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Shared autonomous vehicles (SAVs)

@ SAV service currently in testing on public roads

@ SAVs have safety driver

Motivation Max-stability dispatch for SAVs M. W. Levin, D. Kang



Accident Y]
Company & Insurance

Taxation

Fuel

«
U
:T : &j
D:urezic:ti,nn Maintenance

SIS Maxstability dispatch for SAVs



Accident Y]
Company & Insurance

Taxation

Fuel

«
U
:T : &j
D:urezic:ti,nn Maintenance

SAV : personal vehicle replacement rates
@ 1 SAV : 10 personal vehicles?
@ 1 SAV : 9 personal vehicles?
@ 1 SAV : 3 personal vehicles®

?Daniel J Fagnant and Kara M Kockelman. “The travel and environmental implications of shared autonomous
vehicles, using agent-based model scenarios”. In: Transportation Research Part C: Emerging Technologies 40
(2014), pp. 1-13.

bDaniel J Fagnant, Kara M Kockelman, and Prateek Bansal. “Operations of Shared Autonomous Vehicle Fleet
for Austin, Texas Market". In: Transportation Research Record: Journal of the Transportation Research Board 2536
(2015), pp. 98-106.

“Kevin Spieser et al. “Toward a systematic approach to the design and evaluation of automated
mobility-on-demand systems: A case study in Singapore”. In: Road Vehicle Automation. NY: Springer, 2014,
pp. 229-245.
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Agent-based simulation
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"Daniel J Fagnant and Kara M Kockelman. “Dynamic ride-sharing and fleet sizing for a system of shared autonomous
vehicles in Austin, Texas”. In: Transportation 45.1 (2018), pp. 143-158.
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Agent-based simulation
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Queueing model



Passenger queueing model

Define a queue of waiting passengers at each zone: w"*(t).

Conservation of waiting passengers:

w¥(t+1) =w"(t) + d"*(t) — min Z Yp; (8), w"™(¢)
JEA

where d"*(t) are random variables with mean d"*.
@ y;;(t) < pr(t) is vehicles departing r for s to link j
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Passenger queueing model

Define a queue of waiting passengers at each zone: w"*(t).

Conservation of waiting passengers:

w¥(t+1) =w"(t) + d"*(t) — min Z Yps (1), w5 ()
JjeA
where d"*(t) are random variables with mean d"*.
@ y;;(t) < pr(t) is vehicles departing r for s to link j

This defines a Markov chain on the state space NIZI%,
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Vehicle queueing model

° .Lf(f) is the number of vehicles on link j traveling from r to s

@ p,(t) is the number of vehicles parked at r

SO W+ Ym0 =F

JEA (r,z)eZ2 rez
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Vehicle queueing model

° .L;é(t) is the number of vehicles on link j traveling from r to s

@ p,(t) is the number of vehicles parked at r

D SIFEAURS S RORY:

JEA (r,z)eZ2 rez

Conservation of link queues:

2 (t+1) ) DoY) = Doy | Y yik(t) <

€A keA ]ggl"j‘
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Vehicle queueing model

@ z7°(t) is the number of vehicles on link j traveling from r to s

@ p,(t) is the number of vehicles parked at r

2. 2 AW+ plt)=

JEA (r,z)eZ? rez

Conservation of link queues:
2P =)+ Dy = Dy | Y yit) <@p(t)
i€ A keA kert

Conservation of parked queues:

pr(t+1) =p(t)+ D Dyl (t) = > D i (t)

€A qeZ JEASEZ
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Markov decision process

Queues of passengers and vehicles define a Markov chain.

41 =w" () +d7 (¢t mm{Zy }

jeA

prt+1) =p &)+ > whi ()= > > us ()

i€cAqgeZ JEAsEZ
(t +1) )+ Z Yis Z y]k
€A ke A

Since vehicle movements can be controlled, this is a Markov decision
process model.
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Stability and passenger service

> w"(t) is the number of waiting passengers at time ¢

(r,s)eZ2

o If demand is unserved, then >
(r,s)eZ?

w”(t) will increase over time
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Stability and passenger service

> w"(t) is the number of waiting passengers at time ¢
(r,s)eZ?

@ If demand is unserved, then >~ w"¥(¢) will increase over time
(r,s)eZ2

Definition
The stochastic queueing model is stable if there exists some K < oo s.t.

]' 4 TSs
TZ > E() <K VT €N
t=1 (r,s)€ 22

Equivalently, 3 Lyapunov function v(w(t)) > 0 s.t.
Elv(w(t+1)) —v(w@)|wt)] <k — e[w(t)]

for all w(t) for k < oo, € > 0.
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Assumptions

@ SAV travelers wait in the system until served

» If SAV travelers exited, the concept of stability would need to be
redefined.

o Constant travel times for vehicles
@ Entire SAV fleet can be centrally dispatched
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Maximum-stability policy



Max-pressure policy with maximum stability

T
max fz Z Of"t+1)
=1 (r,s)eZ

s.t.

7) < pr(t+7)
SEZ
prlt+7+1) = p(t+7)+ Ezzfq’“(twf@g)f
q
ST+ Y alt T @)
seZ geEZ ic A

frt+71)>0

@ T is the planning horizon — how far we look ahead
f7¢(t + 7) anticipates future vehicle dispatch
@ p,.(t+ 7) anticipates future vehicle availability
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Planning horizon analysis

max —Z Z O+ )

=1 (r,s)€Z?

s.t. St T) <pe(t+7)

s€EZ
prt+7+1)= p(t+7)+ sz("’ (t+7—@r) —
qe
ST+ N Y el (T - @)
SEZ qgEZ ic A

fret+7)>0

@ 7' is the planning horizon — how far we look ahead

T must be large enough to dispatch vehicles across the network. At least
-
max {<I>q}
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Stability region

What demand rates d € D could be served by any SAV dispatch policy?

@ We want to serve any d € D with the max-pressure policy.
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Stability region

What demand rates d € D could be served by any SAV dispatch policy?

@ We want to serve any d € D with the max-pressure policy.

Average SAV flow rates from r to s are enough to serve average demand:

Z yre > ds V(r,s) € Z*

iel,}
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Stability region

What demand rates d € D could be served by any SAV dispatch policy?
@ We want to serve any d € D with the max-pressure policy.

Average SAV flow rates from r to s are enough to serve average demand:

Sy >de Y(r,s) € 22

ZEFi

Constraints on average SAV flow rates:

SYw-YYa wez

qEZiEp' sEZ]eF+
— — 2 .
douir =D Ui V(r,s) € 2%,Yj € A,
il jer+

oY up<

(r,s)EZ2 (i,5)€A?
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Stability region — D

Proposition
Ifd ¢ D, then the system cannot be stabilized by somey € ).

Proof. For any SAV dispatch policy 3 an (r,s) with an > 0 s.t.

> yrf —d"™ >mn. Then on average w"™(t) will increase by 7 each time
el

step. ]
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Stability region — D

Proposition
Ifd ¢ D, then the system cannot be stabilized by somey € ).

Proof. For any SAV dispatch policy 3 an (r,s) with an > 0 s.t.

>, yrs —d"™ >mn. Then on average w"*(t) will increase by 1 each time
el
step. ]

>, D U<

(r,8)€Z2 (1,5)€.A2

soifd ¢ D, then a larger fleet size is needed to serve d.

Stability proof Max-stability dispatch for SAVs M. W. Levin, D. Kang 17



Passenger service rates

Proposition
The boundary of D is linear wrt F, i.e. if the fleet size increases to aF
then demand of ad can be stabilized.

Proof. «F' admits a linear increase of « in all other constraints defining

the stable region. O
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Passenger service rates

Proposition
The boundary of D is linear wrt F, i.e. if the fleet size increases to aF
then demand of ad can be stabilized.

Proof. «F' admits a linear increase of « in all other constraints defining
the stable region. O

An increase in the SAV fleet size should result in a proportional increase in
the number of passengers that can be served.
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Stability region — maximize service rate

max E d"®

(r,s)ez2
> iz
iel,t
—=qr ~Ts
Do U=
qeZ iel'y SEZjGF;f'
—rs __ —TS8
Z Yij = Z Yjk
i€l'; jerj

Y. Y. GsF

(r,8)€22 (i,j)€A?

S.t.
V(r,s) € Z*
Vge Z

Y(r,s) € Z2Vje A,

Analytical method to find the theoretical maximum service rate.

Stability proof

Max-stability dispatch for SAVs

M. W. Levin, D. Kang



Stability region — let D° be the interior of D

Average SAV flow rates from 7 to s are enough to serve average demand:

> gr>d V(r,s) € Z*

ielt

Constraints on average SAV flow rates:

PPN ED DI VgeZ

qEZ i€l SEZ‘jerf
—rs —rs Lo 2 .
g Yis = E Yik Y(r,s) € Z2°,Vj € A,
el jerj

Y. D> UgsF

(r,s)€Z2 (i,j)€A?
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Stability proof sketch
If d € D°, then there exists some y such that

I =Yg <~
€A
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Stability proof sketch

If d € D°, then there exists some y such that

T =Y g <

€A

Proposition

There exists a sequence (y(t)) such that

1 T
N T
A, 7 2 YO =

The max-pressure policy constructs a sequence y(t + 7) with limit y.
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Lemma

Suppose that there exists aT € N and a k1, ky < 0o such that

Euv(wit+T))—viwit+T+1)+v(w(t+1))—v(w(t)|w(t) < ki
Ev(wit+T+1)—v(w(t+T))|w(t)] < ke — e|lw(t)]

then the system is stable.
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Lemma

Suppose that there exists aT € N and a k1, ky < 0o such that

Euv(wit+T))—viwit+T+1)+v(w(t+1))—v(w(t)|w(t) < ki
Ev(wit+T+1)—v(w(t+T))|w(t)] < ke — e|w(t)]

then the system is stable.

Lemma

Suppose that there exists a’T € N and a function v(w(t)) such that

then the system is stable.
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vd € D° M < oo such that if T > M then the max-pressure control
using the planning horizon T yields

Z S @t T H1)? — (w4 7)) [w(t) | < k- elw()]

T 1 (r,s)eZ2

e For any 1 > 0, there exists a M s.t. if "> M then

T
1 .
72 Y(t+7) <y -l
=1

=

o If n <€, dea > 0 =€ — 1 such that
Elp(w(t+1) —w(t))|w(t)] < & — e2fw(t)]
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Planning horizon analysis
e For any i > 0, there exists a M s.t. if T'> M then

.
Y oyt+7)<|y—ni|

We need 1 < e.
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Planning horizon analysis

e For any i > 0, there exists a M s.t. if "> M then
T
Yoyt +7) <|y—mni

We need 1 < e.

Dy >dt= > g —des > €

Ty Ty
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Planning horizon analysis

e For any i > 0, there exists a M s.t. if "> M then

T
72 Yt+7) <[y —n
We need 1 < e.

Sgm>dt= "y —ds >

ielt ielt

The larger the time horizon, the closer demand can get to the boundary of
the stable region.
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Numerical results
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Numerical results
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Example — stable demand
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Example — stable demand
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Example — unstable demand
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Example — unstable demand
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Maximum stable demand vs. fleet size
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Maximum stable demand vs. fleet size
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Effect of planning horizon T" on maximum stable demand
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Conclusions

@ Stability analysis of SAVs
@ Maximume-stability policy with proof

o Numerical results evaluating stable region

Future work:
@ Decentralized policy
@ Ridesharing, electric vehicles

o Efficient heuristics, or evaluate stability of heuristic policies
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Thank you

e Questions?

@ mlevinQumn.edu
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