

Autonomous and Connected Transportation Systems Modeling, Control, and Deployment

Mauro Salazar, Ramon Iglesias, Stephen Zoepf and Marco Pavone

Auckland, 27.10.2019

As autonomous vehicles are approaching market readiness, it becomes critical to answer questions about them:

As autonomous vehicles are approaching market readiness, it becomes critical to answer questions about them:

1. How can we design profitable and sustainable mobility systems that leverage autonomous vehicles?

As autonomous vehicles are approaching market readiness, it becomes critical to answer questions about them:

- leverage autonomous vehicles?
- society?

1. How can we design profitable and sustainable mobility systems that

2. What will these new forms of mobility and transportation mean for

As autonomous vehicles are approaching market readiness, it becomes critical to answer questions about them:

- leverage autonomous vehicles?
- society?
- society, improving equity rather than undermining it?

1. How can we design profitable and sustainable mobility systems that

2. What will these new forms of mobility and transportation mean for

3. How can we ensure that such technologies benefit all members of

that are triggered by the advent of autonomous vehicles

1. Identify challenges and opportunities for the future of transportation

- 1. that are triggered by the advent of autonomous vehicles
- 2. Identify modeling and control methodologies to address them

Identify challenges and opportunities for the future of transportation

- 1 that are triggered by the advent of autonomous vehicles
- 2. Identify modeling and control methodologies to address them
- actionable research roadmap

Identify challenges and opportunities for the future of transportation

3. Share insights from early deployments and turn such insights into an

Agenda - Morning

Autonom	Mauro Salazar	09:00-09:30
Ride-	Krishna Selvam	09:30-10:00
	Coffee Break	10:00-10:30
Planning S Re	Francesco Ciari	10:30-11:00
Con	Raphael Stern	11:00-11:30
How Mar	Salomon Wollenstein	11:30-12:00
	Lunch Break	12:00-14:00

Introduction nous Mobility-on-Demand for Future Urban Mobility

-sharing Marketplace: Designing from Efficiency

Shared Automated Vehicle Fleets: Specific Modeling equirements and Concepts to Address Them

ntrolling Mixed Human and Autonomous Traffic

ny Smart Cars Does It Take to Make a Smart Traffic Network?

Agenda - Afternoon

Maximum-st	Michael Levin	13:30-14:00
ļ	Michal Čáp	14:00-14:30
Pre	Javier Alonso-Mora	14:30-15:00
	Coffee Break	15:00-15:30
	Emilio Frazzoli	15:30-16:00
F		16:00-16:30

tability Dispatch Policy for Shared Autonomous Vehicles

Understanding the Fundamental Trade-offs in Large-scale Mobility-on-demand Systems

edictive Routing and Multi-objective Fleet Sizing for Shared Mobility-on-demand

Autonomous Mobility-on-Demand: What is Known and What is Not Known

eedback and Discussion on Future Directions

Autonomous Mobility-on-Demand for Future Urban Mobility

Mauro Salazar and Marco Pavone

Auckland, 27.10.2019

Challenges

Challenges

Usage dips for mass transit coincided with taxi and ride-hailing trips, data shows

Challenges

Usage dips for mass transit coincided with taxi and ride-hailing trips, data shows

The New York Times

Over \$10 to Drive in Manhattan? What We Know About the Congestion Pricing Plan

Stuck and Stressed: The Health Costs of Traffic

The physical and psychological toll of brutal commutes can be considerable.

Challenges

Challenges

Challenges

Environmental pollution

Opportunities

Sharing Economies

Powertrain Electrificatio

Autonomous

How can we fit all these opportunities together to address nowadays and future mobility issues?

Speci Purpo Desig

Wireless Communications

Autonomous Mobility-on-Demand (AMoD)

Vehicle Autonomy

Centrally controlled fleets of self-driving cars providing on-demand mobility

Car Sharing

Autonomous Mobility-on-Demand (AMoD)

Vehicle Autonomy

Centrally controlled fleets of **self-driving cars** providing on-demand mobility **Requirements: AMoD needs to be...**

Economically-viable

Car Sharing

Socially-inclusive

Environmentallyfriendly

Autonomous Mobility-on-Demand (AMoD)

Vehicle Autonomy

Centrally controlled fleets of **self-driving cars** providing on-demand mobility

Requirements: AMoD needs to be...

Car Sharing

Need algorithmic tools to design and operate future mobility systems

Autonomous Mobility-on-Demand

Interaction with Infrastructure

Salazar et al. ITSC18, T-ITS19 Zardini et al. TRB20 Rossi et al. RSS18, Boewing et al. ACC20

MPC Algorithms

Tsao et al. ICRA19, Zgraggen et al. ITSC19

Salazar et al. ECC19, INFORMS18, Solovey et al. RSS19

Autonomous Mobility-on-Demand

Interaction with Infrastructure

Salazar et al. ITSC18, T-ITS19 Zardini et al. TRB20

Rossi et al. RSS18, Boewing et al. ACC20

MPC Algorithms

Tsao et al. ICRA19, Zgraggen et al. ITSC19

Salazar et al. ECC19, INFORMS18, Solovey et al. RSS19

Manhattan

PRIAN

NEW YORK CITY: A LEADER IN REAL ESTATE

Newmark Grubb Knight Frank

Manhattan

The New York Times

Congestion Pricing

Latest Q Search

News about Congestion Pricing, including commentary and archival articles published in The New York Times.

> Cuomo's Congestion Pricing for New York City Begins to Take Shape Usage dips for mas trips, data shows

Q

Jan. 19, 2018

Jan. 16, 2018

Congestion Plan for Manhattan Gets Mixed Reviews

Jan. 22, 2018

In Protests, a Hint of the Fight to Come Over Congestion Pricing

Will AMoD Save the Day?

Vehicle Autonomy

Road Traffic Efficiency

Road Traffic Efficiency

Why Public Transit?

Why Public Transit?

Why Public Transit?

Optimal Operation of Intermodal AMoD Systems

Vehicle Autonomy

Public Transit

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

Car Sharing

Road

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

Advantages

- Highly scalable (LP)
- Very expressive

Advantages

- Highly scalable (LP)
- Very expressive

Assumptions

- No stochasticity
- Continuum approximation

• One passenger per car

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

Stochastic process in expectation [Iglesias et al. 2018]

Flow decomposition and sampling

In line with current trends

Network Flow Model - Assumptions

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

Network Flow Model - Assumptions

• Congestion as a **threshold**

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

Transportation requests

- Origin
- Destination ٠
- Rate of demand (customers/minute)

Transportation requests

- Origin •
- Destination ٠
- Rate of demand (customers/minute)

Network model

- Nodes: intersections and stops
- Capacitated arcs: roads, walk, switch and public transit

Flows

Customer flows •

Rebalancing flows

Flows

- Customer flows
- \cdot Rebalancing flows $f_0(i,j)$

Extended Graph

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

$G = (\mathcal{V}, \mathcal{A}), \ \mathcal{V} = \mathcal{V}_{\mathrm{R}} \cup \mathcal{V}_{\mathrm{P}} \cup \mathcal{V}_{\mathrm{W}}, \ \mathcal{A} = \mathcal{A}_{\mathrm{R}} \cup \mathcal{A}_{\mathrm{P}} \cup \mathcal{A}_{\mathrm{W}} \cup \mathcal{A}_{\mathrm{RW}} \cup \mathcal{A}_{\mathrm{PW}}$

Extended Graph

$$G = (\mathcal{V}, \mathcal{A}), \ \mathcal{V} = \mathcal{V}_{\mathrm{R}} \cup \mathcal{V}_{\mathrm{P}} \cup \mathcal{V}_{\mathrm{W}},$$

Conservation of Customers

$$\sum_{i \in \mathcal{V}} f_m(i,j) + \mathbf{1}_{j=o_m} \cdot \alpha_m = \sum_{k \in \mathcal{V}} f_m$$

$\mathcal{A} = \mathcal{A}_{\mathrm{R}} \cup \mathcal{A}_{\mathrm{P}} \cup \mathcal{A}_{\mathrm{W}} \cup \mathcal{A}_{\mathrm{RW}} \cup \mathcal{A}_{\mathrm{PW}}$

$\alpha_{m}(j,k) + \mathbf{1}_{j=d_{m}} \cdot \alpha_{m} \quad \forall m \in \mathcal{M}, \forall j \in \mathcal{V}$

Extended Graph

$$G = (\mathcal{V}, \mathcal{A}), \ \mathcal{V} = \mathcal{V}_{\mathrm{R}} \cup \mathcal{V}_{\mathrm{P}} \cup \mathcal{V}_{\mathrm{W}},$$

Conservation of Customers

$$\sum_{i \in \mathcal{V}} f_m(i,j) + \mathbf{1}_{j=o_m} \cdot \alpha_m = \sum_{k \in \mathcal{V}} f_m(j,k) + \mathbf{1}_{j=d_m} \cdot \alpha_m \quad \forall m \in \mathcal{M}, \forall j \in \mathcal{V}$$

Conservation of Vehicles

$$\sum_{i \in \mathcal{V}_{\mathrm{R}}} \left(f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \right) = \sum_{k \in \mathcal{V}_{\mathrm{R}}} \left(f_0(j,k) + \sum_{m \in \mathcal{M}} f_m(j,k) \right) \quad \forall j \in \mathcal{V}_{\mathrm{R}}$$

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

$\mathcal{A} = \mathcal{A}_{\mathrm{R}} \cup \mathcal{A}_{\mathrm{P}} \cup \mathcal{A}_{\mathrm{W}} \cup \mathcal{A}_{\mathrm{RW}} \cup \mathcal{A}_{\mathrm{PW}}$

Capacity of Road and Public Transportation

 $m{\in}\mathcal{M}$ $\sum f_m(i,j) \le c_{\mathrm{P}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{P}}$ $m{\in}\mathcal{M}$

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

$f_0(i,j) + \sum f_m(i,j) \le c_{\mathrm{R}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{R}}$

Capacity of Road and Public Transportation

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathrm{R}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{R}}$$
$$\sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathrm{P}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{P}}$$

Objective Social Welfare: time, operational costs and energy

$$\min_{\{f_m(\cdot,\cdot)\}_m, f_0(\cdot,\cdot)} \sum_{(i,j)\in\mathcal{A}} \sum_{m\in\mathcal{M}} V_{\mathrm{T}} \cdot t_{ij} \cdot f_m(i,j) + \sum_{(i,j)\in\mathcal{A}_{\mathrm{R}}} (V_{\mathrm{D,R}} \cdot s_{ij} + V_{\mathrm{E}} \cdot e_{\mathrm{R},ij}) \cdot \left(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right) + \sum_{(i,j)\in\mathcal{A}_{\mathrm{P}}} V_{\mathrm{D,P}} \cdot s_{ij} \cdot \sum_{m\in\mathcal{M}} f_m(i,j)$$

Capacity of Road and Public Transportation

$$f_0(i,j) + \sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathrm{R}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{R}}$$
$$\sum_{m \in \mathcal{M}} f_m(i,j) \le c_{\mathrm{P}}(i,j), \ \forall (i,j) \in \mathcal{A}_{\mathrm{P}}$$

Objective Social Welfare: time, operational costs and energy

$$\min_{\{f_m(\cdot,\cdot)\}_m, f_0(\cdot,\cdot)} \sum_{(i,j)\in\mathcal{A}} \sum_{m\in\mathcal{M}} V_{\mathrm{T}} \cdot t_{ij} \cdot f_m(i,j) + \sum_{(i,j)\in\mathcal{A}_{\mathrm{R}}} (V_{\mathrm{D,R}} \cdot s_{ij} + V_{\mathrm{E}} \cdot e_{\mathrm{R},ij}) \cdot \left(f_0(i,j) + \sum_{m\in\mathcal{M}} f_m(i,j) \right) + \sum_{(i,j)\in\mathcal{A}_{\mathrm{P}}} V_{\mathrm{D,P}} \cdot s_{ij} \cdot \sum_{m\in\mathcal{M}} f_m(i,j)$$

Let us now consider a case study...

Intermodal AMoD - Berlin and NYC

$$M \\ \sum_{m \in \mathscr{M}} \alpha_m \\ \sum_{m \in \mathscr{M}} \alpha_m \| o_m - d_m \|_2 /$$

REQUESTS IN BERLIN AND NYC.

	NYC	Berlin
	8,658 44.943 ¼s	2,646 3.771 ¼s
$\sum_{m\in\mathscr{M}}lpha_m$	2.4 km	4.0 km

Intermodal AMoD - Berlin and NYC

$$M \\ \sum_{m \in \mathscr{M}} \alpha_m \\ \sum_{m \in \mathscr{M}} \alpha_m \| o_m - d_m \|_2 /$$

REQUESTS IN BERLIN AND NYC.

	NYC	Berlin
	8,658 44.943 ¼s	2,646 3.771 ¼s
$\sum_{m\in\mathscr{M}}lpha_m$	2.4 km	4.0 km

Case Study - Berlin

I-AMoD - Scan in Exogenous Traffic

Case Study - Berlin

I-AMoD - Scan in Exogenous Traffic

Case Study - Berlin VS NYC

Berlin

NYC

I-AMoD - Fractional VS Integer Solution, what are the differences?

I-AMoD - Fractional VS Integer Solution, what are the differences?

Lightweight **Battery Electric**

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

What is the impact of the vehicle size and powertrain type?

What is the impact of the vehicle size and powertrain type?

What is the impact of the vehicle size and powertrain type?

What is the impact of the vehicle size and powertrain type?

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18; Salazar, Lanzetti, Rossi, Schiffer, Pavone, T-ITS19]

-	-	-	-	-	
-	-	-	-	-	-
-	-				
-	-			-	_
					_
-	-	-	-	-	
-	-	-	-	-	-
_	_	_	_	_	
 -	-	-	-		-
-	-	-	-	-	-
_					

I-AMoD - Sample optimal path

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18]

I-AMoD - Sample optimal path

Longitude

[Salazar, Rossi, Schiffer, Onder, Pavone, ITSC18]

Longitude

Longitude

Case Study - NYC and Berlin

Pure AMoD VS I-AMoD - Relative Difference

Coordination with public transit significantly reduces travel times, number of vehicles, emissions and cost!

Time-invariant Model for Analysis and Planning

Time-invariant Model for Analysis and Planning

Where do we go from here?

Time-variant Model for Control and Operation: MPC for Intermodal Routing

[Zgraggen, Tsao, Salazar, Schiffer, Pavone, ITSC19: Tuesday at 11:15, TuC-T9, Gallery Room 1]

Opportunities in AMoD

Interaction with Infrastructure

Real-world Case Studies

Technology Infusion

Societal Implications

Conclusion

- Autonomous driving might lead to a urban mobility
- Integration of autonomous driving with the urban infrastructure gives rise to an entirely new class of problems (and opportunities)
- Solutions to these problems are key to enable AMoD and to carefully evaluate their value proposition

Acknowledgements: students at ASL, and sponsors

samauro@stanford.edu http://asl.stanford.edu/

Autonomous driving might lead to a transformational paradigm for personal

