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Autonomous cars will 
make transport

reliable, safe, efficient, 
comfortable and clean



Motion planning for autonomous vehicles

W. Schwarting et al., “Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model”, T-ITS 2017
B. Zhou et al., ” Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory Planning for Automated Urban Driving”, ICRA 2018 
L. Ferranti et al., “SafeVRU: A Research Platform for the Interaction of Self-Driving Vehicles with Vulnerable Road Users”, IV 2019
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Autonomous cars will 
solve all our problems!

Reliable, safe, efficient, 
comfortable and clean





+40 %



Ridesharing
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•Instead of one passenger per vehicle, we can have shared rides
§ Several passengers in the same vehicle
§ Higher efficiency
§ Less cars on the roads
•

Ride sharing/pooling









On-demand high-capacity ride-sharing 
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Large combinatorial complexity à Algorithm that is scalable, online and anytime optimal



Incremental search of feasible routes/schedules

Step 1: Compute feasible trips
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J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Step 2: Assignment of vehicles to trips
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•Formulated as an Integer Linear Program
§ Initialized from greedy assignment
§ Optimized over time
§ Minimize sum of delays
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J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Step 2: Assignment of vehicles to trips
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•Formulated as an Integer Linear Program
§ Initialized from greedy assignment
§ Optimized over time
§ Minimize sum of delays
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J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Step 3: Rebalancing
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Move idle vehicles towards areas of high demand (formulated as a Linear Program)

J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017
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High service rate with less vehicles
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High service rate with <25% of taxis

J. Alonso-Mora et al., “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment”, PNAS 2017



Predictive routing

19

•At peak times mismatch of vehicles & demand

J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017



Predictive routing
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•At peak times mismatch of vehicles & demand
•à Model of future demand [from historical data]            Pr(destination | origin, time)

J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017



Predictive routing
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•At peak times mismatch of vehicles & demand
•à Model of future demand [from historical data]            Pr(destination | origin, time)
•à Better position the vehicles for the future,
• by sampling expected requests
•à Poor scalability

J. Alonso-Mora et al., “Predictive Routing for Autonomous Mobility-on-Demand Systems with Ride-Sharing”, IROS 2017
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Proactive rebalancing
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•Estimate vehicle demand per region, based on real-time data
•Assign idle vehicles to rebalancing regions using the estimated demand

•

A. Wallar et al., “Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing”, IROS 2018



Proactive rebalancing
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•Estimate vehicle demand per region, based on real-time data
•Assign idle vehicles to rebalancing regions using the estimated demand
•à Increase the service rate and reduce the waiting time
•à But, this might come at a cost of (much) higher distance driven!

•

A. Wallar et al., “Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing”, IROS 2018



Quality of Service

CQoS := Avg. Passenger Travel Delay

Operation Cost

COC := Total Vehicle Distance Driven  

Competing objectives

M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018



High quality of service



Low cost of operation



Avg. Travel Delay
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M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018

Pareto front 

Competing objectives
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M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018

Pareto front



Illustration:
Synthetic travel demand 
(50 requests)

Max delay: 100%



Illustration:
Synthetic travel demand 
(50 requests)

Max delay: 100%



Illustration: 
1 minute of Manhattan Taxi Requests 
(427 requests)

Max delay: 25%

M. Cap and J. Alonso-Mora, “Multi-Objective Analysis of Ridesharing in Automated Mobility-on-Demand”, RSS 2018
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Number of 
vehicles



33A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019

Fleet size and composition
•From historical data we can compute the fleet size and composition required for a given day
•à Constraints: service all requests, maximum waiting time and delay
•1. Compute a set of deposits, e.g., distance from any point to closest deposit < 1 min
•2. In small batches, e.g., 1 h, compute feasible and locally optimal schedules [Similar to RTV]
•3. Long term rebalancing (chain schedules from multiple batches) [Max. matching ILP]



34A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019

Fleet size and composition
•From historical data we can compute the fleet size and composition required for a given day

•à Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)



35A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019

Fleet size and composition [mixed fleet]
•From historical data we can compute the fleet size and composition required for a given day

•à Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)



36A. Wallar, J. Alonso-Mora and D. Rus, “Optimizing Vehicle Distributions and Fleet Sizes for Shared Mobility-on-Demand”, ICRA 2019
A. Wallar et al., “Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service”, ITSC 2019

Fleet size and composition
•From historical data we can compute the fleet size and composition required for a given day

•à Constraints: service all requests, maximum waiting time (3 min) and delay (6 min)

To know more: Wednesday morning
A. Wallar, W. Schwarting, J. Alonso-Mora and D. Rus, 
“Optimizing Multi-class Fleet Compositions for Shared 
Mobility-as-a-Service”
IEEE ITSC 2019



Summary
Automated Mobility on Demand with Ride-Sharing
§ Online method for high-capacity ride-sharing
§ Predictive routing
§ Multi-objective analysis
§ Fleet sizing
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