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The objective of this paper is to present a full-stack, real-time kinodynamic planning framework and
demonstrate it on a quadrotor for collision avoidance. Specifically, the proposed framework utilizes an offline-
online computation paradigm, neighborhood classification through machine learning, sampling-based motion
planning with an optimal control distance metric, and trajectory smoothing to achieve real-time planning for
aerial vehicles. The approach is demonstrated on a quadrotor navigating obstacles in an indoor space and
stands as, arguably, one of the first demonstrations of full-online kinodynamic motion planning; exhibiting
execution times under 1/3 of a second. For the quadrotor, a simplified dynamics model is used during the plan-
ning phase to accelerate online computation. A trajectory smoothing phase, which leverages the differentially
flat nature of quadrotor dynamics, is then implemented to guarantee a dynamically feasible trajectory.

I. INTRODUCTION

Due to their ease of use and development along with their wide range of applications in commercial, military, and
recreational settings, quadrotor helicopters have become the focus of intense research in the last decade [1, 2, 3]. A
standing problem in the field of quadrotor control is the achievement of real-time, high-velocity obstacle avoidance.
More generally, using the robotic motion planning nomenclature, this problem is referred to as real-time kinodynamic
motion planning (“kinodynamic” meaning that system dynamics are taken into account during the trajectory plan-
ning process), which is an open challenge in robotics; not just quadrotor control [4]. This paper presents a full-stack
approach for kinodynamic motion planning, trajectory smoothing, and trajectory control along with validating exper-
iments. This is arguably one of the first, if not the first demonstration of truly real-time kinodynamic planning on a
quadrotor system.

Figure 1. Conceptual diagram of a quadrotor tracking a kinodynamic motion plan through an obstructed environment.
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Related Work: To date, the most relevant and progressive work in obstacle avoidance and control of quadrotors is,
arguably, that of Richter, Bry, and Roy [5, 6]. Relying on foundational work by Mellinger et. al. [7], Richter’s work
demonstrated aggressive maneuvers for quadrotors flying in obstructed indoor environments. This was accomplished
by generating a set of waypoints through the configuration space and then developing a minimum-snap, polynomial
trajectory connecting these waypoints. This minimum-snap trajectory produces a “graceful” flight pattern and guar-
antees dynamic feasibility [7]. Using the differentially flat dynamics of a quadrotor [7], the trajectory polynomials are
used to generate analytical expressions for control inputs that are used in a feedforward fashion in the quadrotor flight
controller [5].

While Richter’s work represented an important step toward quadrotor planning and control, there remain several
critical aspects yet to be achieved. Foremost, the planning algorithm used, RRT* [8], was not implemented in a
real-time fashion. The planning phase was accomplished offline, with an a priori map of obstacles. Furthermore,
the RRT* algorithm used a simple straight-line metric for the initial planning phase to connect start and goal states;
it did not account for the differential motion constraints of the quadrotor [5]. Therefore the initial planning phase
produces waypoints that are minimum distance, not necessarily minimum time, to the goal. The snap-minimizing,
polynomial trajectories –which guarantee dynamic feasibility– are only produced after the planning phase, implying
that the generated trajectory might be significantly suboptimal. The work that is presented in this paper overcomes
these shortfalls by employing a kinodynamic planner in a truly real-time fashion, with obstacle information only
available at online initiation.

Other works have made significant contributions to the theory of quadrotor control. Sreenath et. al. developed
a controller for a quadrotor carrying a cable-suspended load [9]. Hehn and D’Andrea demonstrated stabilization of
an inverted pendulum balanced on a quadrotor [3]. Mellinger et. al. devised a hybrid controller capable of perching
a quadrotor on an over-vertical surface [10]. While important and impressive in their own right, these works are
fundamentally controller designs that wholly neglect motion planning/obstacle avoidance. The work presented in this
paper takes kinodynamic planning and flight control as subcomponents of a single problem and proposes a method for
addressing both simultaneously.

Frazzoli et. al. provided some of the pioneering work on real-time kinodynamic motion planning [11]. This work
implemented the RRT algorithm with node connections achieved by concatenating a small set of motion primitives or
“trim trajectories” between dynamic equilibrium points. Demonstrating on simulations of a small ground robot and a
nonlinear helicopter model, the approach was successful in finding feasible trajectories through sparse obstacle sets in
10s of milliseconds. The theory was even applied to dynamic obstacles; however computation times inflated to 10s of
seconds. The major shortcoming of this approach is the restrictive nature of ”trim trajectories” that prevents the motion
planner from achieving completeness and is highly reliant of the user to select appropriate motion primitives. For the
helicopter example in Frazzoli’s work, only 25 different trim trajectories are used for node connections, all of which
being constant speed, level or turning flight. Indeed a helicopter is capable of much more complex manuevers than
those considered. For any given set of motion primitives, it is argued that a pathological obstacle set could be devised
that confounds this planning process. This effect is likely to blame for the significant increase in computation time for
the dynamic obstacle sets: the motion primitives are “poorly designed” for this specific case. The work presented in
this current paper does not require the user to select specifically tailored motion primitives, therefore remaining more
applicable to arbitrary obstacle sets. Furthermore, it includes a notion of time optimality.

Other works have approached the topic of motion planning for quadrotors, even so far as real-time planning. Cowl-
ing et. al. [12, 13], and Bouktir et. al. [14] both demonstrate a similar approach that combines trajectory optimization
and trajectory control to accomplish high-speed collision avoidance of quadrotors. These papers, however, rely on a
mathematically explicit representation of obstacles so that the flight controller can be customized to incorporate these
specific obstacles. This limits the approach to a relatively limited number of obstacle configurations that are well
defined ahead of time. The approach presented in our paper avoids the explicit mathematical representation of the
obstacle space so as to be applicable to virtually any obstacle configuration and does not require obstacle information
until online initiation.

Webb and van den Berg made a significant contribution to the field of kinodyanmic planning with their develop-
ment of Kinodyanmic RRT* [15]. This work avoided the explicit obstacle representation found in Bouktir et. al. and
Cowling et. al. and demonstrated kinodynamic planning for a simulated quadrotor system with linearized dynamics.
The Kinodynamic RRT* algorithm is shown to execute in 10s to 100s of seconds; therefore failing to achieve real-time
execution.

An additional aspect is validation on a physical system. The papers Frazzoli et. al. [11], Cowling et. al. [12, 13],
Bouktir et. al. [14], Webb and van den Berg [15] only provide simulation results, without a physical demonstration for
validation. In contrast Landry produced physical demonstrations of planning and control of a quadrotor navigating a
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challenging, cluttered environment [16]. Landry’s work, however, is not real time, as it requires the entire problem to
be solved ahead of time before online execution. Grzonka et. al. developed an autonomous quadrotor system capable
of navigating highly obstructed indoor environments that executed a variant of the A* algorithm for real-time motion
planning [17]. While this work demonstrated real-time planning, the quadrotor was flown at speeds low enough such
that differential motion constraints of the quadrotor could be ignored. This implies that the motion planning algorithm
demonstrated was in fact geometric and not kinodynamic. In contrast, our work demonstrates a kinodynamic planner
for quadrotor obstacle avoidance at high speeds.

Contribution: The contribution of this paper is a full-stack approach for achieving real-time, kinodynamic motion
planning and trajectory control of a quadrotor navigating an arbitrary obstacle configuration. Our paper, arguably,
provides the first demonstration of truly real-time kinodynamic planning and control of a quadrotor. Our approach and
key intellectual contribution is to integrate three components of planning and control into one seamless architecture:
the machine-learning-based, real-time, kinodynamic framework [18]; minimum snap trajectory generation [7]; and the
nonlinear feedforward/feedback quadrotor controller [19].

Organization: The paper is structured as follows. Section II gives a formal definition of the kinodynamic planning
problem we wish to solve. Section III presents the dynamical model of the quadrotor platform. Section IV develops
the real-time kinodynamic planning framework and details how each component of the framework is tailored to the
quadrotor system. Section V presents the experimental setup and results, validating the framework. Finally, in Section
VI we draw our conclusions and presents directiosn for future research.

II. Problem Statement

The optimal kinodynamic planning problem consists of the determination of a control function u(t) ∈ Rm, and
corresponding state trajectory x(t) ∈ Rn, that minimize a cost function J (·) while obeying control constraints,
u(t) ∈ U , dynamical (differential) constraints, f [ẋ(t),x(t),u(t), t], and state (obstacle) constraints, i.e., x(t) ∈
Xfree ⊆ X (where X denotes the state space). The state at the final time must belong to a given goal region, i.e.,
x(tfinal) ∈ Xgoal ⊆ X . Formally, the problem can be posed as a continuous Bolza problem:

Optimal Kinodynamic Planning Problem:

Find: u(t)

that minimizes: J [x(t),u(t), tfinal]

subject to: u(t) ∈ U ∀t ∈ [tinit, tfinal]

x(t) ∈ Xfree ∀t ∈ [tinit, tfinal]

fl ≤ f [ẋ(t),x(t),u(t), t] ≤ fu ∀t ∈ [tinit, tfinal]

x(tfinal) ∈ Xgoal

(1)

where fl and fu are the lower and upper bounds for the system dynamic differential inclusion (note that,
for generality, the dynamics are represented as a differential inclusion), tinit represents the given, fixed
initial planning time, and tfinal represents the free final time.

Note that if Xfree can be explicitly represented, then the Optimal Kinodynamic Planning Problem may best be
solved using existing optimal control methods, similar to what is presented in [20]. However, we are concerned with
cases where Xfree (a subset of the system state space) is difficult or not even possible to be explicitly represented (as is
typical for kinodynamic planning problems [21]), and we are only allowed the ability to perform query-based collision
checks.

For the quadrotor planning problem discussed in this paper, we choose a minimum-time cost function, that is:

J [x(t),u(t), tfinal] = tfinal. (2)

In the following section we specialize the dynamical differential constraints, i.e., f [ẋ(t),x(t),u(t), t], to the case of
a quadrotor system.
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III. Quadrotor Dynamics

III.A. Nonlinear Dynamics

A quadrotor is modeled as an underactuated rigid body where net thrust is constrained along the −~zB axis (see Figure
2). The diagram given in Figure 2 represents the relevant coordinate frames and variables for the quadrotor planning
and control problem. The world frame, W , is an inertial frame, which is implemented in our case with a North-East-
Down (NED) orientation. The body-fixed frame, B, translates and rotates with the quadrotor. The nominal frame, N ,
is a target frame for trajectory tracking; therefore in perfect trajectory tracking B = N . The quadrotor dynamics are
given in Eqn. (3) [19]:

~̇ξB =
dW ~ξB
dt

, m~̈ξB = mg~zW − u1~zB ,

ṘBW = RBW Ω̂BW , JB ~̇ΩBW =
[
u2
u3
u4

]
− ~ΩBW × JB~ΩBW .

(3)

f1

f2
f3

f4

~ξB

~zB

~xB

~yB

~xW

~yW ~zW

~ξNψ
~zN

~xN
~yN

Figure 2. Diagram of quadrotor dynamics with world (inertial), body, and nominal reference frames.

The state vector is given by x =
[
~ξB , ~̇ξB , RBW , ~ΩBW

]T
∈ R9×SO(3) where ~ξB is the position of the body frame,

~̇ξB is the velocity of the body frame, RBW is the rotation matrix from the body frame to the world frame, ~ΩBW is the
angular velocity of the body frame with respect to the world frame, and g is the gravity acceleration. The quadrotor
mass is given by m. The control vector is given by u = [FzB ,MxB

,MyB ,MzB ] ∈ R4 where FzB is the force applied
along the body z-axis due to net thrust; and MxB

,MyB , and MzB are the moments about the body x, y, and z axes,
respectively, due to individual rotor thrusts or torque. Note that ·̂ denotes the hat-map (i.e., an isomorphism between
3× 3 skew-symmetric matrices and vectors in R3) [19].

III.B. Approximate Dynamics

There are no known analytical solutions to the minimum-time optimal control problem under the quadrotor’s nonlinear
dynamics (3). While numerical solutions are possible [18], they are computationally expensive. To minimize online
computation times we apply an approximator-corrector structure to our framework. The quadrotor is first approx-
imated as a double integrator system, which allows analytical treatment for the unobstructed minimal-time control
problem (these minimal-time control problems, which are subproblems to the overall planning problem, serve to con-
nect edges in the sampling based planner; see Section IV and IV.A for more details) [15]. At the end of the planning
process, the solution trajectory is mapped, or “corrected,” back into the fully nonlinear dynamics by leveraging the
property of differential flatness (Section IV.E) [7]. The double integrator dynamics are given as

ẋ(t) = Ax +Bu + c

where: A =

[
0 I

0 0

]
, B =

[
0

I

]
, c =

[
0

g

]
, x =

[
~ξB
~̇ξB

]
∈ R6, u = ~̈ξB ∈ R3

(4)
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Figure 3. The real-time framework for kinodynamic planning and control of a quadrotor.

IV. Real-Time Kinodynamic Planning Framework

Sampling-based planning algorithms have become the accepted approach for planning in high-dimensional spaces
where state (obstacle) constraints are only implicitly represented [21]. In a nutshell, the key idea behind sampling-
based algorithms is to avoid the explicit construction of the configuration space (which can be prohibitive in complex
planning problems) and instead conduct a search that either probabilistically or deterministically probes the config-
uration space with a sampling scheme. This probing is enabled by a collision detection module, which the motion
planning algorithm considers as a “black box” [21]. In this way, a complex trajectory control problem is broken down
into a series of many smaller, simpler optimal boundary value problems (OBVP) a that are subsequently evaluated a
posteriori for obstacle constraint satisfaction and efficiently strung together into a graph (e.g., tree or roadmap). The
primary hurdle for real-time implementability is that without detailed information about a system’s reachability set,
a naive sampling-based planner may require the solution to O(N2

s ) OBVPs during online execution, where Ns is the
number of sampled states. This is prohibitively expensive [25].

To address this we wrap a sampling-based planner in a real-time framework, given in Fig. 3, that minimizes the
number of OBVPs that need to be solved online. The ”philosophy” of the framework can be condensed to:

exploration through machine learning, decision making through optimal control, precomputation when
possible.

To elaborate more, the framework (originally proposed in our earlier work [18]) splits computation into offline (Al-
gorithm 1) and online (Algorithm 2) phases. During the offline phase the subroutine Sample quasi-randomly draws
Ns samples from the continuous state space, without any regard to obstacle locations, which are unknown until online
initiation. SampleData randomly draws Npair states –with replacement and Npair ≤ Ns (Ns − 1)– from the discrete
set of sampled states V , and stores them in two sets A and B. The Npair samples stored in A and B are then paired and
OBVPs are solved for each pair; storing the solutions for use during the online phase in a look-up table titled Cost.

aNote that not all sampling-based planners require the solution to optimal boundary value problems. State space exploration for the RRT
algorithm is often achieved by employing a forward dynamic propogator based on randomized or deterministically chosen control inputs [22].
These techniques are prone to ”wander” through the state space, lacking the optimality guarantees of algorithms such as RRT*, PRM*, and FMT*
[8, 23]. Li et. al. developed the STABLE SPARSE RRT (SST) algorithm that achieves optimality guarantees without requiring OBVP solutions,
only a forward dynamic propagator, but execution times for a quadrotor system are on the order of 100s of seconds which is too slow for real-time
implementation [24].
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The OBVP solution subroutine, SolveOBVP, which is often referred to as a ”steering function” in the motion plan-
ning literature, is given in Section IV.A. The look-up table Cost can equivalently be thought of as an precomputed,
unobstructed roadmap (i.e. it is wholly ignorant of obstacle information which is not available until online initiation)
through the state space. During the offline phase, a support vector machine (SVM) classifier, referred to as NearSVM,
is trained using the look-up table Cost. The SVM provides query-based estimates of cost-limited reachable sets
(i.e., neighborhoods) and is discussed in further details in Section IV.B. The cost threshold of the reachable set, often
referred to a ”neighborhood radius” in the motion planning literature, is the user defined value Jth.

Algorithm 1 Offline Phase for the Kinodynamic Motion Planning Framework
1 V ← Sample(X , Ns)
2 A← SampleData(V,Npair, replace)
3 B ← SampleData(V,Npair, replace)
4 Cost← SolveOBVP(A,B)
5 NearSVM← TrainClassifier([A,B],Cost(A,B), Jth)

At the initiation of the online phase, obstacle data is presented along with the start state, xinit, and goal region,
Xgoal

b. A set of Ngoal states are sampled from the goal region and stored in the discrete set Xgoal. The SVM classifier
is used to rapidly approximate the outgoing neighborhood of xinit and the incoming neighborhood of Xgoal among
the pre-sampled states; storing the sets in N out

init and storing in N in
goal, respectively (see Section IV.B for discussion on

outgoing and incoming neighborhoods). OBVPs are then solved from xinit and Xgoal to their nearest neighbors and
the solutions are stored in the look-up table. Note that this reduces the number of online OBVPs solved to O(1)!

The sampling-based planner, kino-FMT , is then called to return the optimal trajectory through the set of sampled
states, V , using the look-up table, or ”roadmap”, Cost. Though many candidate sampling-based planners could be
used to compute a trajectory across this roadmap, we rely on the asymptotically-optimal (AO) FMT∗ algorithm for
its efficiency (see [23] for a detailed discussion of the advantages of FMT∗ over state-of-the-art counterparts) and
kinodynamic extension [26]. The Kinodynamic Fast Marching Trees algorithm (kino-FMT ) (adapted from [26])
leverages the roadmap to efficiently determine the optimal sequence of sampled states to connect xinit and Xgoal,
performing collision checking in real-time (see Section IV.C).

Algorithm 2 Online Phase for the Kinodynamic Motion Planning Framework
1 Xgoal ← Sample(Xgoal, Ngoal)
2 N out

init ← NearSVM(xinit, V \{xinit}, Jth)
3 N in

goal ← NearSVM(V \{Xgoal}, Xgoal, Jth)
4 for x ∈ V do
5 if x ∈ N out

init then
6 Cost← SolveOBVP(xinit, x)
7 if x ∈ N in

goal then
8 Cost← SolveOBVP(x,Xgoal)
9 Path← kino-FMT (V,Cost, xinit, Xgoal)

10 return SmoothPath(Path)

Finally the sequence of states generated by kino-FMT is used as a set of waypoints for a path smoothing algorithm
that generates a minimum-snap, dynamically feasible trajectory for the quadrotor (see Section IV.D). Mapping the
differentially flat output variables from the smooth trajectory back to the full state and control space (Section IV.E),
we can provide feedforward terms to the flight controller (Section IV.F).

We now present the mathematical details for each of the framework components (to make the paper self-contained,
we also state a number of results already available in the literature).

IV.A. Analytical Solution to OBVP

As explained in Section II, we minimize computations by approximating our system as the double integrator given
in Eqn (4). This approximation enables analytical solutions to the optimal boundary value problem between two
sampled states, which is executed in the SolveOBVP algorithm. The approximation is corrected for in Section IV.E.
The results in this section come from the works [15, 27].

bIf this information was available a priori, than all computations could be performed offline and the real-time implementation would become
irrelevant.
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To address control constraints on thrust, a control penalty term is added to the minimum-time cost function, that
is:

J [u, τ ] =

∫ τ

0

1 + u[t]TRuu[t] dt, (5)

where Ru ∈ Rm×m is symmetric positive definite. For a fixed final time, τ , the optimal cost J ∗ for the control-
penalized double integrator model is given in closed form by Eqn. (6) where Ru = wRI and wR is the control penalty
weight [15, 27]:

J ∗[τ ] = τ + ‖x− x̄[τ ]‖Td[τ ]. (6)

The corresponding control and state trajectories as functions of time t, for a fixed final time τ , are given in Eqn.
(7), respectively [15, 27]:

u[t] = R−1
u BTexp

[
AT(τ − t)

]
d[τ ],

x[t] = x̄[t] +G[t]exp
[
AT(τ − t)

]
d[τ ],

(7)

where

d[τ ] = G[τ ]−1 (x− x̄[τ ]) ,

G[t] =
1

wR


t3/3 0 0 t2/2 0 0

0 t3/3 0 0 t2/2 0

0 0 t3/3 0 0 t2/2

t2/2 0 0 t 0 0

0 t2/2 0 0 t 0

0 0 t2/2 0 0 t

 ,
x̄[t] = exp [At]x0 +

[
0, 0, gt2/2, 0, 0, gt

]T
,

(8)

Note that Eqns. (6) and (7) require a fixed final time τ The optimal final time τ∗ is found as argminJ [τ ],which
can be solved for via a bisection search of Eqn. (6).

IV.B. Machine Learning of Neighborhoods

When the boundary states, xinit andXgoal, are introduced at online initiation they must be connected to the pre-sampled
states before the motion planner can execute. Naively connecting the terminal states to all pre-sampled states would
require O(Ns) calls to SolveOBVP, which is prohibitively many to execute in real-time. Instead we seek to only
connect the boundary states with their nearest neighbors, as defined by the cost-limited reachable set (see Figure 4).
By limiting edge connections from the boundary states to a fixed number of states in their respective neighborhoods
we have effectively reduced the number of online OBVPs to O(1). This reduction in online OBVPs lies at the core of
achieving real-time execution of a kinodynamic planner.

Figure 4. Conceptual representation of a cost-limited reachable set for a notional 2D dynamical system. Formally, a (forward) cost-limited reachable set is the
set of states that can be reached from a given state with a cost bounded above by a given threshold (denoted as Jth).
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A conceptual diagram of a cost-limited reachable set, i.e. neighborhood, of a given state is represented in Fig. 4.
The mathematical definition of the “outgoing neighborhood” or forward cost-limited reachable set of a state xa is:

Rout (xa,U , Jth) := {xb ∈ X | ∃u ∈ U and ∃t′ ∈ [t0, tf ] s.t. x (t′) = xb and J ∗ ≤ Jth}, (9)

where Jth is a user-defined cost threshold. In plain English, the forward reachable set is the union of all states xb ∈ X
such that the optimal cost, J ∗, to steer the system from xa to xb is less than the cost threshold Jth. Also of importance
is the concept of an “incoming neighborhood” or backward reachable set. The backward reachable set of state xb is
the union of all states, xa, such that xb is in the forward reachable set of xa.

In general the determination of reachability sets is a computationally-expensive problem [28], therefore the real-
time planning framework applies an approximation to the reachable sets based on machine learning. During the offline
phase a support vector machine (SVM) is trained with data stored in Cost and provides a query-based classification
of nearest neighbors. This approach leverage the authors’ prior work [29], which demonstrated the accuracy and
efficiency of this procedure for a number of nonlinear dynamical systems.

To elaborate, we seek a function that makes a simple, binary discrimination:

is the optimal cost to traverse from an arbitrary state xa to an arbitrary state xb less than a given
threshold Jth, or not?

To develop such a function, we leverage the data in Cost to provide training examples. A training example consists
of a initial state xa, final state xb, and optimal cost of traversal between the two. For each training example i =
1, . . . , Ntrain where Ntrain ≤ Npair, the initial and final states are concatenated into an attribute vector p(i). If the
optimal cost of the training example is less than the user-defined threshold, Jth, then it is given a label y(i) = +1;
otherwise it is given label y(i) = −1. The training of the SVM is accomplished with the optimization given in Eqn.
(10) [30]:

maximize
α

Ntrain∑
i=1

αi −
1

2

Ntrain∑
i,j=1

y(i)y(j)αiαjK
(
p(i),p(j)

)
subject to 0 ≤ αi ≤ C, i = 1, . . . , Ntrain

m∑
i=1

αiy
(i) = 0

(10)

where the αi’s are Lagrange multipliers, C is a user-defined parameter that relaxes the requirement that the training
examples be completely separable, and K(·) is the kernel function. The vectors corresponding to non-zero Lagrange
multipliers αi’s are the support vectors. For this work the kernel function, K, has the form

K(p1,p2) =
(
φ (p1)

T
φ (p2) + c

)p
,

where φ is a nonlinear mapping of the attribute vector to a feature vector, c is a weighting parameter between first and
second order terms, and p is kernel order chosen by the user. Once the support vectors are obtained, predictions on
reachability for a new OBVP, paramaterized by p̃, can be made with the predictor

NearSVM

(
Ntrain∑
i=1

αiy
(i)K

(
p(i), p̃

)
+ b

)
. (11)

where b is a bias term that is determined as a function of the Lagrange multipliers [30].
Note that NearSVM is trained on data in Cost which is generated with no knowledge of obstacle placement.

Therefore, NearSVM has no function in predicting obstacle collisions. Collision checking is solely within the realm
of the sampling-based planner discussed in Section IV.C. Results on training and testing of the SVM classifier for a
quadrotor system are presented in Section V.

IV.C. Sampling-Based Planner

The sampling-based motion planner at the core of our real-time framework is a kinodynamic variant of the Fast
Marching Tree (FMT∗ ) algorithm [23], and is presented in pseudo-code in Algorithm 3. The algorithm works by
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expanding a tree, stored in a set of edge connections E, along the minimum cost-to-come front through the pre-
sampled set of states V . The frontier of the tree is stored in set H and unconnected samples are stored in set W .

For each iteration of the algorithm, the minimum cost-to-come sample z is used as a pivot for exploration. The
forward-reachable set of z among the sampled states V is stored in the discrete set Nout

z . The intersection of Nout
z

and set W is determined and the result is stored in set Xnear. Each sample, x ∈ Xnear, represents a candidate for
expansion of the tree. For each candidate x the backward reachable set among sampled states is determined and saved
as set N in

x . The set Ynear is determined as the intersection of H and backward reachable set of x, N in
x . The sample

ymin ∈ Ynear represents the optimal connection point (assuming no obstacles) between x and the existing tree. If the
connection from ymin and x is free of collisions with obstacles, then the (ymin, x) edge is added to the tree, x is added
to the frontier set H and removed from W . Once all nodes in Xnear are analyzed, the pivot node z is removed from
the frontier set and the process is repeated. The algorithm succeeds in finding a path from xinit to Xgoal as soon as the
current pivot, z, is an element of Xgoal. If H ever becomes empty, then kino-FMT reports failure. The (asymptotic)
optimality properties of FMT∗ (and its kinodynamic variants) are discussed in [23, 31, 26].

Algorithm 3 Kinodynamic Fast Marching Tree Algorithm (kino-FMT )
1 V ← V ∪ {xinit} ∪ {Xgoal}
2 E ← ∅
3 W ← V \{xinit}; H ← {xinit}
4 z ← xinit
5 while z /∈ Xgoal do
6 Nout

z ← Near(z, V \{z}, Jth)
7 Xnear = Intersect(Nout

z ,W )
8 for x ∈ Xnear do
9 N in

x ← Near(V \{x}, x, Jth)
10 Ynear ← Intersect(N in

x , H)
11 ymin ← arg miny∈Ynear{Cost(y, T = (V,E))+Cost(yx)}
12 if CollisionFree(ymin, x) then
13 E ← E ∪ {(ymin, x)}
14 H ← H ∪ {x}
15 W ←W\{x}
16 H ← H\{z}
17 if H = ∅ then
18 return Failure
19 z ← arg miny∈H{Cost(y, T = (V,E))}
20 return Path(z, T = (V,E))

IV.D. Minimum-Snap Trajectory Smoother

Trajectory smoothing is commonly implemented in motion planning to improve the quality of the trajectory returned
by the planner. Furthermore, in our case, we need to correct for the double integrator approximation previously made.
To this end we improve the sampling-based planner’s solution computed via kino-FMT by connecting the solution
samples with a high-order polynomial spline. Building on Mellinger’s work [7], Richter et. al. [5] formulate the spline
determination as an unconstrained quadratic programming problem that minimizes the integral of the square of the
snap (i.e. the 4th derivative of position); see Eqn. (12). In the unconstrained formulation, derivatives at samples of the
motion plan, i.e. waypoints, are left as free parameters for optimization. For completeness we present the essential
results of Richter as they are used in our current approach [5, 6].

Our goal in this section is to determine the coefficients of M polynomials of order N . These polynomials form
a spline that is continuous up to the 4th derivative and passes through the sampled states, or “nodes”, of the solution
trajectory determined in Section IV.C. While an infinite number of splines may exist that satisfy these conditions, we
seek the spline that minimizes the integral of the square of the snap. Let us begin by considering a single polynomial
P (t) =

∑N
n=0 pnt

n. The minimum-snap cost function for a single polynomial is defined as

Jsnap =

∫ T

0

P (4)(t)2 dt = pTQ(T )p, (12)
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where Q(T ) is the Hessian matrix of Jsnap with respect to the polynomial coefficients, p is a vector of the N + 1
polynomial coefficients, and T is the polynomial segment time which is determined by the kinodynamic planner.
Without derivation, the Hessian matrix is given asc

Qi,j(T ) = 2

(
3∏
k=0

(i− k)(j − k)

)
T i+j−7

i+ j − 7
for: i ≥ 4 ∧ j ≥ 4,

Qi,j(T ) = 0 otherwise.

(13)

As previously mentioned, the polynomial is constrained at its terminal points, t = 0 and t = T , to the waypoints of
the motion plan determined in Section IV.C. The derivatives of the polynomial at its terminal points can be fixed or left
as free parameters for optimization. Even as free parameters, however, the derivatives must satisfy continuity between
polynomials in the spline. These constraints can be encoded as the linear function

Ap = d (14)

A =

[
A0

AT

]
, d =

[
d0

dT

]
(15)

where the terms are given as

A0i,j
=


∏i−1
k=0(i− k) if i = j

0 if i 6= j
(16)

d0i
= P (i)(0) (17)

ATi,j
=


(∏i−1

k=0(i− k)
)
T i−j if i ≥ j

0 if i < j
(18)

dTi
= P (i)(T ) (19)

Numerical stability can be achieved by reformulating the constrained problem represented in Eqns. (12) and (15) as
an unconstrained optimization [5, 6]. This is achieved by optimizing over the polynomial derivatives at the terminal
points instead of the polynomial coefficients. Under this reformulation, Eqns. (12) and (15) become

Jsnap = dTA−TQ(T )A−1d, (20)

and the polynomial coefficients are determined, a posteriori, via inversion of Eqn. (14).
Now that we have formulated the optimization problem for a single polynomial, we must consider the optimization

over the spline ofM polynomials. To this end we formA1...M andQ1...M which are block diagonal matrices composed
of the A and Q matrices for each segment. We could also simply concatenate the derivative vectors into a vector
d1...M , however it is desirable to separate this vector into components that are fixed and those that are free parameters
of optimization. Therefore the derivative vector for the spline optimization is formed as

dtotal =

[
dfix

dfree

]
. (21)

With this reordering of the derivative vector in Eqn. (21), an ordering matrix C is required that preserves the proper
relationships with the block matrices A1...M and Q1...M . Furthermore, the ordering matrix C also encodes the en-
forcement of continuity of derivatives at intermediate waypoints. Now the minimum-snap cost function for the entire
spline is given as

Jsnap = dT
totalCA

−T
1...MQ1...MA1...MC

Tdtotal. (22)

cNote that we diverge from Richter by only considering the minimization on the 4th derivative, where Richter leaves the formulation more
general as a weighted sum of squares of derivatives. Furthermore, due to the fact that Richter uses a geometric planner to determine waypoints, his
approach requires a time allocation optimization to determine polynomial segment times, T [5, 6]. In contrast, our work determines the polynomial
segment times during the time-minimizing kinodynamic planning; see Section IV.C.
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For simplicity, define the matrix H = CA−T
1...MQ1...MA1...MC

T and partition it such that Eqn. (22) can be written

Jsnap =

[
dfix

dfree

]T [
H11 H12

H21 H22

][
dfix

dfree

]
. (23)

Differentiating and setting to zero solves for the free derivatives at the waypoints

d∗free = −H−1
22 H

T
12dfix. (24)

Now that the derivatives at each waypoint are determined, the polynomial coefficients can be determined by inverting
Eqn. (14). This process is applied for the determination of four splines: x, y, and z positions and yaw. These splines
correspond to the differential flat output variables discussed in Section IV.E.

It is important to note here that once smoothing is applied, the trajectory is no longer guaranteed to be collision
free. Therefore it is necessary to perform an additional collision checking phase during the trajectory smoothing
phase. If one of the polynomials in the spline is found to collide with an obstacle, then a new smoothed trajectory
must be determined. This is accomplished by sampling the midpoint of the underlying motion plan solution which is
guaranteed to be collision free (else it would have not been selected as a valid motion plan). The trajectory smoother
than solves the minimum-snap optimization problem forM+1 trajectory segments. This is repeated until the smoothed
trajectory is collision free. See Richter et. al. for more details [5, 6].

IV.E. Differentially Flat Mapping

The trajectory smoother from Section IV.D produces polynomial splines for position and yaw that are continuous up
to their fourth derivative. Mellinger et. al. showed that the state and control variables for the nonlinear quadrotor
dynamics can be expressed in terms of ~ξN and ψN and their derivatives up to fourth order; thus proving Eqn. (3)
represents a differentially flat system with flat output variables ~ξN and ψN [7]. This mathematical property proves
that the smoothed trajectory from Section IV.D is guaranteed to be dynamically feasible for the quadrotor; therefore
correcting the double-integrator approximation made to solve the planning problem. For completeness we state the
results of Mellinger et. al. for the mapping from the flat outputs to the nominal state and control variables. Note that,
while the following equations are taken almost directly from [7], there are some subtle coordinate frame changes.

The nominal position and velocity state variables are identically ~ξN and ~̇ξN , respectively. The thrust control
variable is given as

u1ff
= −~zB · ~FN , where: ~FN = m~̈ξN −mg~zW (25)

The subscript ff indicate that this thrust value appears as a feedforward term in the flight controller (Section IV.F).
The nominal orientation matrix is given by the nominal frame axes represented in world coordinates:

~RN =
[
W~xN ,

W~yN ,
W~zN

]
, (26)

where

~zN = −
~FN

‖~FN‖
~yS = [−sinψN , cosψN , 0]

T

~xN =
~yS × ~zN
‖~yS × ~zN‖

~yN = ~zN × ~xN .

(27)

The nominal angular velocity vector is given by

~ΩNW = pN~xN + qN~yN + rN~zN (28)

where the individual components of nominal angular velocity are
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pN = −~hΩ · ~yN
qN = ~hΩ · ~xN
rN = ψ̇N~zW · ~zN

(29)

For compactness we have defined

~hΩ =
m

u1ff

((
~ξ

(3)
N · ~zN

)
~zN − ~ξ(3)

N

)
(30)

The nominal angular acceleration, used in the calculation of the feedforward moment terms, is derived to be

~̇ΩNW = α1N
~xN + α2N

~yN + α3N
~zN (31)

where the individual components of nominal angular acceleration are

α1N
= −~hα · ~yN

α2N
= ~hα · ~xN

α3N
=
(
ψ̈N~zN − ψ̇N~hΩ

)
· ~zW

(32)

Again for compactness we give

~hα = − 1

u1ff

(
m~ξ

(4)
N + ü1ff

~zN + 2u̇1ff
~ΩNW × ~zN

+~ΩNW × ~ΩNW × ~zN
) (33)

The derivative of the net thrust, which appear in Eqn (33), are derived to be

u̇1ff
= −m~ξ(3)

N · ~zN

ü1ff
= −

(
m~ξ

(4)
N + ~ΩNW × ~ΩNW × ~zN

)
· ~zN

(34)

Note that the equations presented in this section are taken almost directly from Mellinger et. al. [7] but are stated here
for completeness of our approach.

IV.F. Flight Controller

The flight controller is based on work by Lee et. al. and can be consider a form of feedforward/feedback control [19].
Feedforward inputs, denoted with subscript ff , are generated from the differentially flat mapping in Section IV.E
and feedback terms, denoted with subscript fb, are generated via proportional-derivative (PD) tracking of position,
velocity, orientation and angular velocity. Equation (35) gives the net thrust control input.

u1 = u1ff
+ u1fb

= −~zB ·
(
m~̈ξN −mg~zW +Kξ~exi+Kv~ev

) (35)

Equation (36) presents the control inputs for the moments about the body axes.

[u2, u3, u4]
T

= [u2, u3, u4]
T
ff + [u2, u3, u4]

T
fb

= JB

(
RTBRN

~̇ΩBW − ~ΩBW ×
(
RTBRN ~ΩBW

))
+ ~ΩBW × JB~ΩBW +KR~eR +KΩ~eΩ

(36)

The error terms for feedback control are given by Eqn. (37) [19]
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~eξ = ~ξN − ~ξ

~ev = ~̇ξN − ~̇ξ

~eR =
1

2

(
RT
BRD −RT

DRB
)∨

~eΩ = RT
BRD~ΩD − ~ΩB

(37)

where ∨ represents the vee-map; the inverse of the hat-map. The matrices Kξ,Kv,KR,KΩ ∈ R3×3 are user-defined
gain matrices for PD trajectory tracking.

V. Experimental Results

V.A. Experimental Setup

The real-time framework is demonstrated on a Pixhawk autopilot flown on a DJI F-450 frame. Positioning information
is provided by a Vicon motion tracker with data streamed to the quadrotor via a Wifly RN-XV module. Currently the
motion planning and path smoothing computations are run in MATLAB/C++ on a single-threaded Intel Core i7-4790K
CPU. The final trajectory is transmitted to the Pixhawk for low-level flight control. This communication structure is
represented in Fig. 5. Table 1 gives detailed information on the computational platform and programming language
for each of the major components of the framework discussed in Section IV. Future work will convert all portions of
the online phase (see Alg. 2) to C++ to be run on an embedded processor on the quadrotor.

Table 1. Computational platform and programming language for the major components of the real-time framework.

Process Reference Processor Language
localization NA workstation C++

precomputations IV workstation MATLAB
neighborhood estimation IV.B workstation MATLAB

OBVP solutions IV.A workstation MATLAB
sampling-based planning IV.C workstation C++

min-snap smoothing IV.D workstation MATLAB
flat-to-nonlinear mapping IV.E Pixhawk C/C++

flight control IV.F Pixhawk C/C++

The quadrotor is navigating an indoor environment with dimensions of approximately 3m×4m×3m. The obstacle
set consists of two parrallel walls with 1.5m openings at opposite ends and a 1.5m separating corridor. This obstacle
set is designed to be similar in form to that presented by Webb and van den Berg [15].

Figure 5. Communication/computation structure for flight tests.
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V.B. Numerical Results and Flight Data

The real-time kinodynamic planner was successfully demonstrated in flight tests. The first image in Fig 6 gives
an overhead view of the exploration tree generated by kino-FMT during execution with the final solution shown in
blue. The second image in Fig 6 compares the minimum-time, sampling-based motion plan; minimum-snap smoothed
trajectory of the differentially flat output variables; and the flight trajectory that was physically flown by the quadrotor.
Fig 7 shows a set of screen captures from a recording of the flight.

Figure 6. (left) Tree explored by the kino-FMT algorithm with optimal solution in blue. (right) Motion plan (blue), smoothed trajectory (multi-colored), and
flight data (green) shown with the parallel wall obstacles.

The primary goal of this work was to prove that the entire planning framework can be executed in a real-time
environment. The computational timing data and path cost are given in Table 2 for a range of sampled states. It
is shown that the entire kinodynamic planning and control problem can be solved in under 1/3 of a second for 500
sampled nodes. Even with 3000 sampled states, the computation time for the entire planner is under 2 seconds.

To compare this to existing results, Webb and van den Berg simulate an almost identical problem; however they do
not perform any path smoothing or communication to a physical quadrotor [15]. With 1000 sampled states Webb and
van den Berg’s solution takes 51.603 seconds; i.e. 120x, or 2 orders of magnitude, slower than the technique presented
here. Richter et. al. do not state the computation time for motion plan demonstrated in their work [5]. They do,
however, give the computation time for a simplified, 2-dimensional problem that incorporates geometric path planning
and minimum-snap path smoothing. Richter’s simplified, 2D planning problem takes 3 seconds of computation time;
i.e. 9.6x, or 1 order of magnitude, slower than the fastest computation time presented here. Therefore the real-
time kinodynamic framework demonstrates a significant reduction in computation time when compared to existing
techniques.

Frazzoli et. al. boasts the most impressive computation times with sub-second execution for the similar, but not
identical, helicopter system navigating spherical objects [11]. Computation times for a parallel wall obstacle set rise
into the 10s of seconds, however Frazzoli is considering the more challenging situation of dynamic obstacles. Direct
comparison with Frazzoli’s work is more difficult because it only seeks feasible trajectories, not necessarily optimal
ones. The work employs only a small set of motion primitives - avoiding the solution to online OBVPs all together -
to achieve path planning. Restricting trajectories to a small set of predefined maneuvers limits the technique’s ability
to handle novel, complex, or even pathological obstacle environments.

In Table 2 the computation time is broken down into percentages for the major components of the framework:
neighborhood classification for the terminal states (see Sec. IV.B); neighborhood OBVP solutions for the terminal
states (see Sec. IV.A); sampling-based motion planning (see Sec. IV.C); path smoothing to generate a minimum-
snap, dynamically feasible trajectory (see Sec. IV.D); and communication (see Sec. V.A). We see that the majority of
the computation time is consumed by the solution of optimal boundary value problems between the terminal states,
xinit and the samples in Xgoal, and their estimated neighborhoods. This result exemplifies the motivation to minimize
the number of online OBVPs to be solved. For the double integrator model of the quadrotor, the average OBVP
solution time is 0.0235 seconds per OBVP solution. In comparison, the average NearSVM classification time is
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Table 2. Path cost and computation time breakdown for the Real-Time Kinodynamic Framework for differing numbers of sampled states

# of
Samples

Path
Cost [s]

Computation
Time [s]

Neighbor
Classifier [%]

Neighbor
OBVPs [%]

Kino-FMT*
[%]

Smoothing
[%]

Comms
[%]

500 5.4958 0.3125 6.42 37.73 9.43 30.43 25.29
1000 5.4721 0.4293 5.31 41.01 13.60 32.70 4.24
2000 5.2382 0.9242 4.56 41.65 19.81 26.40 3.38
3000 5.2910 1.789 3.08 53.69 29.74 9.65 1.63

1.95×10−5 seconds per classification; roughly 1200 times, or three orders of magnitude, faster than OBVP solution.
This rapid approximation of neighborhood sets as –opposed to explicit determination via OBVP solutions– is the
critically enabling component for real-time implementation.

Table 3. Feature vector for neighbor determination of the double integrator quadrotor model.

x1 x2 |∆x| (∆x)2 (∆x)3
√

(∆x)2 + (∆y)2 + (∆z)2

y1 y2 |∆y| (∆y)2 (∆y)3
√

(∆ẋ)2 + (∆ẏ)2 + (∆ż)2

z1 z2 |∆z| (∆z)2 (∆z)3
√

(∆x)2 + (∆y)2 + (∆z)2 + (∆ẋ)2 + (∆ẏ)2 + (∆ż)2

ẋ1 ẋ2 |∆ẋ| (∆ẋ)2 (∆ẋ)3

ẏ1 ẏ2 |∆ẏ| (∆ẏ)2 (∆ẋ)3

ż1 ż2 |∆ż| (∆ż)2 (∆ẋ)3

Due to the reliance on machine-learning of neighbor sets, it is important to determine the classification accuracy of
the NearSVM algorithm. The feature vector is a 33-element vector, given in Table 3, composed of nonlinear mappings
of the boundary value state variables. A third order kernel function is chosen; therefore p = 3 in Eqn. (11). For
training and testing of the SVM classifier 50000 OBVPs are solved from randomly selected pairs of sampled states
during the offline computation phase. A neighbor radius, or cost threshold, is chosen as the 10th quantile of all OBVP
costs; which for this test campaign evaluated to neighbor cost threshold of roughly 0.69 seconds. In other words, for a
given state, roughly 10% of all other states are within 0.69 seconds as measured by a minimum-time optimal control
problem. To train the SVM classifier, Ntrain = 20000 of the 50000 OBVP solutions were used with the 0.69 second
cost threshold. On average less than one training error occurred per the 20000 training examples. The algorithm
was tested against 30000 additional OBVP examples to ensure that the SVM was not over-trained to the training set
d. The average testing error was under 3%, well within the acceptable tolerance for the purpose of this work and a
marked improvement over the author’s prior work on machine learning of cost-limited reachable sets [29]. Table 4
gives the training and testing results. A ‘positive’ indicates that NearSVM classified the OBVP example as within
the cost threshold, and a ‘negative’ indicates a classification of the OBVP outside of the cost threshold. The number
of true positives is roughly 10% of the number of true negatives; as expected with the 10th quantile cost threshold.
The average number of false positives and false negatives are approximately equal indicating that the classifier is not
biased toward one classificatione.

Table 4. Training and testing accuracy of machine-learning-based neighborhood classification algorithm

# Training
Examples

Avg. #
Training
Errors

# Testing
Examples

Avg. #
True

Positives

Avg. #
True

Negatives

Avg. #
False

Positives

Avg. #
False

Negatives

Testing
Error [%]

20000 0.6 30000 2693 26600.6 371.8 334.6 2.35

dTypically the training set would be much larger than the testing set, but due to convergence issues while training, the training set was reduced
and the remainder of OBVP examples was dedicated to the testing set.

eFor example, we could use a trivial classifier that only predicted negatives and it would return a testing error of 10% because only 10% of cases
are positive. This would actually constitute an acceptable rate of classification error if it were not for the fact that all errors would be false negatives
as the the classifier is trivial. Therefore a well trained classifier should not be biased toward one type of error.
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Figure 7. Timelapse of quadrotor navigating obstacles.

VI. Conclusions

This work presents a full-stack, quadrotor planning architecture that is shown to reduce online computation times
below one second; several orders of magnitude faster than techniques presented in existing literature. This is arguably
one of the first, if not the first demonstration of truly real-time kinodynamic planning on a quadrotor system navigating
an obstructed environment. The drastic improvement in online computation time is achieved by reducing the number
of online optimal boundary value problems to be solved to constant order. The reduction to constant order OBVP
solutions is enabled by machine learning estimates of reachability sets for a dynamical system.

While this work is targeted at demonstration of real-time planning for a quadrotor system, much of the presented
framework remains generally applicable to motion planning for an arbitrary dynamical system. Therefore the presented
work is relevant for a wide range of planning and control problems; e.g. spacecraft, automobile, robotic arms, naval
craft, etc.

Further work will validate and extend these results. All components of the planning framework will be translated
to C/C++ and run on an embedded processor flown on the quadrotor. While the processing power on an embedded
system will be diminished when compared to the workstation used in this paper, the translation from MATLAB to
C/C++ is expected to roughly balance the effect; therefore computation times are not expected to change significantly.
To deal with the more challenging scenario of dynamic obstacles, the entire framework will be wrapped in a model
predictive control structure to re-plan as obstacle data evolves. Finally, the localization and mapping that is currently
achieved with the Vicon motion capture system will be integrated into the quadrotor system using a range of visual,
laser, and ultrasonic sensors. In this way, real-time localization and planning will be achieved on a fully self-contained
platform.

The code base for this work can be found at: https://github.com/StanfordASL/KinoFMT.git
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