Principles of Robot Autonomy I

Image processing, feature detection, and feature description
From 3D world to 2D images

- So far we have focused on mapping 3D objects onto 2D images and on leveraging such mapping for scene reconstruction
- Next step: how to represent images and infer visual content?
Today’s lecture

• Aim
 • Learn fundamental tools in image processing for filtering and detecting similarities
 • Learn how to detect and describe key features in images

• Readings
 • Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile Robots. Sections 4.3 – 4.5.4.
Representations in Computer Vision

Example from Advances in Computer Vision – MIT – 6.869/6.819

[Heartnett, 1932]
[Intraub & Richardson, 1989]
Typical CV Pipeline

Image → Intermediate Representation → Mathematical Model (e.g., Classifier) → Output

Input Image: Image

Intermediate Representation: 81, 20, 45, 70, 96, 122, 14

Mathematical Model (e.g., Classifier)

Output: “Coral”, “Fish”
Example

~12 lbs

~8 lbs

Example from CS331B: Representation Learning in Computer Vision
Example

~12 lbs

~8 lbs

Example from CS331B: Representation Learning in Computer Vision
Example

\begin{itemize}
 \item \textbf{Type A:} \quad \text{Weight (w) > 11}
 \item \textbf{Type B:} \quad \text{Weight (w) \leq 11}
\end{itemize}

Example from CS331B: Representation Learning in Computer Vision
Typical CV Pipeline

X

Image

Intermediate Representation

Mathematical Model (e.g. Classifier)

Output

“Coral”

“Fish”

Input Image

81
20
45
70
96
122
14

f(x)
Traditional CV Pipeline

Example from Advances in Computer Vision – MIT – 6.869/6.819
Represent these cats with a cat detector!

Example from CS331B: Representation Learning in Computer Vision
Represent these cats with a cat detector! (II)
Represent these cats with a cat detector! (II)
Represent these cats with a cat detector! (III)
Represent these cats with a cat detector! (IV)
Summary of Traditional Components

Color Histograms

Model based Shapes

Deformable Part based Models (DPM)

Histogram of Gradients (HOG)

Felzenszwalb et al. 2010.
Dalal and Triggs, 2005.

Example from CS331B: Representation Learning in Computer Vision
Traditional CV Pipeline

Feature extractors

- Edges
- Texture
- Colors

Classifier

- Segments
- Parts

“clown fish”

Example from Advances in Computer Vision – MIT – 6.869/6.819
Traditional CV Pipeline

Example from Advances in Computer Vision – MIT – 6.869/6.819
How do you interpret what the network has learned?

Deep Net “Electrophysiology”

Example from Advances in Computer Vision – MIT – 6.869/6.819

[Zeiler & Fergus, ECCV 2014]
[Zhou et al., ICLR 2015]
Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]

Gabor-like filters learned by **layer 1**

Image patches that activate each of the **layer 1** filters most strongly

Example from Advances in Computer Vision – MIT – 6.869/6.819
Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]

Image patches that activate each of the layer 2 neurons most strongly

Example from Advances in Computer Vision – MIT – 6.869/6.819
Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]

Image patches that activate each of the layer 4 neurons most strongly

Example from Advances in Computer Vision – MIT – 6.869/6.819
Visualizing and Understanding CNNs

[Zeiler and Fergus, 2014]

Image patches that activate each of the layer 5 neurons most strongly
Visualizing and Understanding CNNs

CNNs learned the classical visual recognition pipeline!

Example from Advances in Computer Vision – MIT – 6.869/6.819
How to represent images?
Image processing pipeline

1. Signal treatment / filtering
2. Feature detection (e.g., DoG)
3. Feature description (e.g., SIFT)
4. Higher-level processing
Image filtering

- **Filtering**: process of accepting / rejecting certain frequency components

- Starting point is to view images as functions $I: [a, b] \times [c, d] \rightarrow [0, L]$, where $I(x, y)$ represents intensity at position (x, y)

- A color image would give rise to a vector function with 3 components

![Represented as a matrix]
Spatial filters

• A spatial filter consists of
 1. A neighborhood S_{xy} of pixels around the point (x, y) under examination
 2. A predefined operation F that is performed on the image pixels within S_{xy}
Linear spatial filters

- Filters can be linear or non-linear
- We will focus on linear spatial filters

\[I'(x, y) = F \circ I = \sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i, j) I(x + i, y + j) \]

- Filter \(F \) (of size \((2N + 1) \times (2M + 1)\)) is usually called a mask, kernel, or window
- Dealing with boundaries: e.g., pad, crop, extend, or wrap
Filter example #1: moving average

- The moving average filter returns the average of the pixels in the mask
- Achieves a smoothing effect (removes sharp features)
- E.g., for a *normalized* 3×3 mask

\[F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

Generated with a 5x5 mask
Filter example #2: Gaussian smoothing

• Gaussian function

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

• To obtain the mask, sample the function about its center

• E.g., for a normalized 3×3 mask with \(\sigma = 0.85 \)

\[G = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \]
Convolution

• Still a linear filter, defined as

\[I'(x, y) = F \ast I = \sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i, j) I(x-i, y-j) \]

• Same as correlation, but with negative signs for the filter indices

• Correlation and convolution are identical when the filter is symmetric

• Convolution enjoys the associativity property

\[F \ast (G \ast I) = (F \ast G) \ast I \]

• Example: smooth image & take derivative = convolve derivative filter with Gaussian filter & convolve the resulting filter with the image
Separability of masks

• A mask is separable if it can be broken down into the convolution of two kernels

\[F = F_1 \ast F_2 \]

• If a mask is separable into “smaller” masks, then it is often cheaper to apply \(F_1 \) followed by \(F_2 \), rather than \(F \) directly

• Special case: mask representable as outer product of two vectors (equivalent to two-dimensional convolution of those two vectors)

• If mask is \(M \times M \), and image has size \(w \times h \), then complexity is
 • \(O(M^2wh) \) with no separability
 • \(O(2Mwh) \) with separability into outer product of two vectors
Example of separable masks

• Moving average

\[F = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \]

• Gaussian smoothing

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[= \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{x^2}{2\sigma^2} \right) \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{y^2}{2\sigma^2} \right) \]

\[= g_\sigma(x) \cdot g_\sigma(y) \]
Differentiation

• Derivative of discrete function (centered difference)

\[
\frac{\partial I}{\partial x} = I(x + 1, y) - I(x - 1, y) \quad F_x = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}
\]

\[
\frac{\partial I}{\partial y} = I(x, y + 1) - I(x, y - 1) \quad F_y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\]

• Derivative as a convolution operation; e.g., Sobel masks:

Along x direction

\[
S_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}
\]

Along y direction

\[
S_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}
\]

Note: masks are mirrored in convolution.

10/25/22
Similarity measures

• Filtering can also be used to determine similarity across images (e.g., to detect correspondences)

\[SAD = \sum_{i=-n}^{n} \sum_{j=-m}^{m} |I_1(x+i, y+j) - I_2(x'+i, y'+j)| \] \quad \text{Sum of absolute differences}

\[SSD = \sum_{i=-n}^{n} \sum_{j=-m}^{m} [I_1(x+i, y+j) - I_2(x'+i, y'+j)]^2 \] \quad \text{Sum of squared differences}
Detectors

• **Goal**: detect *local features*, i.e., image patterns that differ from immediate neighborhood in terms of intensity, color, or texture

• We will focus on
 • Edge detectors
 • Corner detectors
Use of detectors/descriptors: examples

- Stereo reconstruction
- Estimating homographic transformations
- Panorama stitching
- Object detection

10/25/22
Edge detectors

- **Edge**: region in an image where there is a *significant* change in intensity values along one direction, and *negligible* change along the orthogonal direction.

In 1D
Magnitude of 1\(^{st}\) order derivative is large, 2\(^{nd}\) order derivative is equal to zero.

In 2D

Diagram illustrating edge detection in a 3D object.
Criteria for “good” edge detection

• **Accuracy**: minimize false positives and negatives

• **Localization**: edges must be detected as close as possible to the true edges

• **Single response**: detect one edge per real edge in the image
Strategy to design an edge detector

• Two steps:
 1. **Smoothing**: smooth the image to reduce noise prior to differentiation (step 2)
 2. **Differentiation**: take derivatives along x and y directions to find locations with high gradients
1D case: differentiation without smoothing

\[I(x) \]

\[\frac{dI(x)}{dx} \]
1D case: differentiation with smoothing

Edges occur at maxima or minima of $s'(x)$

$$I(x)$$

$$g_\sigma(x)$$

$$s(x) = g_\sigma(x) \ast I(x)$$

$$s'(x) = \frac{d}{dx} \ast s(x)$$
A better implementation

• Convolution theorem:

\[s'(x) = \frac{d}{dx} * (g_\sigma(x) * I(x)) = \left(\frac{d}{dx} * g_\sigma(x) \right) * I(x) \]

\[\begin{align*}
\text{Signal} & \\
\text{Kernel} & \\
\text{Differentiation} & \\
\end{align*} \]

\[s'(x) = g'_\sigma(x) * I(x) \]
Edge detection in 2D

1. Find the gradient of smoothed image in both directions

\[
\nabla S := \begin{bmatrix}
\frac{\partial}{\partial x} * (G_{\sigma} * I) \\
\frac{\partial}{\partial y} * (G_{\sigma} * I)
\end{bmatrix} = \begin{bmatrix}
(\frac{\partial}{\partial x} * G_{\sigma}) * I \\
(\frac{\partial}{\partial y} * G_{\sigma}) * I
\end{bmatrix} = \begin{bmatrix}
G_{\sigma, x} * I \\
G_{\sigma, y} * I
\end{bmatrix} := \begin{bmatrix}
S_x \\
S_y
\end{bmatrix}
\]

2. Compute the magnitude \(|\nabla S| = \sqrt{S_x^2 + S_y^2}\) and discard pixels below a certain threshold

3. Non-maximum suppression: identify local maxima of \(|\nabla S|\)
Derivative of Gaussian filter

\[G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[\frac{\partial G_{\sigma}(x, y)}{\partial x} \]
Canny edge detector

\[S_x \quad \rightarrow \quad \nabla S \quad \rightarrow \quad \nabla S > h \quad \rightarrow \quad \text{Suppression} \]

\[S_y \]
Corner detectors

Key criteria for “good” corner detectors

1. **Repeatability**: same feature can be found in multiple images despite geometric and photometric transformations

2. **Distinctiveness**: information carried by the patch surrounding the feature should be as distinctive as possible
Repeatability

Without repeatability, matching is impossible
Distinctiveness

Without distinctiveness, it is not possible to establish reliable correspondences; distinctiveness is key for having a useful descriptor.
Finding corners

- **Corner**: intersection of two or more edges
- Geometric intuition for corner detection: explore how intensity changes as we shift a window

- **Flat**: no changes in any direction
- **Edge**: no change along the edge direction
- **Corner**: changes in all directions
Harris detector: example
Properties of Harris detectors

• Widely used

• Detection is invariant to
 • Rotation -> geometric invariance
 • Linear intensity changes -> photometric invariance

• Detection is not invariant to
 • Scale changes
 • Geometric affine changes

Corner

All points classified as edges!
Properties of Harris detectors

• Widely used

• Detection is invariant to
 • Rotation -> geometric invariance
 • Linear intensity changes -> photometric invariance

• Detection is not invariant to
 • Scale changes
 • Geometric affine changes

Scale-invariant detection, such as
1. Harris-Laplacian
2. in SIFT (specifically, Difference of Gaussians (DoG))

All points classified as edges!
Example Application of Corner Detector
Difference of Gaussians (DoG)

• Features are detected as local extrema in scale and space
Descriptors

• **Goal**: *describe* keypoints so that we can compare them across images or use them for object detection or matching

• Desired properties:
 • Invariance with respect to pose, scale, illumination, etc.
 • Distinctiveness
Simplest descriptor

- Naïve descriptor: associate with a given keypoint an $n \times m$ window of pixel intensities centered at that keypoint
- Window can be normalized to make it invariant to illumination

Main drawbacks
1. Sensitive to pose
2. Sensitive to scale
3. Poorly distinctive
Popular detectors / descriptors

• SIFT (Scale-Invariant Feature Transformation)
 • Invariant to rotation and scale, but computationally demanding
 • SIFT descriptor is a 128-dimensional vector!
• SURF
• FAST
• BRIEF
• ORB
• BRISK
• LIFT
A case study for learning-based Descriptors

Dense Object Nets

Learning Dense Visual Object Descriptors
By and For Robotic Manipulation. CORL 2018

Peter R. Florence, Lucas Manuelli, Russ Tedrake

Slides adapted from CS326 by Kevin Zakka and Sriram Somasundaram
$D(k) = D(k')$
A Brief History

Sparse Engineered: SIFT

Dense Learned

Sparse Learned: LIFT
Why Dense?

Bachrach et. al.
Dense Descriptors

Input is an RGB image

\(\mathbb{R}^{W \times H \times 3} \)

Output

\(\mathbb{R}^{W \times H \times D} \)

Pay attention to the difference in Dimensionality

\(f(\cdot) \)
Dense Descriptors

Input is an RGB image

Output

$f(\cdot)$

$\mathbb{R}^{W \times H \times 3}$

$\mathbb{R}^{W \times H \times D}$
Network Architecture
Single Object
Learned Dense Correspondences
Class consistent descriptors
Next time