. The final states all have a velocity of zero.
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a real-world system—such as a quadrotor—and proven to be effective at navigating an obstructed environment with

dynamic obstacles. These questions were addressed by the development of a full-stack planning architecture that is

broad enough to encompasses a wide range of kinodynamic systems yet flexible enough to be tailored to a specific

system, i.e. the quadrotor, in order to maximize performance. This work extends the authors’ prior work by introducing

an event-based replanning structure and a locally-reactive control layer in order to navigate dynamic obstacles including

a human adversary who actively attempts to obstruct the path of the UAV. For the relevant, real-world problem of

quadrotor obstacle avoidance, this framework is shown to reduce online computation times to below one second; several

orders of magnitude faster than techniques presented in existing literature. This is arguably one of the first—if not the

first—demonstration of truly real-time kinodynamic planning on a quadrotor system navigating an obstructed, dynamic

environment. The drastic improvement in online computation time is achieved by reducing the number of online optimal

boundary value problems to be solved to constant order. The reduction to constant order OBVP solutions is enabled by

machine learning estimates of reachability sets for a dynamical system.

Further work will validate and extend these results. All components of the planning framework will be translated to

C/C++ and run on an embedded processor flown on the quadrotor. While the processing power on an embedded system

will be diminished when compared to the workstation used in this paper, the translation from MATLAB to C/C++

is expected to roughly balance the effect; therefore computation times are not expected to change significantly. The

localization and mapping that is currently achieved with the Vicon motion capture system will be integrated into the

quadrotor system using a range of visual, laser, and ultrasonic sensors. In this way, real-time localization and planning

will be achieved on a fully self-contained platform. Enhanced system identification will be performed on the quadrotor

system, improving flight control and allowing for even more agile interactions with obstacles.

In the work presented here, we have assumed perfect knowledge of the quadrotor’s and obstacles’ states and dynamics.

This simplifying assumption will be removed in future work that will involve planning under uncertainty. To handle the

additional computational complexity of planning under uncertainty, a parallelized planning algorithm will be executed

on an onboard GPU.

Beyond quadrotor application, we hope to demonstrate the real-time kinodynamic planning framework on a wide

range of dynamical systems such as spacecraft, cars, marine and submarine vehicles, cranes, etc. Furthermore, this work

can be extended from single agent to multi-agent systems. Of particular interest is the possibility of emergent behavior

due to many agents selfishly solving their own planning problem while avoiding collisions with other agents. Finally,

game theory could be applied so that robotic agents can model dynamic obstacles as adversaries for more sophisticated

avoidance maneuvers.

The code base for this work can be found at:

https://github.com/StanfordASL/KinoFMT.git

Videos of the demonstrations discussed in this paper can be found at:
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https://www.youtube.com/watch?v=fv_6KB2eEFc
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