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Broader context: impacts of autonomous vehicles M

* What will happen to VMT?
— If pooled autonomous shuttles become
common: VMT decrease

— If AV becomes a chauffeur: VMT
increases

* What will happen to land use?
— If no more need for parking: cities
become denser

— If we enable extreme commuters: cities
become more sprawling

» What happens to safety?

— Benefits even before all vehicles are

fully autonomous

[Samaranayake, et al. 2017; Levin and Boyles, 2015; Walker, et al. 2017; Wadud, MacKenzie,
Leiby, 2015; Anderson, et al. 2014; Fragnat and Kockelman, 2015 ]




How will increased vehicle
autonomy influence ftraffic flow?

Phantom traffic jams: real jams that happen for no apparent
reason — observed in the wild, recreated in the lab M

Highway

E= Traffic Jam gggm;éﬁ; Bottleneck =

Experimental evidence o

for the physical mechanism of forming a jam

[Stern, et al. 2017] Movie 1 [Sugiyama, et al. 2008]

Video link:
https://youtu.be/7wm-pZp_miO




Phantom traffic jams: result of unstable

traffic

AR
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Small perturbations from the equilibrium
spacing will amplify as the propagate
along the platoon of vehicles

[Wilson and Ward, 2010]

Small perturbations from the equilibrium
spacing will dissipate as the propagate

along the platoon of vehicles

Outline of today’s talk

* How to collect data on phantom traffic jams?
— Experimental design and data collection

« Can autonomous vehicles dampen traffic
waves?
— Traffic control via AVs

» How will driver assist features impact traffic
stability?
— Mathematical models
— Stability analysis




Outline of today’s talk M

* How to collect data on phantom traffic jams? Research question:

— Experimental design and data collection How can we reliably collect
experimental data to

observe the development of
phantom traffic jams?

Goal: track vehicle trajectories to study phantom jams M

Solution: Use a VSN360 360°
panoramic camera to film
experiments from the center of
a circular track.

Measure fuel consumption with
OBD-Il scanner.

[Wu, Stern, et al., 2019] 8




Data collection: selected traffic experiments M

19 experiments
4 days of testing

25 vehicles

30 drivers
15 support staff

Quantified
increased fuel
consumption
with stronger
waves

97% data
success rate

All data freely
available online

t

Outline of today’s talk M

[Wu, Stern, et al., 2019]

Research question:

+ Can autonomous vehicles dampen traffic How will the presence of a small
waves? number of autonomous vehicles
) influence traffic stability? Can they
— Traffic control via AVs be controlled to benefit the traffic
flow?




Designing AV controllers to eliminate phantom jams M

Autonomous vehicle
used for control

o o  ae

Test controller in simulation:

* Goal: drive AV “mostly” like a
human

» Control intuition: AV drives with
“as close to constant velocity” as
possible

[Seibold]

[Stern, et al., 2018] 11

Experimental demonstration that changing the
dynamics of one vehicle can eliminate phantom jams M

Dissipation of stop-and-go traffic
waves via control of a single =
autonomous vehicle :

BILLINOILS RUTGERS ETEMPLE R\ me e 748

UNIVERSITY . OF ARIZONA.

Stern, et al. 2017] 12

Video link: https://youtu.be/2mBjYZTeaTc



Experimental results
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Outline of today’s talk

» How will driver assist features impact traffic
stability?
— Mathematical models
— Stability analysis

Research question:

How will commercially-available
ACC systems impact traffic
stability?

14
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Not all AVs are the same

Steering and  Monitoring of  Intervention Robot in
acceleration  environment when needed control
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[Society of Automotive Engineers, 2018]
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Level 1 AV: Adaptive cruise control

« Adapftive cruise control (ACC) maintains
desired speed when safe, and drives slower,
as needed, to maintain safe headway

 First versions became commercially available
in the mid 1990s

« Historically: Premium feature, cost ~$2,800

16




20 best selling vehicles M

[Business insider, 2018] 17

16 best selling level-one autonomous vehicles M

[Business insider, 2018] 18




Modelling traffic flow

AR

» To study ACC stability, first need framework to
model traffic flow

» Model this traffic flow using an ordinary
differential equation for acceleration:

i = f(Bzj, Avj, &)

Acceleration Space in front S Reedlai::vffom Speed of
of vehicle j of vehiclej  SPeedInront — pice j
of vehicle j

» Can be used for traffic simulation and analysis

-'1.7j+1 Uj = .”L'j

Tj+1

[Gipps, 1956; Treiber, Hennecke, Belbing, 2000; Bando 1996, etc.]
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String stability of traffic models: a standard approach

AR

+ System equilibrium: occurs when all cars have constant velocity (zero acceleration)

+  Start with a car following model i; = f(Ax;, Avj, ;)

¢j+19
e S
— 0

Tj+1

* Introduce small perturbations from this equilibrium:

Azj = Az* + AZ(t)

=
= Az .
e Y — S VR
Z; Tj—1

at equilibrium f(Az*,0,0*) =0

i’z‘_l E

Difference in spacing from equilibrium spacing: string unstable

v = ¥+ o(t) Vehicle j-1
» Consider a small perturbation from the Vehicle j
equilibrium:
Vehicle j+1
Do successive vehicles have to
overreact such that the disturbance
Vehicle j+2

grows?

[Wilson and Ward, 2010]




String stability of traffic models: a standard approach M

of of
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ohv '™ T 9Ax

* Linearize the model around the equilibrium:  f = =3
) "

o

* Insert this perturbation into the system dynamics to see how this perturbation
propagates through the system:

A'%j + (fav — fv)Aij + fazAZ; = fAvA:%j—l + facAZ;j 1

» To study how the perturbation evolves, replace RHS with forcing function F(») and
consider frequency domain

F(z) 8;(z) - Laplace transform of A
22 + (fAv - fv)z + fAz

+ Transfer function perturbation dynamics: S;(z) =
F(z) - Laplace transform of F(1)

ij+1a xé . Tj1 >
Z; Tj—1

Tj+1

[Wilson and Ward, 2010]
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Traffic string stability: transfer function approach M

For a generic car following model i"j = f(AfJ‘. A%'j. IJ) at equilibrium f(Aa:*, 0, 1)*) =0

Stability depends on the growth rate of a perturbation:

2
_ fA3m f_v . fAva . fo Vehicle j “/\/v
f v 2 Vehicle j+1 ',\/\]\F

If Ay < 0 the car following model is string stable Vehicle j+2 V w w V U

If Ao > 0 the car following model is string unstable

Difference in spacing from equilibrium spacing: string unstable

Vehicle j-1 Vv

A2

TSI Iy oy
=~ e ¢ Az; 3 .

Tj+1 J Tj-1

[Wilson and Ward, 2010]
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Modeling ACC behavior

AR

» Goal: model ACC behavior to assess string stability of actual
ACC systems

« Want to model overall system behavior, not actual controller on
vehicle

— Want to know system-level traffic behavior
— ACC controller depends on internal state, may not be possible to model

» Can use results to simulate stability of overall flow

Model vehicle-level dynamics

{ \
1 > @i \: - »LCDL .
| \‘},{ j‘;(: \‘A‘.‘, Jﬁt\

Following vehicle Lead vehicle
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Optimal velocity relative velocity model (OVRV)

« Common assumption: headway-based controller

+ Constant time headway OV with RV term:

Model parameter

Following vehicle Lead vehicle
[Milanes and Shaldover, 2014; Xiao, Wang, and van Armen, 2017]

Model p;rameter 1 Model p;rameter Recall
oo . . A 2
i = f(Az,Av, i) = ki (Az — 1) + ko Av » =L (% ~ fauke —fm)
Acc@tion Relaxation toward Relaxation !
“optimal” velocity toward leader’s
velocity
Model vehicle-level dynamics
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Stability of the optimal velocity relative velocity model

AR

* OVRV can be stable or
unstable depending on
parameter values

s Unstable platoon (spacing)
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e
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* Instability also seen in
speed profile
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ACC system identification

* Goal: observe behavior or ACC vehicle as a
function of the input signal from the lead
vehicle in an experiment

+ Experimental setup:

— Drive lead vehicle with specified trajectory

— Measure reaction of following vehicle when ACC
engaged

Follows using ACC,
observe speed profile

= N = N

Following vehicle

Drives pre-determined
speed profile

-~

'

Lead vehicle

26




Modeling ACC behavior

» Goal: observe behavior or ACC vehicle as a
function of the input signal from the lead
vehicle in an experiment

+ Experimental setup:
— Drive lead vehicle with specified trajectory

— Measure reaction of following vehicle when ACC
engaged

Input ‘signal’:

Output ‘signal’:

- ——
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Instrument vehicles with GPS

+ Need high accuracy @olox e |
position and speed

measurements

)
|

fl| crames evenmtonin
I g Lk
|| moun zxzrecdlifig

» Use GPS to track position
throughout experiment

* Sub-meter precision on
position and 0.1 m/s
speed accuracy (0.2 mph)

28




Test broad range of vehicles

+ Need to test broad range of e L N WD
vehicles - a , &
’ Howgver, accessw.]g all Vehicle A Vehicle B
possible ACC vehicles on the
market is not feasible ]
» Selected seven vehicles from AL .
two manufactures to cover w j
range of size and vehicle class
Vehicle C Vehicle D
Vehicle E Vehicle F Vehicle G
29
Test data: oscillatory test — transient behavior M
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[Gunter, et al., 2019, ArXiv, dataset available]
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Calibration approach: simulation-based optimization M

» Calibrate parameter values by minimizing headway error between
simulation and data:

miny — M (0)

Data collected ~ Simulation
in experiment  result using
parameters 6

l Yy
4 M(8
Simulation ) | Update

\ 4

9/

[Gunter, et al., 2019, ArXiv] 31

Microscopic model calibration

:.”'5:.; :."ﬁ\.; — Vehicle Following I MAE (s)

, A min 0.0535 | 0.0645
vag;ﬁ:g? A max | 0.0353 | 0.0645

e B min 0.0704 | 0.157

B max | 0.0169 | 0.123

c min 0.0379 | 0.140

1 c max | 0.0225 | 0.107

D min 0.0512 | 0.0945

data D max | 0.0281 | 0.116

E min 0.0583 | 0.0958

l—_- E max | 0.0666 | 0.0261

‘ > F min 0.0848 | 0.0652

F max | 0.0447 | 0.0615

ki, ko, T B min | 0.0803 | 0.0657

Simulation-based optimization G — 0.0472 | 0.0584

[Gunter, et al., 2019, ArXiv] 32




Platoon experiment M

» Understanding platoon behavior is important for real traffic [Knoop, et al., 2019]
» Collect data from a platoon of ACC vehicles to check validity of calibrated model

i SR

Follow Follow Follow Follow Follow Follow Follow Specified
with ACC with ACC with ACC with ACC with ACC with ACC with ACC speed profile

Test broad range of vehicles M

» Broad range of vehicles
tested

* All tested vehicles are
unstable for all settings
considered

Vehicle E Vehicle F Vehicle G
[Gunter, et al., 2019, ArXiv] 34




Do ACC vehicles dampen waves?

» Lead vehicle at 50 mph and rapidly decelerates to 44
mph

» Following vehicles use ACC to follow in a platoon
60 Platoon vehicle speeds

Vehicle 8

o
o

5
o

Speed (mph)
8

<= ACC disengaged

20
10
0 50 100 150 200 250
[Gunter, et al., 2019, ArXiv, dataset available]

Time (s)
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How does ACC compare to typical driving M

« The ACC vehicles tested were all
unstable under all parameter settings
tested

* However, human driving behavior is
also unstable

» Worked with Ford to test how current
ACC systems compare to typical
driving conditions

——

-"’f m.. - _—
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Video link: https://youtu.be/2GYfXxVn20c



Overhead view of experiments

Human drivers (no ACC)

Summary of today’s talk

* How to collect data on phantom traffic jams?

— Collected experimental data on a ring road
— Data available online for research

» Can autonomous vehicles dampen traffic waves?

— A single AV can dampen traffic waves in human-piloted
traffic if properly designed

» How will driver assist features impact traffic stability?
— ACC is the first step toward an autonomous future

— Tested a wide range of ACC vehicles and modeled their
response

— All tested vehicles are string unstable

40
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