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Optimal and Learning-based Control

Stochastic DP, value iteration, policy iteration
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Stochastic optimal control problem:
Markov Decision Problem (MDP)
• System:  𝒙𝑘+1  =  𝒇𝑘(𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘), 𝑘 = 0, … , 𝑁 − 1

• Control constraints: 𝒖𝑘 ∈  𝑈(𝒙𝑘)

• Probability distribution: 𝒘𝑘  ~ 𝑃𝑘(⋅  |𝒙𝑘 , 𝒖𝑘)

• Policies: 𝜋 =  {𝜋0  … , 𝜋𝑁−1}, where 𝒖𝑘  = 𝜋𝑘(𝒙𝑘)

• Expected Cost: 

𝐽𝜋 𝒙0 = 𝐸𝒘𝑘,𝑘=0,…,𝑁−1 𝑔𝑁 𝒙𝑁 + 

𝑘=0

𝑁−1

𝑔𝑘 𝒙𝑘 , 𝜋𝑘 𝒙𝑘 , 𝒘𝑘

• Stochastic optimal control problem
𝐽∗ 𝑥0 = min

𝜋
 𝐽𝜋(𝒙0)
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Key points

• Discrete-time model

• Markovian model

• Objective: find optimal closed-loop policy

• Additive cost (central assumption)

• Risk-neutral formulation
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Key points

• Discrete-time model

• Markovian model

• Objective: find optimal closed-loop policy

• Additive cost (central assumption)

• Risk-neutral formulation

Other communities use different notation: Powell, W. B. AI, OR and 
control theory: A Rosetta Stone for stochastic optimization. Princeton 
University, 2012.
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Principle of optimality

• Let 𝜋∗  =  {𝜋0
∗, 𝜋1

∗, … , 𝜋𝑁−1
∗ } be an optimal policy

• Consider tail subproblem

𝐸 𝑔𝑁(𝒙𝑁) + 

𝑘=𝑖

𝑁−1

𝑔𝑘(𝒙𝑘 , 𝜋𝑘(𝒙𝑘), 𝒘𝑘)

   and the tail policy {𝜋𝑖
∗, … , 𝜋𝑁−1

∗ } 

Principle of optimality: The tail policy is optimal for the tail 
subproblem
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The DP algorithm (stochastic case)

Intuition

• DP first solves ALL tail subproblems at the final stage

• At generic step, it solves ALL tail subproblems of a given time 
length, using solution of tail subproblems of shorter length
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The DP algorithm (stochastic case)

The DP algorithm 

• Start with
𝐽𝑁(𝒙𝑁) = 𝑔𝑁(𝒙𝑁)

   and go backwards using
𝐽𝑘 𝒙𝑘 = min

𝒖𝑘∈𝑈(𝒙𝑘) 
𝐸𝑤𝑘

𝑔𝑘 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘 +  𝐽𝑘+1 (𝑓 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘)

 for 𝑘 =  0, 1, … , 𝑁 − 1

• Then 𝐽∗(𝒙0)  =  𝐽0(𝒙0) and optimal policy is constructed by setting 
𝜋𝑘

∗ (𝒙𝑘)  = argmin
𝒖𝑘∈𝑈(𝒙𝑘) 

𝐸𝑤𝑘
𝑔𝑘 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘 +  𝐽𝑘+1 (𝒇𝑘 𝒙𝑘 , 𝒖𝑘 , 𝒘𝑘)
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Example: Inventory Control Problem

• Stock available 𝑥𝑘 ∈ ℕ, inventory 𝑢𝑘 ∈ ℕ, and demand 𝑤𝑘 ∈ ℕ

• Dynamics: 𝑥𝑘+1 = max(0, 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘)

• Constraints: 𝑥𝑘 + 𝑢𝑘 ≤ 2

• Probabilistic structure: 𝑝(𝑤𝑘 = 0)  =  0.1, 𝑝(𝑤𝑘 = 1)  =  0.7, and 
𝑝(𝑤𝑘 = 2)  =  0.2

• Cost

𝐸 0 + 

𝑘=0

2

( 𝑢𝑘 + 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘
2)

𝑔3( 𝑥3) 𝑔𝑘( 𝑥𝑘, 𝑢𝑘, 𝑤𝑘)
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Example: Inventory Control Problem

• Algorithm takes form
𝐽𝑘 𝑥𝑘 = min

0≤ 𝑢𝑘≤ 2−𝑥𝑘

 𝐸𝑤𝑘
[𝑢𝑘 + 𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘

2

+𝐽𝑘+1 max(0,  𝑥𝑘 + 𝑢𝑘 − 𝑤𝑘)) 

   for 𝑘 = 0, 1, 2

• For example

𝐽2 0 = min
𝑢2=0,1,2

𝐸𝑤2
𝑢2 + 𝑢2 − 𝑤2

2 =

min
𝑢2=0,1,2

𝑢2 + 0.1 𝑢2
2 + 0.7 𝑢2 − 1 2 + 0.2 𝑢2 − 2 2

   which yields 𝐽2(0)  =  1.3, and 𝜋2
∗(0) = 1
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Example: Inventory Control Problem

this spreadsheet

Final solution:

• 𝐽0(0)  =  3.7, 

• 𝐽0(1)  =  2.7, and 

• 𝐽0(2)  =  2.818

(see this spreadsheet)
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https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit?usp=sharing


Stochastic LQR

Find control policy that minimizes

𝐸
1

2
𝒙𝑁

𝑇 𝑄𝒙𝑁 +
1

2


𝑘=0

𝑁−1

𝒙𝑘
𝑇𝑄𝑘𝒙𝑘 + 𝒖𝑘

𝑇𝑅𝑘𝒖𝑘

subject to 

• dynamics 𝒙𝑘+1 = 𝐴𝑘𝒙𝑘 + 𝐵𝑘𝒖𝑘 + 𝒘𝑘

with 𝒙0 ~ 𝒩(𝒙0, Σ𝒙0
), 𝒘𝑘~ 𝒩(𝟎, Σ𝒘𝑘

)  independent and Gaussian 
vectors

4/27/2025 AA 203 | Lecture 9 12



Stochastic LQR 
As before, let’s suppose                   + 𝑐𝑘+1. Then (with a slight 
abuse, as we neglect the constant term since it does not affect the optimization):
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Stochastic LQR 
As before, let’s suppose                   + 𝑐𝑘+1. Then (with a slight 
abuse, as we neglect the constant term since it does not affect the optimization):

➔ optimal policy is the same as in the deterministic case; cost-to-go is increased 
by some constant related to magnitude of noise
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Infinite Horizon MDPs

State:    𝑥 ∈ 𝒳 (often 𝑠 ∈ 𝒮)

Action:   𝑢 ∈ 𝒰  (often 𝑎 ∈ 𝒜)

Transition Function: 𝑇 𝑥𝑡 𝑥𝑡−1 , 𝑢𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

Reward Function:  𝑟𝑡 =  𝑅(𝑥𝑡 , 𝑢𝑡)

Discount Factor:  𝛾

MDP (stationary model):  ℳ = (𝒳, 𝒰, 𝑇, 𝑅, 𝛾)
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Infinite Horizon MDPs

MDP:    ℳ = (𝒳, 𝒰, 𝑇, 𝑅, 𝛾)

Stationary policy:  𝑢𝑡 = 𝜋(𝑥𝑡) 

Goal: Choose policy that maximizes cumulative (discounted) reward

𝑉∗ = max
𝜋

𝐸 

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡 ;

𝜋∗ = arg max
𝜋

𝐸 

𝑡≥0

𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡
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Infinite Horizon MDPs

• The optimal value function 𝑉∗(𝑥) satisfies Bellman’s equation 

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

• For any stationary policy 𝜋, the values 𝑉𝜋 𝑥 ≔
𝐸 σ𝑡≥0 𝛾𝑡𝑅 𝑥𝑡 , 𝜋 𝑥𝑡 | 𝑥0 = 𝑥  are the unique solution to the equation

𝑉𝜋(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝜋(𝑥) 𝑉𝜋 𝑥′
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State-action value functions (Q functions)
• The expected cumulative discounted reward starting from 𝑥, applying 𝑢, and 

following the optimal policy thereafter

𝑉∗(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉∗ 𝑥′

• The optimal 𝑄 function, 𝑄∗(𝑥, 𝑢), satisfies Bellman’s equation 

𝑄∗ 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 max
𝑢′

𝑄∗ 𝑥′, 𝑢′

• For any stationary policy 𝜋, the corresponding 𝑄 function satisfies

𝑄𝜋(𝑥, 𝑢) = 𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑄𝜋 𝑥′, 𝜋(𝑥′)

4/27/2025

𝑄∗(𝑥, 𝑢)
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Solving infinite-horizon MDPs

If you know the model (i.e., the transition function 𝑇 and reward 
function 𝑅), use ideas from dynamic programming

• Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction

• Model-based  

• Model-free
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Solving infinite-horizon MDPs

If you know the model (i.e., the transition function 𝑇 and reward 
function 𝑅), use ideas from dynamic programming

• Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction

• Model-based  

• Model-free
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Value Iteration

• Initialize 𝑉0(𝑥) = 0 for all states 𝑥

• Loop until finite horizon / convergence:

𝑉𝑘+1(𝑥) = max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 𝑉𝑘 𝑥′

• Value iteration for 𝑄 functions

𝑄𝑘+1 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝑢 max
𝑢′

𝑄𝑘 𝑥′, 𝑢′
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Policy Iteration

Starting with a policy 𝜋𝑘 𝑥 , alternate two steps:

1. Policy Evaluation
Compute 𝑉𝜋𝑘

(𝑥) as the solution of

𝑉𝜋𝑘
(𝑥) = 𝑅 𝑥, 𝜋𝑘(𝑥) + 𝛾 

𝑥′∈𝒳

𝑇 𝑥′ 𝑥, 𝜋(𝑥) 𝑉𝜋𝑘
𝑥′

2. Policy Improvement

Define 𝜋𝑘+1 𝑥 = arg max
𝑢

𝑅 𝑥, 𝑢 + 𝛾 σ𝑥′∈𝒳 𝑇 𝑥′ 𝑥, 𝑢 𝑉𝜋𝑘
𝑥′

Proposition: 𝑉𝜋𝑘+1
𝑥 ≥ 𝑉𝜋𝑘

𝑥  ∀ 𝑥 ∈ 𝒳 

 Inequality is strict if 𝜋𝑘  is suboptimal

Use this procedure to iteratively improve policy until convergence
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Recap

• Value Iteration
• Estimate optimal value function

• Compute optimal policy from optimal value function

• Policy Iteration
• Start with random policy

• Iteratively improve it until convergence to optimal policy

• Requires model of MDP to work!
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Next time

• HJB, HJI

• Reachability analysis
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