AA203
Optimal and Learning-based Control

Nonlinearity: tracking LQR, iterative LQR, differential dynamic programming
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LQR-style algorithms for optimal control

Linear tracking problems

Nonlinear tracking problems

Using LQR techniques to solve nonlinear optimal control problems
e |terative LQR
* Differential dynamic programming

Readings: notes Section 3.1, 3.2 and references therein
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

-
Recapping LQR

* Minimize
] N2
Jo(x0) = §X%QNXN +5 Z (x1 Qrxk + ui, Riuy, + 2x, Hyuy,)
k=0
s.t. X1 = ApXi + Brug, k € {0,1,...,N—1}

 Solved efficiently using dynamic programming by computing value function:

. X Y1Qr Hy) [x
T (i) = S 2 <[uk] [H,f Rl |up| T
(Apxi + Brug)' Py (Arxy + Bk;uk:)>

e Result: 7} (xx) = Lixg
1

J];k (Xk;) = §X£kak
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-
Recapping LQR

* Can also generalize cost (adding linear/constant terms), and dynamics (adding affine term)

Minimize 1 [xn]" [@n an | [xw]
Jo(xo)—§[1] ] P+

N - T
(] @ ] 2[5 [ w)

e[ 4[5+ -

subject to dynamics

. _ Xk
> i) = [Le b [1] For the full expressions, see:
1[x.]" [Py pr] [xx * notes Section 3.1, 3.2
Je(xe) = 5 « slides
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://stanfordasl.github.io/aa203/sp2223/pdfs/lecture/lecture_7.pdf

Linear tracking problems

Imagine you are given a nominal trajectory

(EO' L fN)l (ﬁOr L ﬁN—l)

Assume nominal trajectory satisfies linear dynamics

Linear tracking problem: find policy to minimize cost

N-1

1 1

> (xn — 71\/)T Qn(xy — Xy) +E 2[(’% — X )TQ(xk — X ) + (uy — ﬁk)TR(uk — Uy, )]
=0

Then define deviation variables

OXy == X — X and Suy == u, — Uy

and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

Imagine you are given a feasible nominal trajectory

(Xo, -, Xn), (o, ) Uy_1)

The tracking cost is still quadratic, but the dynamics are now nonlinear

X1 = f (X, Ug)

To apply LQR, we can linearize around the nominal trajectory

5xk Suk

Tpt1 ~ (T, Ur) + a—f(fﬁk,ﬁk)(mk - il_%) + a—i(fﬁmﬁk)(uk — Uy)

ox

Ak Bk

And apply LQR to the deviation variables (with dynamics 6xy,1 = Axdx), + Biouy)
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Nonlinear optimal control problem

* Consider now nonlinear optimal control problem

N-1
m&n Z c(xXp, ug)
k={)
subject to Xx+1 = f (X, ug)

« Can we apply LQR-techniques to approximately solve it?
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lterative LQR

* Imagineyou are given a feasible nominal trajectory
(YOr Ly EN)J (ﬁOI Ly ﬁN—l)

 Linearize the dynamics around feasible trajectory

X1 R f(Xp, W) + fu(Xpe, Ur) 0Xp + ful(Xe, ) Oug

\ - 4 4 4

~ ~

TV
Xk41 Ak By,

* And Taylor expand cost function around feasible trajectory

1 1
c(0xy,0ug) ~ c + cz,k OXp + c"g’k ouy + 55){% Cxx,k 0Xp + 5511{ Cuu,k OUg + 5X£ Cxu,k OU

N~~~ N~~~ S~—~— N~ S~
qrk ry Qk R, Hy,
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lterative LQR

* By optimizing over deviation variables (using results for LQR with cross-quadratic cost &
affine dynamics), we obtain new solution:

{Yk + 5x,*(} and {ﬁk + 6“;}

* We can then re-linearize and Taylor expand around this new trajectory, and iterate!
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lterative LQR

* Backward pass (k = N to 0):

« Compute locally linear dynamics, locally quadratic cost around nominal
trajectory

* Solve local approximation of DP recursion to compute control law
* Compute cost-to-go

* Forward pass(k = 0 to N):
* Use optimal control policy to update nominal trajectory

* Propagate full nonlinear dynamics f, not the linearized approximate
dynamics!

* lterate until convergence
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Connections between iLQR and SCP

tf N-1
min x(t),u(t),t) dt .
jo g(x(t), u(e), t) miny; u,) z hig(x;,u;, t;)
X(t) = f01(x(0), u(®), 1), t € [0, t/] (DLOCP)y 11 i=0
(LOCP)k+1 X(O) = X,, X(tf) — Xf Xi+1 = X + hifk+1(Xl',lli, ti)r [ = 0, v, N — 1
U(t)EUg]Rm, tE[O,tf] uiEU,i=O,...,N—1, XN = Xr

SCP Methodology: at each iteration k,

Linearize f around the Define the continuous
solution (x4 (-), ug () - time problem (LOCP) 1

\ 4

) a
Solve (DLOCP);, 4 Via Discretize (LOCP)j .1 in
convex programming for _ time and define the
a discretized version of convex optimization
9 (xk+1(-), uk+1(-)) y 9 problem (DLOCP);. 1
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Algorithmic details

Need to make sure that the new state / control stay close to the linearization point
» Add extra penalty on deviations
* Apply a line search on policy rollout

Need to decide on termination criterion
« Forexample, one can stop when cost improvement is “small”

Method can get stuck in local minima — “good” initialization is often critical

Cost matrices may not be positive definite
* Regularize them until they are

Great collection of tips/tricks: Yuval Tassa’s thesis (Section 2.2.3)

To learn more, play with Code for lecture 8.ipynb
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https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf

Differential Dynamic Programming (DDP)

* iLQR first approximates dynamics and

cost, then performs exact DP recursion Optimal Control

Problem

* DDPinstead approximates DP _
recursion directly ILQR DDP

Approximate the System Approximate the Value Function

Quadratic approximation of cost

Quadratic approximation of cost-to-
Linear approximation of dynamics PP go

Perform exact DP recursion on
the approximated system
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Differential Dynamic Programming (DDP)

In detail, consider the change in cost to go at timestep k under a perturbation (6@, duy,)

Qk((SX]{;, 5uk) = C(}_(k + 5Xk, u, + 5uk) + Jk:—|—1(f(>_(l<: + 5Xk, u, + 5uk))

Using a 2nd order Taylor Expansion,

Qu(o, ) = Qu0,0) + ¥QF [] 4 1[0 wag [
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Differential Dynamic Programming (DDP)

The optimal control perturbation is

du,, = argming,, Q(dxy, du)

Expanding the approximation, one gets

Qr (0, duy) ~ Q1(0,0) 4+ Q, 0% + Q,, Lo +

first order terms

1 1
50 Que 0Tk + 20Uy Quuu kOt + 0Ty Qa0

Mg

g
second order terms
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Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient equal to zero):
Q‘u,k’ + Qui,kéxk + Quu,k(s’u}; =

— Jup = — Qi Quik — Quut  Qua k0T

As was the case with LQR, the optimal control has the form

5%; =1l + Lioxy

Algorithm proceeds via same forward/backward passes as iLQR

4/24/2024 AA 203 | Lecture 8 17



R EEEEEEEEE—————S——m—m—m———
ILQR vs. DDP

Quadratic approximations for the state-action value function (Q function):

Qrk
Qx,k
Quk = Cuk + f&jkvk—l—l

Qxx.k = Cxxk + S Vi1 frke + Vi1 * [k
Quu,k = Cuuk + fff,kvkﬂfu,k + Vi+1 - fuuk

T
qu,k — Cux.k + fu,ka—l—lfx,k + Vg1 - fux,k

Ck + Vk41

T
Cx,k t Jx kVk+1

DDP contains second-order dynamics derivatives compared to iLQR For the full expressions, see:
 notes Section3.1, 3.2

e slides
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://stanfordasl.github.io/aa203/sp2223/pdfs/lecture/lecture_7.pdf

Next time

 Stochastic DP
* Value Iteration, Policy Iteration
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