
A Machine Learning Approach
for Real-Time Reachability Analysis

Ross E. Allen,∗ Ashley A. Clark,∗ Joseph A. Starek,∗ and Marco Pavone

Abstract— Assessing reachability for a dynamical system, that
is deciding whether a certain state is reachable from a given
initial state within a given cost threshold, is a central concept
in controls, robotics, and optimization. Direct approaches to
assess reachability involve the solution to a two-point boundary
value problem (2PBVP) between a pair of states. Alternative,
indirect approaches involve the characterization of reachable
sets as level sets of the value function of an appropriate optimal
control problem. Both methods solve the problem accurately,
but are computationally intensive and do no appear amenable
to real-time implementation for all but the simplest cases. In this
work, we leverage machine learning techniques to devise query-
based algorithms for the approximate, yet real-time solution
of the reachability problem. Specifically, we show that with a
training set of pre-solved 2PBVP problems, one can accurately
classify the cost-reachable sets of a differentially-constrained
system using either (1) locally-weighted linear regression or
(2) support vector machines. This novel, query-based approach
is demonstrated on two systems: the Dubins car and a deep-
space spacecraft. Classification errors on the order of 10% (and
often significantly less) are achieved with average execution
times on the order of milliseconds, representing 4 orders-of-
magnitude improvement over exact methods. The proposed
algorithms could find application in a variety of time-critical
robotic applications, where the driving factor is computation
time rather than optimality.

I. INTRODUCTION

Autonomous dynamical systems such as the recently-proposed
Google Driverless Car or the SpaceX Dragon capsule present
challenging control questions, including: How can a car
choose a safe path through moving, unpredictable traffic while
maintaining lawful behavior? Which spacecraft approach
configurations will inevitably lead to collision with a target,
regardless of future avoidance maneuver attempts? These
types of questions appear regularly in the fields of optimal
control, kinodynamic motion planning, and differential games,
and all center on the concept of reachability. Conceptually-
speaking, the reachable set from some initial state x0 is the
set of states traversed by application of all possible admiss-
able control sequences, u(t), from x0 [1]. Specifically, for
dynamical systems, we emphasize the cost-limited reachable
set – the set of states for which the optimal cost to reach
these states, J∗, from x0 is less than or equal to a given cost
threshold, Jth. The reachability problem is then to assess
whether a certain state x belongs to the cost-limited reachable
set, see Figure 1.

The authors are with the Department of Aeronautics
and Astronautics, Stanford University, Stanford, CA, 94305,
{rallen10,aaclark,jstarek,pavone}@stanford.edu.

∗These authors contributed equally to this work.
This work was supported in part by the National Aeronautics and

Space Administration STRO-ECF Grant #NNX12AQ43G and the United
Technology Research Council’s Graduate Fellowship in Aerospace Systems.

Fig. 1: Simplified, 2D illustration of a cost-limited reachable set for
an initial state of a dynamical system. Green endpoints are reachable
and red endpoints are non-reachable for the given threshold Jth.

In the geometric case (without dynamic constraints), the
freedom of robots to maneuver on straight lines in any
direction makes reachability easy to assess for shortest-
path objective functions: cost-limited reachable sets form
n-spheres about the current state x ∈ Rn. For dynamically-
constrained vehicles, on the other hand, boundaries demar-
cating cost-limited reachable sets can be much more difficult
to assess. Numerical approximations of the reachable set
become necessary; however, the cost of computing convergent
approximations has a complexity that is exponential in the
dimension of the state space [2], making them prohibitively
expensive for real time applications. This motivates the need
of alternative methods for the rapid determination of cost-
limited reachable set approximations.

Statement of contributions: In this paper, we show that
supervised machine learning techniques [3] can be used to
accurately predict cost-limited reachable sets of dynamical
systems in real-time. To demonstrate, we use two different
machine learning algorithms and compare the accuracy and
efficiency of each. The algorithms employed are (1) a locally-
weighted regression algorithm for predicting cost function
values between query points xa and xb, which determines if
xb is cost-limited reachable from xa, and (2) a support vector
machine learning algorithm for nonlinear, binary classification
of a state’s reachable set. The approach generalizes to any
type of system dynamics so long as cost training data can
be generated. This flexibility suggests that the proposed
strategy is applicable to a variety of fields including hybrid
system reachability analysis, kinodynamic motion planning,
or differential games. In this paper we restrict our attention
to continuous, nonlinear, ordinary dynamical systems, and
demonstrate our learning strategies on two classical systems
of interest: the Dubins car model (see Fig. 2) and a deep-

space spacecraft model (see Fig. 6). These techniques can
asses a classification query on the order of milliseconds;
a improvement of 4 orders-of-magnitude over an exact
classification.

Organization: The remainder of the paper is structured as
follows: In Section II we review available results for the
solution of the reachability problem. In Section III we
formally state the problem we wish to solve, and in Section IV
we present both the locally-weighted regression algorithm and
the support vector machine learning algorithm for reachability
analysis. In Section V we present the results from numerical
experiments, and in Section VI we draw our conclusions.

II. RELATED WORK

Reachability analysis is a well-studied field, which has
produced a number of strong theoretical results for certain
types of systems. Arguably, the most thoroughly studied class
is represented by discrete, linear, time-invariant (LTI) systems,
for which it is well-known that an exact solution exists for
the case of convex polyhedral control and state spaces [4].
For the controllable, continuous-time case without control
constraints, it is well-known that the controllability Gramian
can be used to formulate a control law connecting any two
states in any specified period of time. However, once control
constraints or a control-dependent cost are introduced, analytic
solutions are generally no longer available and numerical
approximations become necessary. A direct approach requires
the numerical solution to a 2PBVP. An alternative, indirect
method relies on the numerical computation of the zero-
level set of the viscosity solution of the Hamilton-Jacobi-
Bellman equations, though with exponential time complexity
[2]. Modern research on reachability analysis has therefore
focused on producing efficient over- or under-approximations
of reachable sets and has progressed from the continuous-
time linear case [5], to general nonlinear dynamics [6], [7],
to nonlinear differential-algebraic dynamics [8] and hybrid
systems [9]. These techniques have been tailored to specific
applications such as spacecraft dynamics [10] and aircraft
dynamics. All these methods solve the problem accurately,
but are computationally intensive and do no appear amenable
to real-time implementation for all but the simplest cases.

The machine learning strategy presented in this paper offers a
radically different approach when compared to previous work
on reachability analysis. To date, the most relevant application
of machine learning to reachability analysis is in the related
problem of classifying sets of k nearest neighbors in Euclidean
spaces for some positive integer k [11], called the k-NN or
pattern recognition problem. Approximate methods for the
k-NN problem, analogous to our approach for continuous
2PBVP’s, include [12] - which computes “fuzzy” nearest-
neighbor sets, and [13] - which employs a genetic algorithm
to discover nearest neighbors. These approaches, however,
are generally limited to straight-line distance metrics. By
using nonlinear, binary classification and locally-weighted
linear regression, our approach eliminates these restrictions. It
should be noted that the downside of applying heuristics like
machine learning is that theoretical correctness guarantees can
no longer be made – only empirical data can be given. For

many applications, such as real-time sampling-based motion
planning, this may be sufficient.

III. PROBLEM STATEMENT

Consider a dynamical system ẋ(t) = f(x(t),u(t), t) evolving
over a time horizon [t0, tf] and a Bolza-form cost

J = K[x(tf), tf] +

∫ tf

t0

L[x(τ),u(τ), τ] dτ. (1)

Define the cost-limited reachable set, for the arbitrary state
xa, as [1]:

R(xa,U , Jth) = {xb ∈ X | ∃u ∈ U and
∃t′ ∈ [t0, tf] s.t. x(t′) = xb and J∗ ≤ Jth},

(2)

where x(t) is the state vector as a function of time, u(t)
is the control vector as a function of time, X is the state
space, U is the set of admissible controls, J∗ is the optimal
cost from xa to xb, K is the terminal cost function, L is
the incremental cost function, and Jth is a given threshold.
Specifically, the optimal cost J∗ is given by the solution to
the optimal control problem:

J∗ =minimize
u

J(x,u, t)

subject to x(t) ∈ X for all t ∈ [t0, tf]

u(t) ∈ U for all t ∈ [t0, tf]

ẋ(t) = f(x(t),u(t), t)

x(t0) = xa,x(tf) = xb.

(3)

The problem in equation (3) is referred to as 2-point Boundary
Value Problem (2PBVP) or steering problem.

The objective of this paper is to design fast, query-based
algorithms to assess whether a certain state x belongs to the
cost-limited reachability set R(xa,U , Jth).

IV. QUERY-BASED REACHABILITY ALGORITHMS

To solve the reachability problem stated in Section III we
consider two approaches leveraging two different techniques
from machine learning. The first approach approximates
the solution J∗ using a locally-weighted linear regression
algorithm [3, Ch. 3]; see Section IV-A. The second uses a
support vector machine (SVM) [3, Ch. 7], described in section
IV-B, to approximate the nonlinear boundary between a state’s
reachable and non-reachable set. To generate training data for
these learning algorithms we exactly1 solve a “large” number
of 2PBVPs given by equation (3) for various, randomly-
generated query pairs (xa,xb). The 2PBVP solver employs
Chebyshev Pseudospectral Methods and sequential quadratic
programming and is described in Section IV-C.

Note that since our supervised learning algorithms are not
derived from an assumed form of system dynamics (e.g.,
linear, polynomial, etc.), we expect that they may be applied
to arbitrarily complex systems – e.g. differential-algebraic
systems, differential-inclusion systems, hybrid systems or

1The term ’exactly’ is used to distinguish this solution from the
approximate solutions provided by the supervised learning techniques. In
practice, equation (3) is solved to a given tolerance.

even systems with black-box dynamics – without sacrificing
on-line running time (perhaps requiring more offline training
time, however).

A. Linear Regression Approach

For a given system (i.e., fixed cost function, dynamics, control
constraints and state constraints) each 2PBVP in equation (3)
differs only in the initial and final conditions. As a result,
the optimal cost, J∗, can be thought of as a function of
the boundary states, xa and xb (also referred to as a query
pair), parameterized by system dynamics and constraints.
Accordingly we write J∗ = J∗(xa,xb; f,X ,U). The idea
then is interpolate neighboring pre-computed queries using
regression techniques. Due to its robustness and simplicity, we
demonstrate the idea using locally-weighted linear regression,
implemented as:

minimize
θ

m∑
i=1

w(i)
(
J∗(i) − θTφ(x̃(i))

)2
where x̃(i) ∈ Rd is the ith training example (query pair), m
is the number of training examples, θ ∈ Rn is the training
parameter vector, φ : Rd → Rn is the feature mapping,
J∗(i) is the optimal cost of the ith training query, and
w(i) is the weight given to the ith residual. As it is well
known, the solution is θ∗ =

(
ΦTWΦ

)−1
ΦTWJ∗, yielding

Ĵ = θ∗
T
φ(x̃) as the estimated cost, where W ∈ Rk×k is a

diagonal matrix of weights w(i), J∗ ∈ Rk is the vector of
optimal costs, and Φ ∈ Rk×n is the matrix of all k feature
vectors.

Model Selection: To improve interpolation performance,
feature vector components are normalized to unit scaling
by defining the weights w(i) as:

w(i) = exp

(∣∣∣∣v(i)
∣∣∣∣2

2τ2

)
, with v

(i)
k =

φ
(
x̃(i)
)
k
− φ(x̃)k

range
(
φ(x̃)k

) ,

where τ > 0 is the bandwidth parameter, and range(φ(x̃)k)
is the maximum extent of the kth feature (k = 1, . . . , n). Due
to the tradeoff between over- and under-fitting as τ is varied,
we ran k-fold cross-validation [3, Ch. 1] to find the value
of τ that yielded the lowest average percent error over all k
training queries.

Feature Selection: As previously mentioned, 2PBVP query
pairs are mapped to feature vectors. In order to more effec-
tively approximate the true cost function, one should carefully
choose a mapping that produces linearly-independent features
that are relevant to the given 2PBVP (e.g., endpoint norms,
energy values, ratios of boundary states, etc). In an effort
to identify features with the most significant impact on cost
approximation accuracy, we ran a backward feature selection
search as part of our cost-prediction algorithm training. This
not only illustrates the trade-off in approximation error and
feature vector size, but also provides feature vector design
intuition for the particular application.

B. SVM Approach

The idea behind this approach is to approximate the reachabil-
ity boundary using a nonlinear classifier, separating training
queries into reachable and non-reachable sets. The classifier
can then be used to estimate whether new query point pairs
(xa,xb) are reachable within the cost threshold used to define
the trained reachability boundary.

For the applications in this paper, a Support Vector Machine
(SVM) algorithm with a nonlinear kernel function was
employed; a basic description of which follows. SVM seeks
to design a function h

(
wTx̃ + b

)
affinely dependent on

examples x̃ with coefficients w and intercept or “bias” b
that correctly maps an attribute vector x̃ ∈ Rd to a label
y ∈ {−1,+1}. For this application, a label of -1 correlates
to an unreachable case, where +1 correlates to a reachable
case. These parameters are designed to minimize the number
of misclassifications over a set of training examples S ={(

x̃(i), y(i)
)}m

i=1
, called the training set, without overfitting

so as to generalize well to newly-encountered queries (i.e., test
cases). SVM accomplishes this by solving the optimization
problem:

maximize
α

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj

〈
x̃(i), x̃(j)

〉
subject to αi ≥ 0, i = 1, . . . ,m

m∑
i=1

αiy
(i) = 0

(4)

where 〈·〉 represents the inner product of two vectors. The
points x̃(i) with non-zero Lagrange multipliers αi are called
support vectors. In practice, `1-regularization – which intro-
duces slack variables to reform equation (4) – is performed
to handle the case in which the decision boundary cannot
perfectly separate the data [3]. Note that the optimization
problem and predictor, given by

h
(
wTx̃ + b

)
= h

(
m∑
i=1

αiy
(i)
〈
x̃(i), x̃

〉
+ b

)
,

depend only on the inner products of examples. To extend
SVM to nonlinear boundaries, we replace these inner products
with a function K(x̃, z̃) = φ(x̃)

T
φ(z̃) called the kernel

function, which allows the SVM to operate with a linear
boundary in a feature space defined by feature vectors φ(x̃)
that is nonlinear in terms of attributes x̃. For the nonlinear
SVM classifier in this paper, we use a pth order polynomial
kernel (with constant c ∈ R), that is:

K(x̃, z̃) =
(
φ(x̃)

T
φ(z̃) + c

)p
.

C. Training Data Generation

In order to train the locally-weighted regression and SVM
algorithms previously discussed, it is necessary to generate
“true” examples of steering problems with known optimal
cost. This was accomplished by solving – during an offline-
phase – a large number of 2PBVP problems for our chosen

systems and recording the query pairs (i.e., initial and final
states) as attributes and optimal costs as outputs. The solution
to the optimal control problem stated in equation (3) is
obtained in a two-step fashion. First the continuous-time
problem is time-discretized and transformed into a nonlinear
programming problem (NLP). Subsequently an NLP solution
technique, such as sequential quadratic programming (SQP)
[14, Ch. 18], is employed to solve the NLP and, therefore,
approximate the solution to the original optimal control
problem. The time-discretization method chosen for our work
is the Chebyshev Pseudospectral Method [15] because of
its accuracy and ability to extend to more general dynamic
constraints (e.g., differential-algebraic equations or differential
inclusions). This method works by approximating the state,
x(t), and control, u(t), trajectories with N th degree Lagrange
polynomials and then only enforcing the dynamic constraints,
ẋ(t) = f(x(t),u(t), t), at the Chebyshev-Gauss-Lobatto
(CGL) points. This creates a NLP problem where the solution
vector contains the values of the state and control variables at
these CGL points. As shown in [15], the NLP transformation
of the problem in equation (3) is given as:

minimize
X,U

JN [X,U , τf]

subject to gl ≤ g[xk,uk, τk] ≤ gu

f

[
2

τb − τa
dk,xk,uk, τk

]
= 0

x(τ0) = xa,x(τf) = xb

for k = 0, ..., N,

(5)

where JN is the N th order approximation of the cost function,
xk ∈ X and uk ∈ U are the state and control values at the
CGL points, τ is a transformed time variable, g is a condensed
representation of the state and control constraints, and dk
is a product of a differentiation operation. For brevity we
define X = [x0, . . . ,xN] and U = [u0, . . . ,uN]. See [15]
for more information. The solution to the NLP presented in
equation (5) requires an initial guess. For the cases studied
in this paper, a linear interpolation between boundary values
proved sufficient for such a guess.

For the training of the machine learning algorithms, any
2PBVPs with infinite cost, i.e., those with no feasible solution
to the NLP given in equation (5), were neglected from training.
To ensure a well-distributed sampling of the training queries,
training data was generated using the Halton sequence,
assuming a hypercubical state space.

V. APPLICATION AND RESULTS

To evaluate the effectiveness of the proposed algorithms we
selected two example models. The first, a Dubins car, is a
canonical model for which analytical results are available. The
second, a spacecraft in deep-space, is more complex and more
relevant to practical autonomous vehicle control. For each
case, we train our algorithms on sets of 1000 pre-computed
reachability queries and test the resulting parameters against
a separate set of 100 new queries.

Fig. 2: Dynamics for the Dubins car model.

A. Dubins Car

Model: The Dubins car models a simple non-holonomic car-
like land vehicle that is constrained by a maximum turning
angle φmax, and has a fixed forward speed v ∈ R>0. This
maximum steering angle imposes a minimum turning radius
ρmin on the vehicle. The dynamics of a Dubins car [1] are
given as:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = u =
v

L
tanφ,

where the set of admissible controls is
U =

[
− v
L tanφmax,

v
L tanφmax

]
. The state is given

by x = [x, y, θ]. The control task is concerned with
minimizing the total path length, which is equivalent to
minimizing the traversal time J = tf − t0 since speed is
constant. The scenario is depicted visually in Figure 2.

The cost-limited reachable set for a given Dubins car is known
analytically [16], the boundary of which can be described
by the intersection of two congruent cardiods. The cardiods
translate and rotate depending upon the time horizon under
consideration. For time horizons and rotation angles that
satisfy the inequality 0 ≤ θ ≤ vt/ρ, the boundary can be
simplified and described by:

x(θ) = ρ sin θ + (vt− ρθ) cos θ,
y(θ) = −ρ(1− cos θ) + (vt− ρθ) sin θ.

(6)

The projection of this simplified set into the x-y plane is
depicted in Figure 3. While heading constraints are accounted
for in the analytical solution, they are not displayed in the
figure for the sake of simplicity. The dynamics of the Dubins
car are invariant with respect to its initial state. Therefore,
without loss of generality, we may assume the initial state
xa is always the origin, and set the feature vector to consist
of combinations of the target state only.

Results: The results of our training and feature selection
are listed in Table I with the features listed in the order of
relevance, from most relevant feature to least relevant feature.
The corresponding average cost estimation error for each
group of n most relevant features are shown in Figure 4.
Results show that one can achieve 5.3% error2 from the true
cost with just twelve features. Note that, even though the
learning algorithm does not have prior knowledge of the

2Here, error is defined as the difference between the true and predicted
costs divided by the true cost averaged over all training examples.

Fig. 3: Reachability sets for an instance of the Dubins car vehicle
(ρmin = 1, v = 1, L = 1) for cost threshold horizon times T ≤ π

2
.

TABLE I: Dubins car features from most important to least
important.

1-12 13-24 25-36

cos θ y cos θ 1/ tan θ
sin2 θ yθ x/ tan θ
cos2 θ θ 1/ cos θ

|θ| θ
√
x2 + y2 x/ cos θ

θ2 y sin θ y/ tan θ√
x2 + y2 + θ2 x sin θ 1/ sin θ√

x2 + y2 |x| x/ sin θ
x xy y/ sin θ

x cos θ y2 y tan θ
sin θ x2 y/ cos θ
xθ |y| tan2θ
y tan θ x tan θ

analytical form of reachable set as given in equation (6), the
feature selection process gives high importance to the terms
that appear in the analytical form. This is a crucial result as it
implies that the machine learning approach is robust enough
to generate accurate fits for unknown, nonlinear dynamics
and cost functions.

Given the same 2PBVP training examples as for cost
prediction, reachability was assessed using a nonlinear
SVM classifier with a 4th-order polynomial kernel. The
classification results on a test set of 100 new query points are
shown in Figure 5. Several kernel functions were attempted

Fig. 4: Results of feature selection for the Dubins car showing the
average test error percentage vs number of features used.

and the 4-th order kernel proved to be the most accurate
for this system. Test errors3 were 4.17%, 7.29%, and 3.13%
respectively for each of three cost thresholds used to establish
the cost-reachable boundary, namely, J1 = µ − σ, J2 =
µ, and J3 = µ+ σ, where µ was the training set mean cost
and σ the standard deviation.

Due to the complexity of displaying the final θ-heading values
in addition to the x-y position values, these results are not
shown directly superimposed on the reachability set in Figure
3. Instead, Figure 5 plots the test classifications generated for
both the linear regression and SVM approach with the cost
threshold, Jth, shown as a solid black line. It can be seen
that most misclassifications occur in the direct cost-vicinity
of the cost threshold. In simple terms this means that even
when the algorithms misclassify points, they aren’t too far
from the actual cost.

One noticeable outlier occurs for the lowest threshold data
where the SVM misclassifies a high-cost test case. This
misclassification occurred because the final heading happens
to point back toward the initial state for this testing example.
Note that feature selection revealed a high importance of |θ|
and θ2. Since −π ≤ θ ≤ π, the anti-parallel alignment can
spoof the SVM into thinking it’s nearly a straight-line path to
the end point when, in fact, it requires almost an entire loop
to reach the final state. Altering the feature vector eliminates
this outlier.

B. Deep-Space Spacecraft

Model: Here we explore a more challenging dynamic
system, a three degree-of-freedom deep-space spacecraft, for
which reachable sets are not described analytically. “Deep-
space” refers to the fact that the spacecraft operates in a
gravitationally-free environment. For simplicity and clarity
of exposition, we omit coupled attitude dynamics and model
the vehicle as a point mass that can be accelerated by a
thrust vector T that can point freely in any direction. We
consider motions sufficiently small such that propellant use
is negligible in comparison to the spacecraft structural mass,
and therefore its mass m is considered constant. This allows
system dynamics to be linear, with each coordinate direction
acting as classical double integrator:

ẋ = vx, ẏ = vy, ż = vz,

v̇x = Tx /m, v̇y = Ty /m, v̇z = Tz /m.

The vehicle is controlled by the thrust vector direction n̂ ∈ S2
(the 2-sphere) and throttle η ∈ [0, 1]; hence U = S2× [0, 1].
While the dynamics are linear, the optimal control problem
is nonlinear due to the fact that the control constraints are
norm bounded and the final time is free. The control task is
concerned with minimizing the transfer time, J = tf − t0.
The scenario is illustrated in Figure 6.

Results: The features examined for the spacecraft are shown
in Table II, listed in order of importance as determined by our
backwards-search feature selection algorithm. The average

3Here, test error is defined as the number of misclassifications divided by
total number of test examples.

Fig. 5: Predicted reachability set plotted with true cost for the
Dubins Car with 3 different cost thresholds (black lines). Blue
circles = SVM predicted reachable, red diamonds = SVM predicted
non-reachable, blue dot = linear regression predicted reachable, red
cross = linear regression predicted non-reachable.

weighted-linear regression estimation error obtained from
increasingly large sets of the top-priority features is depicted
in Figure 7. Interestingly, it appears that only the top 5 features
out of the original 26 in our feature vector are required for
the average cost-estimation error to fall below 10%, for an
unseen 2PBVP problem.

For the full feature set, the SVM reachability analysis was
again implemented with a 4th-order polynomial kernel, similar
to the Dubins car. In both cases, the 4th-order polynomial
kernel seemed to balance the trade-off between bias and
variance for the classifier. The classification of a 100-point
test set of new 2PBVP query points can be seen in Figure 8,
yielding test errors 8.08%, 11.11%, and 7.07%, respectively,
again for cost thresholds J1 = µ − σ, J2 = µ, and J3 =
µ+ σ. Figure 8 directly compares the classifications made
be the linear regression and SVM algorithms. Again, most
misclassifications occur near the cost threshold.

Fig. 6: Dynamics for the deep space spacecraft.

TABLE II: Deep space spacecraft features, from most important
to least important

1-9 10-18 19-26

(x/ẋ)2 y2 ż2

(y/ẏ)2 ||x, y, z||/||ẋ, ẏ, ż|| ẏ2

(z/ż)2 z2 ||ẋ, ẏ, ż||
||x/ẋ, y/ẏ, z/ż|| y ẋ

x/ẋ |ż| ẏ
y/ẏ x ż
z/ż |ẋ| ||x, y, z||
z |ẏ| ||x, y, z, ẋ, ẏ, ż||
x2 ẋ2

C. Execution Time & Accuracy

Table III compares the computation time and classification
accuracy of each of the three approaches: 1) truth-value
determined by a 2PBVP solver4, 2) locally-weighted linear
regression cost estimation, and 3) support vector machine
classification. These results confirm that machine learning
techniques are able to drastically reduce the computation
time for reachability analysis by as much as four orders of
magnitude – which comes at the cost of misclassifying some
queries.

By definition, the truth-value calculation produces no misclas-
sifications but take seconds or tens-of-seconds to perform each
classification. Locally-weighted linear regression produces
the most accurate classifications of the machine learning

4As previously mentioned, the techniques used to determine the true
classifications are not guaranteed to be absolutely correct, but they do
represent the state of the art in solving optimal 2PBVPs. See Section IV-C
for more details.

Fig. 7: Results of feature selection for the deep-space spacecraft
showing the average test error percentage vs number of features
used.

Fig. 8: Predicted reachability set plotted with true cost for the deep-
space spacecraft with 3 different cost thresholds (black lines). Blue
circles = SVM predicted reachable, red diamonds = SVM predicted
non-reachable, blue dot = linear regression predicted reachable, red
cross = linear regression predicted non-reachable

techniques but can take 20x longer per query to compute
when compared to the SVM approach. The relatively large
computation time for linear regression is due to the n × n
matrix inversion required for each classification query. This
matrix inversion can be avoided if a non-locally-weighted
regression scheme is used, but accuracy of classification is
severely impacted (results are omitted due to page limitations).
Linear regression techniques have the benefit of generating
more information by providing an estimate of the optimal cost.
The SVM only returns a binary, true-false result. This cost
estimation may be valuable beyond reachable set analysis,
depending on application.

VI. CONCLUSION

We have presented two novel, query based algorithms that
leverage machine learning techniques to solve the reachability
problem for dynamical systems. By training locally-weighted
regression algorithms or nonlinear SVM classifiers with
sufficiently-many offline numerical 2PBVP solutions, the

TABLE III: Average computation time and percent of misclassifi-
cation for the two-point boundary value problem solver, the linear
regression cost estimation (best fit model using all features), and
SVM classification (average over all 3 cost thresholds).

System 2PBVP Solve Lin. Reg. SVM

Time % Err Time % Err Time % Err

Dubins 1.23 s 0.0 9.4 ms 3.8 0.44 ms 4.9
Spacecraft 10.3 s 0.0 9.0 ms 5.8 0.40 ms 8.8

online computation time required to assess new reachability
queries can be cut dramatically – by up to 4 orders of magni-
tude in our numerical experiments, provided the user is willing
to accept some misclassifications (for the two representative
systems studied here, both approaches achieved less than
10% prediction error). Due to its success and its relatively
unexplored use within the reachability analysis community,
we are optimistic about the potential of machine learning for
future reachability applications such as kinodynamic motion
planning and differential games.

REFERENCES

[1] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
New York, NY, July 2006.

[2] Dušan M. Stipanović, Inseok Hwang, and Claire J. Tomlin. Com-
putation of an Over-Approximation of the Backward Reachable Set
using Subsystem Level Set Functions. In Dyn. of Cont., Discrete and
Impulsive Systems, volume 11 of A: Mathematical Analysis, pages
397–411. Watam Press, 2004.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning,
volume 1 of Info. Science and Stat. Springer, New York, NY, 2006.

[4] Francesco Borrelli, A. Bemporad, and M. Morari. Predictive Control,
2014. In Preparation.

[5] Antoine Girard and Colas Le Guernic. Efficient Reachability Analysis
for Linear Systems Using Support Functions. In Myung Jin Chung
and Pradeep Misra, editors, IFAC World Congress, volume 17, pages
8966–8971, Gangnam-gu Seoul, South Korea, July 2008. Int. Fed. of
Automatic Control, IFAC PapersOnLine.

[6] Eugene Asarin, Thao Dang, and Antoine Girard. Reachability Analysis
of Nonlinear Systems Using Conservative Approximation. In Oded
Maler and Amir Pnueli, editors, Hybrid Systems: Comp. and Control,
volume 2623 of Lecture Notes in Comp. Science, pages 20–35. Springer,
Prague, Czech Republic, April 2003.

[7] Romain Testylier and Thao Dang. NLTOOLBOX: A Library for
Reachability Computation of Nonlinear Dynamical Systems. In
Dang Van Hung and Mizuhito Ogawa, editors, Autom. Tech. for Verif.
and Analysis, volume 8172 of Lecture Notes in Comp. Science, pages
469–473. Springer, Hanoi, Vietnam, Oct 2013.

[8] Matthias Althoff and Bruce H. Krogh. Reachability Analysis of
Nonlinear Differential-Algebraic Systems. IEEE Trans. on Automatic
Control, 59(2):371–383, Feb 2014.

[9] Hervé Guéguen, Marie-Anne Lefebvre, Janan Zaytoon, and Othman
Nasri. Safety Verification and Reachability Analysis for Hybrid Systems.
Annual Reviews in Control, 33(1):25–36, April 2009.

[10] Erik Komendera, Elizabeth Bradley, and Daniel Scheeres. Efficiently
Locating Impact and Escape Scenarios in Spacecraft Reachability Sets.
In AAS/AIAA Astrodynamics Specialist Conf., pages 1–15, Minneapolis,
MN, USA, Aug 2012. AAS, AIAA.

[11] Chin-Liang Chang. Finding Prototypes For Nearest Neighbor Classifiers.
IEEE Trans. on Automatic Control, C-23(11):1179–1184, Nov 1974.

[12] J. M. Keller, M. R. Gray, and J. A. Givens. A Fuzzy K-Nearest
Neighbor Algorithm. IEEE Trans. on Systems, Man and Cybernetics,
SMC-15(4):580–585, July 1985.

[13] Shinn-Ying Ho, Chia-Cheng Liu, and Soundy Liu. Design of an
Optimal Nearest Neighbor Classifier Using an Intelligent Genetic
Algorithm. Pattern Recognition Letters, 23(13):1495–1503, Nov 2002.

[14] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, New York, NY, 2 edition, 2006.

[15] Fariba Fahroo and I. Michael Ross. Direct Trajectory Optimization by
a Chebyshev Pseudospectral Method. AIAA J. of Guidance, Control,
and Dynamics, 25(1):160–166, Jan-Feb 2002.

[16] E. J. Cockayne and G. W. C. Hall. Plane Motion of a Particle Subject
to Curvature Constraints. SIAM J. of Control, 13(1):197–220, Jan 1975.

	Introduction
	Related Work
	Problem Statement
	Query-Based Reachability Algorithms
	Linear Regression Approach
	SVM Approach
	Training Data Generation

	Application and Results
	Dubins Car
	Deep-Space Spacecraft
	Execution Time & Accuracy

	Conclusion
	References

