
AA203
Optimal and Learning-based Control
Nonlinearity: tracking LQR, iterative LQR, differential dynamic programming
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LQR-style algorithms for optimal control

• Linear tracking problems

• Nonlinear tracking problems

• Using LQR techniques to solve nonlinear optimal control problems

• Iterative LQR

• Differential dynamic programming

• Readings: notes Section 3.1, 3.2 and references therein

AA 203 | Lecture 84/24/2024 3

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf


Recapping LQR
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• Minimize

                             s.t.

• Solved efficiently using dynamic programming by computing value function:

• Result:



Recapping LQR
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• Can also generalize cost (adding linear/constant terms), and dynamics (adding affine term)

Minimize

subject to dynamics

➔ For the full expressions, see:
• notes Section 3.1, 3.2 
• slides

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://stanfordasl.github.io/aa203/sp2223/pdfs/lecture/lecture_7.pdf


Linear tracking problems

• Imagine you are given a nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … ,  ഥ𝒖𝑁−1) 

• Assume nominal trajectory satisfies linear dynamics

• Linear tracking problem: find policy to minimize cost
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•  Then define deviation variables 

𝛿𝒙𝑘 ≔ 𝒙𝑘 −  ഥ𝒙𝑘  and 𝛿𝒖𝑘 ≔ 𝒖𝑘 −  ഥ𝒖𝑘

 and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

• Imagine you are given a feasible nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … ,  ഥ𝒖𝑁−1) 

• The  tracking cost is still quadratic, but the dynamics are now nonlinear

𝒙𝑘+1 = 𝑓(𝒙𝑘, 𝒖𝑘)

• To apply LQR, we can linearize around the nominal trajectory

• And apply LQR to the deviation variables (with dynamics 𝛿𝒙𝑘+1 = 𝐴𝑘𝛿𝒙𝑘 + 𝐵𝑘𝛿𝒖𝑘)

𝐴𝑘 𝐵𝑘

𝛿𝒙𝑘 𝛿𝒖𝑘
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Nonlinear optimal control problem

• Consider now nonlinear optimal control problem

• Can we apply LQR-techniques to approximately solve it?
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Iterative LQR

• Imagine you are given a feasible nominal trajectory

(ഥ𝒙0, … , ഥ𝒙𝑁), (ഥ𝒖0, … ,  ഥ𝒖𝑁−1)

• Linearize the dynamics around feasible trajectory

• And Taylor expand cost function around feasible trajectory
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Iterative LQR

• By optimizing over deviation variables (using results for LQR with cross-quadratic cost & 
affine dynamics), we obtain new solution:

{ഥ𝒙𝑘 + 𝛿𝒙𝑘
∗ } and {ഥ𝒖𝑘 + 𝛿𝒖𝑘

∗ }

• We can then re-linearize and Taylor expand around this new trajectory, and iterate!
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Iterative LQR

• Backward pass (𝑘 = 𝑁 to 0): 

• Compute locally linear dynamics, locally quadratic cost around nominal 
trajectory

• Solve local approximation of DP recursion to compute control law

• Compute cost-to-go

• Forward pass (𝑘 = 0 to 𝑁):

• Use optimal control policy to update nominal trajectory

• Propagate full nonlinear dynamics f, not the linearized approximate 
dynamics!

• Iterate until convergence
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Connections between iLQR and SCP
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𝐱 0 =  𝐱0,         𝐱 𝑡𝑓 = 𝐱𝑓
(LOCP)𝑘+1

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [0, 𝑡𝑓]

Linearize 𝐟 around the 

solution 𝐱𝑘 ⋅ , 𝐮𝑘 ⋅  
Define the continuous 

time problem (LOCP)𝑘+1

Discretize (LOCP)𝑘+1 in 
time and define the 
convex optimization 
problem (DLOCP)𝑘+1 

SCP Methodology: at each iteration 𝑘,

Solve (DLOCP)𝑘+1 via 
convex programming for 
a discretized version of 

𝐱𝑘+1 ⋅ , 𝐮𝑘+1 ⋅    

min(𝐱𝑖,𝐮𝑖) ෍

𝑖=0
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ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖, 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟𝑘+1 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0, … , 𝑁 − 1

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0, … , 𝑁 − 1, 𝐱𝑁 = 𝐱𝑓

(DLOCP)𝑘+1



Algorithmic details

Yuval Tassa’s thesis

• Need to make sure that the new state / control stay close to the linearization point 
• Add extra penalty on deviations

• Apply a line search on policy rollout

• Need to decide on termination criterion 
• For example, one can stop when cost improvement is “small”

• Method can get stuck in local minima → “good” initialization is often critical 

• Cost matrices may not be positive definite
• Regularize them until they are

• Great collection of tips/tricks: Yuval Tassa’s thesis (Section 2.2.3)
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To learn more, play with Code_for_lecture_8.ipynb

https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf


Differential Dynamic Programming (DDP)

• iLQR first approximates dynamics and 
cost, then performs exact DP recursion

• DDP instead approximates DP 
recursion directly
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In detail, consider the change in cost to go at timestep k under a perturbation                      

Using a 2nd order Taylor Expansion,

Differential Dynamic Programming (DDP)
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Differential Dynamic Programming (DDP)
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The optimal control perturbation is

Expanding the approximation, one gets



Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient equal to zero):

As was the case with LQR, the optimal control has the form 

Algorithm proceeds via same forward/backward passes as iLQR
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iLQR vs. DDP
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Quadratic approximations for the state-action value function (Q function):

DDP contains second-order dynamics derivatives compared to iLQR For the full expressions, see:
• notes Section 3.1, 3.2 
• slides

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://stanfordasl.github.io/aa203/sp2223/pdfs/lecture/lecture_7.pdf


Next time

• Stochastic DP 

• Value Iteration, Policy Iteration
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