Principles of Robot Autonomy I

Camera models and camera calibration
Camera models and camera calibration

• Aim
 • Learn how to calibrate a camera
 • Learn about 3D reconstruction

• Readings
 • SNS: 4.2.3
Step 3

- In previous lecture, we have derived a mapping between a point P in the 3D camera reference frame to a point p in the 2D image plane.
- Last step is to include in our mapping an additional transformation to account for the difference between the world frame and the 3D camera reference frame.
Rigid transformations

\[P_C = t + q \]

\[q = R P_W \]

where \(R \) is the rotation matrix relating camera and world frames

\[
R = \begin{bmatrix}
i_W \cdot i & j_W \cdot i & k_W \cdot i \\
i_W \cdot j & j_W \cdot j & k_W \cdot j \\
i_W \cdot k & j_W \cdot k & k_W \cdot k
\end{bmatrix}
\]

\[\Rightarrow P_C = t + R P_W \]
Rigid transformations in homogeneous coordinates

\[
\begin{pmatrix}
P_C \\
1
\end{pmatrix}
=
\begin{bmatrix}
R & t \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{pmatrix}
P_W \\
1
\end{pmatrix}
\]

Point \(P_c\) in homogeneous coordinates

Point \(P_w\) in homogeneous coordinates
Perspective projection equation

- Collecting all results

\[p^h = [K \ 0_{3 \times 1}] P_C^h = K[I_{3 \times 3} \ 0_{3 \times 1}] \begin{bmatrix} R \\ 0_{1 \times 3} \\ 1 \end{bmatrix} P_W^h \]

- Hence

\[p^h = K[R \ t] P_W^h \]

- Degrees of freedom: 4 for \(K \) (or 5 if we also include skewness), 3 for \(R \), and 3 for \(t \). Total is 10 (or 11 if we include skewness)
Camera calibration: direct linear transformation method

- **Goal**: find the intrinsic and extrinsic parameters of the camera

- **Strategy**: given known correspondences $p_i \leftrightarrow P_{W,i}$, compute unknown parameters K, R, t by applying perspective projection

$P_{W,1}, P_{W,2}, \ldots, P_{W,n}$ with known positions in world frame

p_1, p_2, \ldots, p_n with known positions in image frame
Step 1

• First consider combined parameters

\[p^h_i = M P^h_{W,i}, \ i = 1, \ldots, n, \quad \text{where} \quad M = K[R \ t] = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} \]

• This gives rise to \(2n \) component-wise equations, for \(i = 1, \ldots, n \)

\[u_i = \frac{m_1 \cdot P^h_{W,i}}{m_3 \cdot P^h_{W,i}} \quad \text{or} \quad u_i (m_3 \cdot P^h_{W,i}) - m_1 \cdot P^h_{W,i} = 0 \]

\[v_i = \frac{m_2 \cdot P^h_{W,i}}{m_3 \cdot P^h_{W,i}} \quad \text{or} \quad v_i (m_3 \cdot P^h_{W,i}) - m_2 \cdot P^h_{W,i} = 0 \]
Calibration problem

• Stacking all equations together

\[
\tilde{P}m = 0, \quad \text{where } m = \begin{bmatrix}
m_1^T \\
m_2^T \\
m_3^T
\end{bmatrix}
\]

2\(n\) x 12 matrix of known coefficients
12 x 1 vector of unknown coefficients

• \(\tilde{P}\) contains in block form the known coefficients stemming from the given correspondences

• To estimate 11 coefficients, we need at least 6 correspondences
Solution

• To find non-zero solution

\[
\min_{m \in \mathbb{R}^{12}} \| \tilde{P} m \|^2
\]

subject to \(\| m \|^2 = 1 \)

• Solution: select eigenvector of \(\tilde{P}^T \tilde{P} \) with the smallest eigenvalue

• Readily computed via SVD (singular value decomposition)
Step 2

• Next, we need to extract the camera parameters, i.e., we want to factorize M as

$$M = [KR \ Kt]$$

• This can be done efficiently (indeed, explicitly) by using RQ factorization, whereby the submatrix $M_{1:3,1:3}$ is decomposed into the product of an upper triangular matrix K and a rotation matrix R

• Calibration will be investigated in Problem 1 in HW3
Radial distortion

• So far, we have assumed that a linear model is an accurate model of the imaging process
• For real (non-pinhole) lenses this assumption will not hold
Once the camera is calibrated, can we measure the location of a point P in 3D given its known observation p?

- No: one can only say that P is located *somewhere* along the line joining p and O!
Issues with recovering structure
Recovering structure

• **Structure**: 3D scene to be reconstructed by having access to 2D images

• **Common methods**
 1. Through recognition of landmarks (e.g., orthogonal walls)
 2. Depth from focus: determines distance to one point by taking multiple images with better and better focus
 3. Stereo vision: processes two distinct images taken at the *same time* and assumes that the relative pose between the two cameras is *known*
 4. Structure from motion: processes two images taken with the same or different cameras at *different times* and from different *unknown* positions
• Take several images until the projection of point P is in focus; let z denote the distance at which the image is in focus

• Since we know z and f, through the thin lens equation we obtain Z
Stereopsis, or why we have two eyes
Binocular reconstruction

- **Given:** calibrated stereo rig and two image matching points \(p \) and \(p' \)
- **Find** corresponding scene point by intersecting the two rays \(Op \) and \(O'p' \) (process known as **triangulation**).
Approximate triangulation

- Due to noise, triangulation problem is often solved as finding the point Q with images q and q' that minimizes

$$d^2(p, q) + d^2(p', q')$$

Re-projection error
Next time: image processing,
feature detection & description