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Basic problem — discrete-time setting

* System: X .1 = f(X,ug, k), k=0,..,N—1
* Control constraints: ug€ U(Xy)

e Cost:
N-1

JXo;ug, -y Uuy_1) = hy(Xy) + zg(xk»“k»k)
k=0

* Focus is now on finding optimal closed-loop policies:
u = (X, k) (or mp (X))
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Principle of optimality

The key concept behind the dynamic programming approach is the
principle of optimality

Suppose optimal path for a multi-stage decision-making problem is

€

« first decision yields segment a — b with cost J;;
* remaining decisions yield segments b — e with cost J;,
 optimal costisthen J%, = J,, + Jpe
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-
Principle of optimality

e Claim:Ifa — b — e is optimal path from a to e, then b — e is optimal
pathfrombtoe

* Proof: Suppose b — ¢ — e is the optimal path from b to e. Then
]bce < ]be
and

Jab + Joce <Jap T Jpe = ]Ze

Contradiction!
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-
Principle of optimality

Principle of optimality: Let {ug, u3, ..., uy_,} be an optimal control
sequence, which together with x;; determines the corresponding state
sequence {Xy, X7, ..., Xy} . Consider the subproblem whereby we are at x;,
at time k and we wish to minimize the cost-to-go from time k to time

N, 1. e,
Yk (X;;, uk) + Z%_:}Hl Im (Xm» um)'l' hN (XN)

Then the truncated optimal sequence {u;, u;,, 4, ..., Uy_4 } is optimal for
the subproblem

* Tail of optimal sequences optimal for tail subproblems
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-
Applying the principle of optimality

Principle of optimality: if b — c is the
initial segment of the optimal path from
b to f,then ¢ — f is the terminal
segment of this path

Hence, the optimal trajectory is found
by comparing;:

Cbcf = Jpc T ]:f

Coar = Joa + Jar

Cbef = Jpe T ];f
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-
Applying the principle of optimality

* need only to compare the concatenations of immediate decisions
and optimal decisions — significant decrease in computation /
possibilities

* in practice: carry out this procedure backward in time
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Example
a d € e
= 3 5
|5 5‘ 2\ 2|
_J, _3 _3
bmmmmmmm e C =mmmmmmmmmmmmooooon oo f g

Optimal cost: 18
Optimalpath:a-> d—> e—> f - g— h

4/21/2025 AA 203 | Lecture 7



DP Algorithm

* Model: X, 11 = f(Xy, U, k), ur€ U(Xy)

» Cost: /(xg) = hy(xy) + XiZo Xk, T (Xi0), k)

DP Algorithm: For every initial state x,, the optimal cost J*(x,) is equal to

Jo(Xo), given by the last step of the following algorithm, which proceeds
backward in time from stage N — 1 to stage O:

In(Xn) = hy(Xy)
Jexp) = min g, U, k) + Jro1(fKpoue, k), k=0,..,N—1

ugeU(xg)

Furthermore, if u;, = m, (X;) minimizes the right-hand side of the above
equation for each x;, and k, the policy {my, 7, ..., Ty_1 } is optimal
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Comments

* discretization (from differential equations to difference equations)

« quantization (from continuous to discrete state variables / controls)
 global minimum

* constraints, in general, simplify the numerical procedure

 optimal control in closed-loop form

* curse of dimensionality
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Example: discrete LQR

* In most cases, DP algorithm needs to be performed numerically
A few cases can be solved analytically

Discrete LQR: select control mputs to m|n|m|ze

1 /
](XO)=§X;VHXN zkuxk + Uy R uy]

subject to the dynamics
Xp+1 = AxXg + Bpug

AssumptionnH=H' > 0, Q =Q'"= O, R=R"> 0
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Example: discrete LQR

First step:

1 1
Jn(xXn) = =xyvHXN = §XNPNXN
Going backward
o 1( / /
JN_1(Xy—1) = min =< Xn_1Qxn_1+upy_Runy_1 —I—XNHXN}
un —1
. 1 r ! !
min —¢XN_1@QxN_1+uy_{Runy_1+

“

(AN_1xXNy_1+ By_1un_1) H(Ay_1xn_1 + BN111N1)}

4/21/2025 AA 203 | Lecture 7



Example: discrete LQR

Taking derivative

OJN_1(XN-1)

oun_q

= Ruy_1+ Bg\r_lH(AN—lxN—l + BN—IUN—I) =0

and

GQJ;—NXN—O

EWY =R+ BEV_lHBN—l > 0
N—1
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e
DP for discrete LQR

Hence, the optimizer satisfies
(R+ By_HBNx_1)uy_; + By _(HAN 1Xy-1 =0

SO

u?\f—l - —(R + Bj’\f—lHBN—l)_IBE\F—lHAN—lxN—l = FN_lxN_l
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DP for discrete LQR

Plugging in

1
JN_1(XN-1) :gxﬁv_l {Q + Fy_{RFN_1+

(AN—1+ BNn-1Fn_1)H(AN_1+ BNn_1Fn_1) }XNl

:=Xn_1 PN_1XN—1
Fny_1=—(R+ By_{PvBn_1)"'B)y_{PyAn_1
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e
DP for discrete LQR

Proceeding by induction, the solution is given by

1. ]N(XN) — XN PNXN? Whel’e PN = H
2. uk — Fkxk, where Fk = — (R + B;{ Pk+1Bk)_1B]’( Pk+1 Ak
3. ]k(Xk) Xk Pka, where

P, = Q + FpRF, + (A + BpFy)' Pryq (A + ByFy)

At the end,]()(XO) —_ iXéPOXO
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Next time

* Nonlinear LQR for tracking and trajectory generation
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