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Autonomous cars will
make transport

reliable, safe, efficient,
comfortable and clean




Motion planning for autonomous vehicles

Inside view

Information from other participants

Communication Estimation
Distributed Probabilistic models &
asynchronous learning

Environment Vehicle
models model
\ ’

Constrained
optimization

Safe motion among
robots & humans

W. Schwarting et al., “Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model”, T-ITS 2017
B. Zhou et al., ” Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory Planning for Automated Urban Driving”, ICRA 2018
L. Ferranti et al., “SafeVRU: A Research Platform for the Interaction of Self-Driving Vehicles with Vulnerable Road Users”, IV 2019



Autonomous cars will
solve all our problems!

Reliable, safe, efficient,
comfortable and clean













Ride sharing/pooling

Instead of one passenger per vehicle, we can have shared rides
= Several passengers in the same vehicle

= Higher efficiency

= Less cars on the roads













On-demand high-capacity ride-sharing

Large combinatorial complexity - Algorithm that is scalable, online and anytime optimal
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Step 1: Compute feasible trips
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J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017 13

Incremental search of feasible routes/schedules




Step 2: Assignment of vehicles to trips

Formulated as an Integer Linear Program

= |nitialized from greedy assignment
= Optimized over time @@
= Minimize sum of delays @ @

J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Step 2: Assignment of vehicles to trips

Formulated as an Integer Linear Program

= |nitialized from greedy assignment
= Optimized over time @ @@

= Minimize sum of delays
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Algorithm 1. Optimal assignment
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J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Step 3: Rebalancing

Move idle vehicles towards areas of high demand (formulated as a Linear Program)

n: 1000 vehicles
c: 10 passengers
W: 7 min

D: 14 min

Day: Th 5-18-2013
Time: 06:39:00

J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017
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1000, 2000 and 3000 vehicles

Capacity Four




100%
80%
60%
40%
20%

0%

% Serviced Requests

High service rate with less vehicles
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High service rate with <25% of taxis

J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017
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Predictive routing

At peak times mismatch of vehicles & demand
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n: 1000 vehicles
c: 10 passengers
W: 7 min

D: 14 min

Day: Th 5-18-2013
Time: 06:39:00
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J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017



Predictive routing
At peak times mismatch of vehicles & demand

= Model of future demand [from historical data] Pr(destination | origin, time)
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J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017



Predictive routing

At peak times mismatch of vehicles & demand
= Model of future demand [from historical data] Pr(destination | origin, time)
—> Better position the vehicles for the future,
by sampling expected requests Cnow (E) + Cfutu're (Z)
- Poor scalability

Vehicle fleet status
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J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017



Proactive rebalancing

Estimate vehicle demand per region, based on real-time data
Assign idle vehicles to rebalancing regions using the estimated demand

(a) Initial state (b) Schedule assignment (¢c) Demand estimation (d) Rebalancer assignment

A. Wallar et al., “Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing”, IROS 2018 22



Proactive rebalancing

Estimate vehicle demand per region, based on real-time data

Assign idle vehicles to rebalancing regions using the estimated demand
—> Increase the service rate and reduce the waiting time

—> But, this might come at a cost of (much) higher distance driven!
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A. Wallar et al., “Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing”, IROS 2018
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Competing objectives

it
X

Quality of Service Operation Cost

Coos := Avg. Passenger Travel Delay Coc .= Total Vehicle Distance Driven

M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018



High quality of service




Low cost of operation




Competing objectives
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M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018



Pareto front
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lllustration:
Synthetic travel demand
(50 requests)

Max delay: 100%
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lllustration:
Synthetic travel demand
(50 requests)
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lllustration: Max delay: 25%

1 minute of Manhattan Taxi Requests .
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M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018
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Fleet size and composition

From historical data we can compute the fleet size and composition required for a given day
- Constraints: service all requests, maximum waiting time and delay

1. Compute a set of deposits, e.g., distance from any point to closest deposit < 1 min

2. In small batches, e.g., 1 h, compute feasible and locally optimal schedules [Similar to RTV]
3. Long term rebalancing (chain schedules from multiple batches) [Max. matching ILP]

A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019 33
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019



Fleet size and composition

From historical data we can compute the fleet size and composition required for a given day
- Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)

4500  Capacity

® 2
4000 ® 4
& 3500
i
» @ 3000
9
TR
2500
2000
1500
250000 300000 350000 400000 450000
Number of Requests
A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019 34

A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019



Fleet size and composition [mixed fleet]

From historical data we can compute the fleet size and composition required for a given day
- Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)

Number of Vehicles by Capacity
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A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019 35

A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019



Fleet size and composition

From historical data we can compute the fleet size and composition required for a given day
- Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)
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A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019 36
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019



Summary

Automated Mobility on Demand with Ride-Sharing

= Online method for high-capacity ride-sharing
= Predictive routing

= Multi-objective analysis
= Fleet sizing

To know more: www.alonsomora.com .alonsomora@tudelft.nl
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