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Abstract— In this paper we propose a framework combining
techniques from sampling-based motion planning, machine
learning, and trajectory optimization to address the kinody-
namic motion planning problem in real-time environments. This
framework relies on a look-up table that stores precomputed
optimal solutions to boundary value problems (assuming no
obstacles), which form the directed edges of a precomputed
motion planning roadmap. A sampling-based motion planning
algorithm then leverages such a precomputed roadmap to
compute online an obstacle-free trajectory. Machine learning
techniques are employed to minimize the number of online
solutions to boundary value problems required to compute the
neighborhoods of the start state and goal regions. This approach
is demonstrated to reduce online planning times up to six orders
of magnitude. Simulation results are presented and discussed.
Problem-specific framework modifications are then discussed
that would allow further computation time reductions.

I. INTRODUCTION

Geometric motion planning, i.e., path optimization and ob-
stacle avoidance for systems without differential constraints,
has become a mature field in the last two decades [1]. The
generalization of geometric planning to kinodynamic motion
planning, i.e., systems with differential constraints such as
momentum or bounded curvature, has been an area of intense
research during the last several years. Kinodynamic motion
planning is widely seen as an open problem, especially
when it comes to computing motion plans in a real-time
environment [2]. This is mostly due to the prohibitively high
computation times when dealing with complicated dynamics
or lack of accuracy/optimality that arise from simplifying
assumptions. In this paper we present a framework for
solving such problems that drastically reduces the amount of
online computations necessary without needing to simplify
the dynamics, thus progressing the field of kinodynamic
motion planning significantly closer to real-time applications.

Related Work: A standard distinction for motion planning
algorithms is whether they are sampling-based (i.e., they
avoid an explicit construction of the configuration space) or
not [1]. Sampling-based kinodynamic planning received its
first formal investigation in 2001 by LaValle and Kuffner [3],
where the authors proposed the Rapidly-exploring Random
Trees (RRT) algorithm and demonstrated their approach
on simulated hovercraft (4- and 6-dimensional state space
examples) and spacecraft (6- and 12-dimensional state space
examples). Hsu et al. developed the probabilistic roadmap
(PRM) algorithm for kinodynamic systems in dynamic envi-
ronments and demonstrated it on physical robots [4]. Kara-
man and Frazzoli used results from differential geometry
to extend a variation of RRT, RRT*, to a class of non-
holonomic dynamic systems [5]. Several recent publications
have focused on applying RRT to systems with linear or

Ross Allen and Marco Pavone are with the Department of Aeronautics
and Astronautics, Stanford University, Stanford, CA 94305 {rallen10,
pavone}@stanford.edu.

linearized dynamics such as double-integrators and linear
quadcopter models [6, 7, 8]. We note that there has also
been some research on non-sampling-based kinodynamic
planning [9, 10]. These works focus on posing the motion
planning problem as an optimal control problem, encom-
passing obstacles as part of the constraints, and solving
the problem with techniques from trajectory optimization
such as pseudospectral methods [9] or sequential convex
programming [10]. In this paper we adopt a sampling-based
approach, arguably the predominant paradigm in the field
of planning under differential constraints. However we will
also leverage a number of techniques from the work in non-
sampling-based trajectory optimization, as detailed below.

Focusing on sampling-based algorithms, work from vary-
ing authors identified that two of the key challenges of kin-
odynamic planning are: 1) the determination of an accurate
distance metric (also referred to as a cost function) and 2)
selection of an appropriate steering function [3, 11, 8]. The
distance metric quantifies the cost of a motion plan and
determines the set of states the are in the neighborhood,
or cost-limited reachable set, of a given state. The steering
function is the function that evaluates the control inputs, and
corresponding state trajectory, to connect one sampled node
to another. In the foundational work by LaValle and Kuffner,
weighted Euclidean distance was employed as the distance
metric. The steering function applied to each example is
simply a forward propagation of the state using random,
admissible controls [3]. Work by Perez et. al. identified
that the distance metric and steering function must closely
reflect the optimal cost-to-go and optimal trajectory [8].
They attempted to achieve this by linearizing the dynamics
and applying a linear-quadratic regulator for distance and
steering. Paranjape et. al. developed a steering function
for a kinodynamic planning problem that relies on motion
primitives [12]. The analytical treatment of these primitives
require that they be rigorously tailored to a single, specific
set of dynamics. Previous work by the authors demonstrated
that machine learning can be effectively used to rapidly
approximate distance metrics and neighborhoods dynamic
systems, however this work did not go so far as to actually
solve any planning problems [13]. This paper adopts the
approach of taking optimal cost and optimal trajectories as
distance and steering functions, respectively, and proposes
to combine offline computation (akin, but not equivalent, to
motion primitives) with machine learning techniques for real-
time computations.

Perhaps the most relevant prior work is that of Pivtoraiko
et. al. who explored the use of state lattices, a notion similar
to motion primitives, for solving differentially constrained
planning problems [14]. State lattices blur the notions of a
steering function and a state sampling method. They involve
precomputing a set of dynamically feasible trajectories for
the system and then regularly repeating this set of trajectories



at the termination of every prior trajectory. The end of each
trajectory represents a “sampled” state and the repetition of
trajectories form the lattice throughout the state space. Given
a start and goal lattice point, graph search algorithms can
be used to connect, or steer through, lattice points in the
state space, thus solving a motion planning problem. Since
the admissible states in a state lattice do not span the state
space, an arbitrary goal state will be non-reachable and an
approximation to the nearest lattice point is necessary. In
high-dimensional problems the lattice may be too sparse and
this approximation may be unacceptable. Furthermore, since
the admissible controls do not span the control space the
method will not generally converge to an optimal solution
even as the density of lattice points increases. The framework
posed in this paper is similar in that it uses precomputed tra-
jectories between states, but the states are sampled randomly
instead of regularly repeated. Furthermore, the admissible
controls span the entire control space and a portion of online
computation time is committed to optimally connecting the
start and goal states to the precomputed graph.

Contribution: In this paper we propose a framework that
enables the real-time solution to the kinodynamic motion
planning problem; the framework being represented in Fig.
1. This framework is designed to be problem-agnostic and
therefore can be applied to systems ranging in complexity
from linear models, to non-linear dynamics and non-convex
constraints, all the way to differential inclusion systems.
The framework is described as enabling real-time solu-
tions because it drastically reduces the amount of online
computation required for any given problem, but does not
necessarily provide real-time performance on its own. To
achieve truly real-time solutions for a given problem, the
subcomponents of the framework must be tailored to leverage
specific characteristics of the given planning problem.

The framework employs an offline-online computation
paradigm, and considers the exact1 optimal cost-to-go and
optimal trajectories as distance metric and steering function,
respectively. The final component of the framework is the
kinodynamic variant of the sampling-based Fast Marching
Trees algorithm (FMT*) [15], referred to as kino-FMT . This
variant handles the asymmetry of directed edge connections
between two states. We note that the framework is general
enough such that other planning algorithms, such as PRM
or even RRT*, could be used in place of kino-FMT ;
however we allocate a brief discussion to kino-FMT so as
to contribute this novel variant of FMT∗ to the literature.
At the core, the framework works by precomputing a large
number of unobstructed, optimal boundary value problems
(OBVP) for a given system. This information is then used to
train machine learning algorithms that predict cost-limited
reachability of newly posed OBVPs. When run in a real-
time environment the machine learning algorithms enable
rapid approximations of state neighborhoods, minimizing
the number of online OBVPs to be solved. Due to the
precomputed optimal trajectories, kino-FMT ’s tree-growth
process just consists of a call to a look-up table followed by
an online collision check. The framework can be summarized
by the philosophy: exploration through machine learning,
decision making through optimal control, precomputation
when possible.

1Up to a user-defined tolerance of the optimization solver.

This work marks the unification, extension, and appli-
cation of several algorithms and techniques previously de-
veloped by the authors; including the machine learning
based reachability analysis [13] and optimal path planning
[15]. While these previous works were developed with the
intention of solving kinodynamic planning problems, this is
the first work in which this is actually accomplished.

To demonstrate our approach, we apply our framework
to two non-linear systems: a simple model of a fixed-wing
unmanned aerial vehicle (UAV) navigating a forest and a
small spacecraft in zero-gravity navigating a space station.
Results show that the framework reduces online computation
time by up to 6 orders of magnitude. We then propose tech-
niques for tailoring the framework around specific problem
characteristics that would accelerate computation and provide
truly real-time results.

Organization: This paper is structured as follows. In
Section II we define the optimal motion planning problem.
In Section III we present our framework for solving generic
problems along with some of the vital subcomponents of
the framework. Section IV gives results from numerical
experiments using the generic framework and discusses the
benefits of the proposed approach. Discussion is then given
to potential tailoring techniques that could accelerate com-
putation for specific problems. Finally, in Section V we draw
some conclusions and discuss directions for future work.

II. PROBLEM STATEMENT

In this section we state the problem we wish to solve.
We start with the definition of the geometric path planning
problem , i.e. a motion planning problem without differential
constraints. Let X be the configuration space. Let Xobs be
the obstacle region. The obstacle-free space is defined as
Xfree = X \Xobs. The initial condition xinit is an element of
Xfree, and the goal region Xgoal is a subset of Xfree. A motion
planning problem is denoted by a triplet (Xfree, xinit,Xgoal).
A path is denoted by a function x : [0, 1] → X . A
path is said to be collision-free if x(τ) ∈ Xfree for all
τ ∈ [0, 1]. A path is said to be a feasible path for the
planning problem (Xfree, xinit,Xgoal) if it is collision-free,
x(0) = xinit, and x(1) ∈ Xgoal. Let Σ denote the set of
all paths. The path planning problem can then be defined as
[15] (some regularity assumptions are avoided here for the
sake of brevity):

Optimal Path Planning Problem: Given a path
planning problem (Xfree, xinit,Xgoal) and an arc
length function c : Σ → R≥0, find a feasible path
x∗ such that c(x∗) = min{c(x) : x is feasible}.
If no such path exists, report failure.

In a kinodynamic planning problem, also referred to as
simply a motion planning problem, a path is indeed the
state evolution of an underlying dynamical system. For the
kinodynamic problem, therefore, the problem is extended
from choosing an optimal, obstacle-free path to choosing
a control function, u(t), that generates an obstacle-free
trajectory, x(t), while minimizing a cost function, J . In
this sense it is easier to cast the Optimal Motion Planning
Problem as a Constrained Optimal Control Problem with
obstacles, as shown below.



Fig. 1. Flowchart of the Kinodynamic Motion Planning Framework.
This diagram also illustrates the extension of prior work where the SVM
Classifier and Motion Planner blocks correlate to [13] and [15], respectively.

Optimal Kinodynamic Planning Problem:

Find: u(t)

that minimizes: J [x(t),u(t), tfinal]

subject to: ∀t ∈ [tinit, tfinal]

x(t) ∈ Xfree ⊆ X ,
u(t) ∈ U ,
fl ≤ f [ẋ(t),x(t),u(t), t] ≤ fu,
x(tfinal) ∈ Xgoal

(1)
Where x(t) ∈ Rn is the trajectory of the state vector

in a n-dimensional state space, u(t) ∈ Rm is the control
function vector in a m-dimensional control space, U is the
admissible control set, and f represents the system dynamics.
The problem is kept as general as possible by representing
the dynamics as a differential inclusion with fl and fu being
the lower and upper bound of the inclusion, respectively.

Note that if Xfree can be explicitly represented, then
Problem 1 may best be solved using existing optimal control
theory, similar to what is presented in [10]. However, we are
concerned with cases where Xfree is very difficult to describe.
In our problems of interest the best we can hope for is the
ability to check the intersection of a given state, x, and Xfree,
during run-time, motivating our adoption of a sampling-
based approach. The goal of this paper is to develop a
framework that is general enough to solve Problem 1 while
minimizing the amount of online computations necessary.

III. A FRAMEWORK FOR OPTIMAL KYNODYNAMIC
MOTION PLANNING

To solve the Optimal Kynodynamic Planning Problem we
apply techniques from optimal control, trajectory optimiza-
tion and machine learning in an offline/online computation
paradigm. The idea is that much of the computationally
expensive elements of the motion planning problem can be
executed offline in the ”laboratory” environment in an effort
to minimize the online, ”in field” computations. The whole
framework is illustrated in Fig. 1.

A. Offline Computations
During the offline computation phase, which is outlined

in Algorithm 1, it is assumed that there is a known set

of system dynamics and constraints - possibly non-linear
- and an unobstructed configuration space. The algorithm
begins by randomly or quasi-randomly sampling a large
number, Nsample, of states from the unobstructed state space,
X , which is accomplished by the subroutine Sample. The
offline phase then proceeds to randomly select a set of
states, of size Npair, from the set of sampled states V (with
replacement and Npair ≤ N2

sample) which is accomplished
by the SampleData subroutine. These sets are then used
to solve many, if not all, of the optimal 2-point boundary
value problems (OBVP)2 between each of the sampled state
pairs, represented by the sets A and B. The solution of these
pairs is accomplished with the SolveOBVP subroutine.
The optimal cost and optimal trajectory for each of these
unobstructed OBVPs is stored in a look-up table, denoted
by the subroutine Cost, for use during online computations.
In this sense, Cost may be loosely compared with the
notion of motion primitives, but in a form that is handled
numerically instead of analytically, and can be applied to an
arbitrary system. The optimal cost, along with the associated
boundary values, are also used to train a machine learning
classification algorithm, such as a support vector machine,
to predict whether a given state is cost-limited reachable
from another given state [13]. The training is accomplished
with the subroutine TrainClassifier where Jth is the
cost threshold for cost-limited reachability classification. The
machine learning classifier is denoted Near. The trained
SVM, Near, and the optimal cost look-up table, Cost,
become the tools for online computation. The use of these
online tools can be summarized as “Exploration through
machine learning, decision making through optimal control”.

Algorithm 1 Offline Computations for the Kinodynamic
Motion Planning Framework

1 V ← Sample(X , Nsample)
2 A← SampleData(V,Npair, replace)
3 B ← SampleData(V,Npair, replace)
4 Cost← SolveOBVP(A,B)
5 Near← TrainClassifier([A,B],Cost(A,B), Jth)

B. Online Computations
Upon initiation of online computation the algorithm is

presented with the start state, xinit, goal region, Xgoal, and the
obstacles, Xobs, which are all assumed to be unknown before-
hand and the obstacles being too difficult to be represented
explicitly3. By applying the trained SVM, the algorithm
proceeds to identify previously sampled states that are in
the cost-limited, outgoing-neighborhood of xinit and the
incoming-neighborhood of Xgoal. For each state classified in
the neighborhoods of xinit or Xgoal an OBVP is solved and
recorded in the look-up table. Finally, kino-FMT is called
to optimally and efficiently connects xinit to Xgoal using the
Near and Cost subroutines. The online phase is outlined in
Algorithm 2. Its subroutines are discussed in detailed next.

C. SolveOBVP: Optimal 2-Point Boundary Value Problem
Solver

Many solution techniques exist for approximating the
solution for a general optimal control problem, a few of the

2Also known as optimal control problems or steering problems.
3It is noted that if the start state, goal state, and obstacles are known ahead

of time, then the entire motion planning problem can be solved offline and
computation time is irrelevant.



Algorithm 2 Online Computations for the Kinodynamic
Motion Planning Framework

1 Xgoal ← Sample(Xgoal, ngoal)
2 Nout

init ← Near(xinit, V \{xinit}, Jth)
3 N in

goal ← Near(V \{Xgoal}, Xgoal, Jth)
4 for x ∈ V do
5 if x ∈ Nout

init then
6 Cost← SolveOBVP(xinit, x)
7 end if
8 if x ∈ N in

goal then
9 Cost← SolveOBVP(x,Xgoal)

10 end if
11 end for
12 return kino-FMT (V,Near,Cost)

most prominent approaches being: linearization of dynamics
and solution via analytical results [8], shooting methods, and
direct or indirect trajectory optimization methods [16, 10].
For a general optimal control problem it is not assumed that
linearization of dynamics is an acceptable approximation.
Shooting methods lack guarantees on enforcement of final
conditions for 2-point boundary value problems, a critical
need for the sampling-based algorithm presented in this
paper. Indirect trajectory optimization methods are often
more computationally costly than direct methods as they
require solutions to the costate variables in addition to the
state variables [17]. This leaves direct trajectory optimization
techniques as the favored choice for the presented work.

The method implemented for SolveOBVP solves opti-
mal boundary value problems (OBVP) by discretizing the
continuous-time problem using the Chebyshev pseudospec-
tral method, transforming it into a nonlinear programming
problem (NLP), and solving it using sequential quadratic
programming (SQP). While SolveOBVP considers state and
control constraints, it ignores obstacles which are assumed to
be unknown until the online phase of kinodynamic planning.

Without loss of generality we can state that the objective
of SolveOBVP is the determination of the control trajectory,
u(t), and corresponding state trajectory, x(t), that solves the
continuous Bolza problem [18]:

minimize: J [x(t),u(t), tb] = M [x(tb), tb]+∫ tb

ta

L[x(t),u(t), t] dt

subject to: fl ≤ f [ẋ(t),x(t),u(t), t] ≤ fu
gl ≤ g[x(t),u(t), t] ≤ gu
ψl ≤ ψ[x(ta),x(tb), (tb − ta)] ≤ ψu

where: t ∈ [ta, tb],x(t) ∈ Rn,u(t) ∈ Rm

(2)

Note the use of differential inclusions to describe the
dynamics f : Rn×Rn×Rm×R→ Rn; also, the state and
control constraints g : Rn × Rm × R → Rr and boundary
conditions ψ : Rn × Rn × R → Rp are generalizations
of the more commonly seen equality constraints. Equality
constraints can easily be enforced by setting the upper
and lower bounds of any of these equations equal. A key
advantage of this formulation is that it permits a wider
range of dynamics including differential algebraic equations
(DAE), instead of just ordinary differential equations (ODE).

In general, Eqn. 2 requires a numerical treatment. In this
paper we apply a solution technique that begins by time-
discretizing Eqn. 2 into N segments using the Chebyshev
pseudospectral method and then transforming it into a non-
linear programming problem. For brevity, the details of this
step are not presented here but are well described by Fahroo
and Ross [18]. The result is a discrete problem of the form:

minimize: JN [X,U , tb] = M [xN , tb] +

tb − ta
2

N∑
k=0

L [xk,uk, tk]wk

subject to: for k = 0, ..., N

fl ≤ f
[

2

tb − ta
dk,xk,uk, tk

]
≤ fu,

gl ≤ g [xk,uk, tk] ≤ gu,
φl ≤ φ [x0,xN , (tb − ta)] ≤ φu

(3)

where X = [xT
0, ...,x

T
N ]T and U = [uT

0, ...,u
T
N ]T.

Now posed in the discrete form, a solution to Eqn. 3
can be attempted using sequential quadratic programming.
Fundamentally, SQPs are a heuristic for solving non-convex
optimization problems and make no guarantees on solutions.
In practice, however, they tend to provide highly reliable
results - assuming a reasonable initial guess is provided by
the user - and are commonly used [19, 10].

D. TrainClassifier and Near: Machine Learning for
Reachability Set Determination

The Near function is critical in enabling real-time execu-
tion of the kinodynamic motion planner as it identifies nearby
sampled states and reduces the number of edge connection
attempts from a given state. In geometric path planning
problems, Near is very often the Euclidean distance be-
tween two states; therefore very inexpensive to calculate.
For kinodynamic motion planning, however, Near becomes
the cost-limited reachable set from a given state. The cost-
limited reachable set of state xa under admissible controls
U and cost threshold Jth is defined as R in Eqn 4.

R (xa,U , Jth) = {xb ∈ X | ∃u ∈ U and
∃t′ ∈ [t0, tf ] s.t. x (t′) = xb and J∗ ≤ Jth}.

(4)

The reachable sets for dynamic systems can be very
difficult to assess, often necessitating numerical approxima-
tions. The complexity of these numerical approximations is
exponential in the dimension of the state space, making them
impractical for real-time applications [20].

This motivates a novel approach to reachability analysis
for dynamical systems. To this end, machine learning tech-
niques are applied to estimate the cost-limited reachable set,
or ’neighborhood’, of a given state. This approach is a direct
extension of the authors’ recent publication on machine
learning for reachability analysis [13]. In this paper, a support
vector machine (SVM) is used to predict if the optimal cost
of traversing from one given state to another is less than or
greater than a specified cost threshold. The SVM, which is
given the title ’Near’, takes as inputs start and end states
and a classification threshold, Jth. Near is trained with the
same data that is used to generate the cost look-up table.
Specifically, a training example for Near would take in the
values of initial and final states, xa and xb, as input variables
and the optimal cost to traverse from xa to xb, J∗, as the



target variable. It has been shown that this technique can
classify reachability sets with an error of less than 10% [13].

E. kino-FMT : Sampling-Based Motion Planner
In this section we pose a slight variation of the Fast

Marching Trees algorithm to accommodate our kinodynamic
framework [15]. Alg. 2 calls the kino-FMT planning algo-
rithm with the same inputs that FMT∗ would take: a set of
sampled states, V , a neighborhood function, Near, and a
cost function, Cost. The critical change is the distinction of
incoming-neighborhoods and outgoing-neighborhoods; that
is, the set of states for which a given state is cost-limited
reachable (in-neighborhood) and the set of states that are
cost-limited reachable from a given state (out-neighborhood).
In geometric planning, where the distance metric is often
Euclidean distance, the distinction is not necessary since the
cost to connect state a to state b is identical to the cost
of connecting b to a. This is not the case for kinodynamic
planning thus the difference must be reflected in the planning
algorithm.

Since the majority of the algorithm is unaffected by this
change, only a brief description is given, leaving the thorough
discussion of Fast Marching Trees to the original work by
Janson and Pavone [15]. The original FMT∗ algorithm works
by building tree-like structures of motion paths using lazy
dynamic programming recursion. These trees grow steadily
outward in the cost-to-come space. For kino-FMT , “paths”
are replaced with “trajectories” and the notion of neighbor-
hoods incorporates incoming- and outgoing-neighborhoods.
We highlight the change in notation from the original
FMT∗ that N in

x represents the set of sampled states in the
incoming-neighborhood of state x, and Nout

z represents the
outgoing-neighborhood of state z.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION

We apply the real-time kinodynamic framework to two
example cases that demonstrate the power and flexibility of
this approach. The example cases include a simple model of a
fixed wing UAV and a gravity-free spacecraft – i.e., no strong
gravitational influence that would produce orbital motion.
These examples demonstrate the flexibility of the framework
by incorporating characteristics that are typically stumbling
blocks for kinodynamic planners. These characteristics in-
clude non-linear dynamics (trigonometric terms for turn-
ing the UAV), non-linear cost functions (time-optimization
causes the final time, tb, to appear in the denominator of the
dynamics), and non-linear control constraints (norm of the
thrust is constrained to unity). Not only do these examples
illustrate the range of problems that can be handled, they
also illustrate the vast reduction in computation time when
compared with more naive approaches.

A. Fixed-wing UAV
The fixed-wing UAV problem seeks to compute a time-

optimal path for a point-mass robot that has Dubins-like
dynamics in the xy-plane and single integrator dynamics
along the z-axis [21]. This creates a 4-dimensional state
space: 3-dimensional position plus xy-heading. The system
has a 2-dimensional control space: z-velocity and heading
turn rate. Rigid body dynamics, gravity, and aerodynamic
effects are ignored. An illustration of the system is given in
Fig. 2. The equations of motion and control constraints are
given as

Fig. 2. Simplified fixed-wing UAV Model.

Fig. 3. Time-optimized path for fixed-wing UAV navigating through a
forest. Sharp corners are artifacts of plotting, not true representations of the
trajectory.

ẋ = Vc cos θ ż = uz

ẏ = Vc sin θ θ̇ = uθ
|uθ| ≤ φmax |uz| ≤ Vz,max

(5)

where Vc is the constant horizontal speed, φmax is the
maximum turning rate, Vz,max is the maximum climbrate,
and θ is the heading angle with respect to the interial x-axis.

This problem exhibits non-linear dynamics due to the
trigonometric terms in x and y. Additionally, the minimiza-
tion over time, J = tb, necessitates a free final time that
appears non-linearly in the discrete differentiation operator
(See Fahroo and Ross for details [18]).

For the given example problem, the UAV has constant
horizontal speed of 10 m/s, max turning rate of π rad/s,
and max climb rate of 2.5 m/s. The obstacle set is a simple
representation of a pine forest with quasi-randomized tree
positions. Fig. 3 gives an aerial view of the optimal trajectory
as solved by the kinodynamic planning framework. It is noted
that the seemingly sharp corners of the optimal trajectory
are actually just artifacts of the MATLAB plotting routine.
In fact the Chebyshev pseudospectral method connects in-
termediate nodes of an optimal trajectory with high order
polynomials [18].

B. Gravity-free spacecraft
Like the UAV problem, the spacecraft problem seeks a

time-optimal path for a point-mass. This problem has the
added complexity of a 6-dimensional state space - position
and velocity in 3D - along with a 4-dimensional control space
- throttle and 3-dimensional pointing vector that is norm-
constrained to unity. Rigid body dynamics and gravitational
fields are ignored and the change in mass from propulsion



Fig. 4. Dynamics for the gravity-free spacecraft.

Fig. 5. Time-optimized path for spacecraft navigating around ISS.

is assumed to be negligible. The system is illustrated in Fig.
4 and the equations of motion and control constraints are
given as

ẋ = vx v̇x = Tx/m

ẏ = vy v̇y = Ty/m

ż = vz v̇z = Tz/m

T = (ηTmax)n̂ 0 ≤ η ≤ 1

(6)

where T is the thrust vector in 3D, Tmax is the maximum
thrust, η is the throttle, and m is the mass. While the
dynamics and constraints appear to be linear and convex,
respectively, the problem is in fact non-convex due to the
norm constrained pointing vector and the appearance of the
free final time in the differentiation operator - as was the
case with the UAV.

The obstacle set along with the start and goal states are
meant to be a crude representation of a maneuver around the
International Space Station. Fig. 5 displays the time-optimal
trajectory of the planning problem.

C. Results Summary
For both the UAV and Spacecraft problems, the real-

time kinodynamic motion planning framework demonstrates
orders-of-magnitude decrease in computation time when
compared to naive approaches. Table I summarizes the
computation times for differing levels of complexity of the
framework. Both problems where run with Nsample = 5000.
The time unit is normalized by the average time it took to
solve a single OBVP for the system.

The Naive framework relies on computing a complete
digraph of the n sampled states; involving n2 edge con-
nections4. To run a planning algorithm such as kino-FMT ,
we must have knowledge of the neighborhood of a given
state, however a neighborhood cannot be defined until there

4an ’edge connection’ is identical in meaning to a ’OBVP solution’, and
a ’node’ is identical to a ’sampled state’

TABLE I
COMPARISON OF NORMALIZED, ONLINE COMPUTATION TIMES FOR

DIFFERING LEVELS OF FRAMEWORK COMPLEXITY.

Naive Neighborhood
Learning

Real-time
Framework

UAV 2.50× 107 4.62× 103 197
Spacecraft 2.50× 107 4.85× 103 79

TABLE II
FINAL PATH COST COMPARED WITH OPTIMAL, UNOBSTRUCTED COST.

Unobstructed
[sec]

Real-time
Framework
[sec]

% Difference

UAV 9.40 11.07 17.77%
Spacecraft 57.445 140.90 145.3%

is information on the cost to reach every other state; therefore
the naive approach must calculate all n2 OBVPs to establish
neighborhoods. The Neighborhood Learning framework does
not use precomputation of OBVPs but reduces the num-
ber of necessary online OBVP solutions by estimating a
given state’s neighborhood with an SVM classifier, and then
only attempting an edge connection for those states in the
estimated neighborhood. The Real-time framework, which
is the complete framework as detailed in Sec. III, reduces
computation further by precomputing most of the OBVPs in
the offline phase.

It is noted that only 10.2% and 25.3% of the online com-
putation time for UAV and Spacecraft problem, respectively,
are due to solving OBVPs. The rest of the computation
time is dominated by collision checking. The OBVPs solved
online represent the edge connections between xinit and its
out-neighborhood and Xgoal its in-neighborhood and can all
be solved in parallel. Therefore parallel processors could
reduce the online computation time for OBVPs down to
the average solution time of a single OPBVP which is sub-
one second for both examples. Further reductions of online
computation time is then left to improvements in collision
checking algorithms, which is outside the scope of this paper.

To get a measure of how close the real-time framework
comes to solving for the true optimal solution, we compare
the final path cost with the optimal cost of the unobstructed
start-to-goal trajectory. The optimal cost of the unobstructed
problem is necessarily a lower limit on the optimal cost of
the obstructed problem. Results are given in Table II.

D. Comparison with Existing Techniques
It is difficult to draw direct comparisons with existing

techniques because we are proposing a framework, not an ex-
plicit algorithm. Existing algorithms for kinodynamic motion
planning, such PRM [4] and RRT* [5], can be substituted in
place of kino-FMT , however they would still just comprise
a subcomponent of the framework - not a full alternative to
the framework. Comparing these subcomponents has already
been performed in prior work [15] and is not relevant to to
evaluating the framework as a whole.

In future work, the generic framework will be tailored to a
specific problem and applied to a physical system. This will
then allow for direct comparison with other techniques that
have already been demonstrated on the specific system.



E. Problem Tailoring
The objective of this work was to design a generic,

problem-agnostic framework. Starting from this generalized
approach, the user can realize further improvements by
tailoring aspects of the framework to a specific problem. Here
we give a brief discussion of potential tailoring techniques.

The largest room for improvement comes from the large
amount of online computation time committed to collision
checking. Along with devising a more efficient collision
checking algorithm, this can also be improved by wrapping
the framework with a model predictive control algorithm
such that smaller subproblems are solved in a sequence.
Far fewer trajectories would need collision checking in each
subproblem.

It was previously noted that parallel processing can greatly
reduce the online computation of OBVPs. For the given
example problems, anywhere from 10s to 100s of parallel
processors could be used, depending on the desired compu-
tation time and size of in- and out-neighborhoods of Xgoal
and xinit.

We have purposefully chosen examples where favorable
dynamics were not present or ignored (e.g. linearity, con-
vexity, differential flatness, etc.) in an effort to demonstrate
the framework on an arbitrary system. If a given problem ex-
hibits any of these favorable characteristics, the SolveOBVP
subcomponent of the framework may be significantly accel-
erated. Furthermore, a customized SQP solver can be devised
for a given set of dynamics that utilizes the sparsity pattern of
the disctretized NLP problem; further reducing computation
time [22].

V. CONCLUSIONS

We have proposed a framework for solving arbitrary (i.e.
non-linear, non-convex, etc.) kinodynamic motion planning
problems that moves the field significantly closer to real-
time execution times. This framework capitalizes on recent
advances in machine learning and trajectory optimization
to rapidly explore the state space of a planning problem
while ensuring that chosen trajectories obey all dynamic and
control constraints; therefore there is no need to linearize
the system. This approach is shown to reduce the online
computation time of a classic motion planner by up to
six orders of magnitude. The major bottle neck in online
computation times is the time required to perform collision
detection between a robot and the obstacles. In this sense,
the presented framework reduces the kinodynamic planning
problem to essentially a fast collision-checking problem.

Extensions of this work are currently being pursued. These
extension include incorporation of a, efficient collision-
checking algorithm, conjunction with model predictive con-
trol to produce a closed-loop controller, development of cus-
tomized constrained optimization solvers, and demonstration
on a physical robotic system.
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