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Direct methods for optimal control, sequential convex programming (SCP)
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Optimal control problem

* Indirect Methods:

tf
min fo gx(@),u(t),t) dt 1. Apply necessary conditions for optimality to (OCP)

2. Solve a two-point boundary value problem

x(t) = f(x(t),u(t),t), t €0, tf] ¢ Tnirect setnos (oluing 3 ta-point b
(OCP) ode(t, x_p_tf):

X(O) = XO x1, x2, pl, p2, tf = x_p_tf

return tf x np.array([x2, -p2 / b, np.zeros_like(t), -p1, np.zeros_like(t)])

X(tf) E Mf = {X E Rn: F(X) — O} boundary_conditions(x_p_tf @, x_p_tf_N):

x1 0, x2.0, pl 0, p2_0, tf 0 = x_p_tf_0

x1_N, x2_N, pl N, p2_N, tf N = x_p_tf_N
m return np.array([x1_@ - 1@, x2_0, x1_N, x2_ N, a % tf_ N — p2_ N*x2 / (2 % b)])
u(t) eU € R™, t €0, tf] prarray(ba0 = 10, 2.0, AN, 2N, 2k N - P2
return solve_bvp(
. .. fun=ode, bc=boundary_conditions, x=np.linspace(@, 1, N + 1),
For S|mpl|C|ty: y=np.array([np.linspace(1@, @, N + 1), np.zeros(N + 1), np.zeros(N + 1), np.zeros(N + 1), np.ones(N + 1)]1))

e We assume the terminal cost h is

equalto0 » Direct Methods:
* Weassumeto =0 1. Transcribe (OCP) into a nonlinear, constrained

optimization problem
2. Solve the optimization problem via nonlinear
programming



Direct methods

Resources:

« Notes Chapter 5 and references therein, and also:
 RaoA. V., “Asurvey of numerical methods for optimal control,” 2009.
* Kelly, M., “An Introduction to Trajectory Optimization,” 2017.

4/16/2025 AA 203 | Lecture 6 4


https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://epubs.siam.org/doi/10.1137/16M1062569

Transcription methods

Optimization: what are the decision variables?

1. State and control parameterization methods
e “Collocation”/“simultaneous”

2. Control parameterization methods
* “Shooting”
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-
Transcription into nonlinear programming

(state and control parametrization method)

Ly
min j g(x(0),u(®),t) dt
0

x(t) = f(x(t),u(t),t), t €0, tf]
(OCP) X(O) = Xy — (NLOP) Xi+1 = X; + hif(xi,ui, ti)r i =0,...,.N—1

x(tr) € My = {x € R%: F(x) = 0} w,€U,i=0..,N-1, F(xy)=0
u(t) eU € R™, t €0, tf]

N—-1
miny, u,) Z hig(xi,u;, t;)
i=0

Forward Euler time discretization:

1. Selectadiscretization 0 = ¢, < t; < -+ <ty = t¢ for theinterval [0, t;] and, for every i =
0,..,N —1,define x; ~x(t), u; ~u(t), t € [t;,t;+,)andx, ~x(0)

2. Bydenoting h; = t;,; — t;, (OCP) is transcribed into a nonlinear, constrained optimization
problem

4/16/2025 AA 203 | Lecture 6 6



llustrative example: Zermelo’s Problem

(OCP)

Ly
minj u(t)? dt
0

Current
flow

x(t) =v cos(u(t)) + ﬂow(y(t)), t €0, tf]
y(t) =v sin(u(t)), t € [0, tf]

(x,3)(0) =0, (x,y)(tr) = (M, %)
[u(@®)| < Umax, tEID, tf]
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Example: Zermelo’s Problem

(state and control parametrization method)

* Transcribe optimal control problem into a non-linear program, and solveitvia fmincon
(MATLAB), scipy.optimize.minimize (python), etc.

tf N-1
(OCP) min fo u(t)? dt (NLOP) Mings, ) Z h?
x(t) =v cos(u(t)) + ﬂow(y(t)), t €0, tf] » i=0
y(®) = vsin(u®), t€[0, t] Xiv1 = x; + h(v cos(u;) + flow(y,))
(X,y)(()) = 0, (x'y)(tf) = (le) Yi+1 = Vi + hv Sin(ui) ’ |ul| = Umax
[u(®)| < Umqx, tEIO, ty] (x0,¥0) =0, (xy, yn) = (M, £)
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Results

a) Optimal Trajectory
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b) Optimal Control

b) Optimal Control
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lu(®)| <1

(effectively, no control constraint)

lu(t)] < 0.75




Transcription into nonlinear programming

(control parametrization method)

tf N-1
min jo g(x(t),u(t),t) dt (NLOP-C) miny,, z hig (X(t), u;, t;)
i=0
x(t) = f(x(t),u(t),t), t €0, tf] _ . _ _
(0CP) — w,ev,i=0,..,.N—1, F(x(ty)) =0
x(0) = x
x(tr) € My = {x € R%: F(x) = 0} where each x(t;) is recursively computed via
U(t) eU Cc ]Rm, t € [0, tf] X(ti+1) — X(ti) + hl-f(x(ti),ui, ti),i =0,..N—1

Time and control discretization:

1. Selectadiscretization 0 = ¢, < t; < -+ <ty = t¢ for theinterval [0, t(] and, for every i =
0,..,N—1,define u; ~u(t), t € [t;, t;s1)

2. Bydenoting h; = t; ., — t;, (OCP) is transcribed into a nonlinear, constrained optimization
problem
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Example: Zermelo’s Problem

(control parametrization method)

* Transcribe optimal control problem into a non-linear program, and solveitvia fmincon
(MATLAB), scipy.optimize.minimize (python), etc.

N-1
; 2
(0cP)  min f T2 at (NLOP-C)  min, ; hy;
£(8) = v cos(u(®)) + flow(y(0)), t € [0, t;] () = M0, |u;l < Upax
Y®) = vsin(u(®), te(0, 4] » where, recursively:
(6, ¥)(0) =0, (x,y)(tp) = (M, ¥) ’ o

<
|u(t)| < Upmax, LE [O' tf] Xy = Xo + h 2 (U cos(ui) + ﬂOW(yl)) )
=0

i
Vi = Yo + hz v sin(u;)
j=0
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Results

. . a) ppt?mal Trajectory . b) Optimal Colntroll

. lu(l <1

£ . .
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Example: Zermelo’s Problem

tf N-1
min f u(t)? dt mingy, u) z h U2
0 XiUj l
x(t) =v cos(u(t)) + ﬂow(y(t)), t € [0, tf] (NLOP) i=0
(OCP) ¥(®) = vsin(u(®)), te(o, t] » X1 = X; + h(v cos(uy) + flow(y,)
@ )(0) =0, (x,y)(t;) = (M, ?) o ‘ ‘

Vit1 = ¥i T hvsin(w), lw;] < gy
(x0,¥0) =0, (xy,yn) = (M, £)

‘ Direct Transcription

N-1
miny, Z hut (NLOP-C)
1=0

(6, y)(ty) = M, 0),  |ul < upax

where, recursively:
N-1

xy =xo+h z (v cos(wy) + flow(y;))
i.=0

l
Vi =Yo + hz v sin(u;)
=0

[u(®)| < tmax, tEIO, tf]

Direct Shooting
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Transcription methods: extensions

* Multiple shooting
* Hybrid of simultaneous/ (single) shooting methods

 Alternative trajectory parameterizations
» Eulerintegration (above): piecewise linear effective state trajectory (C°), zero-order hold control trajectory

» Hermite-Simpson collocation (see Notes §5.2.1): piecewise cubic effective state trajectory (C?), first-order
hold control trajectory

« Dynamics constraint is enforced at “collocation points”, exact form is derived by implicit integration
» Pseudospectral methods: global polynomial basis functions (instead of piecewise polynomials)
» Shooting methods: higher-order integration schemes (e.g., RK4)

* Dynamics constraint is enforced by explicit integration
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Sequential Convex Programming

ty
min f g(x(t),u(t),t) dt
0

x(t) = f1(x(t),u(t),t), t € [0, tf]
x(0) = xg, x(tf) = Xf
u(t) eU € R™, t €0, tf]

(LOCP),

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them
around nominal trajectories!

1. Assume that g is convex. Let (xo(-), ug(+)) be a nominal tuple of trajectory and control. (x,(-), uy(+)) does
not need to be feasible!

2. Linearize f around (x0(~), uo(-)):

of of
fi(x,u,t) = f(xo(t), ug(t), t) + &(Xo(t), uy(t), ) (x —xo(t)) + 3u (xo(t),up(t), t) (u — uy(d))

3. Solve the new problem (LOCP), for (xl(-), ul(-))
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Sequential Convex Programming

ty
- j g(x(O),u(b), 6) dt
0

X(t) = frp1(x(8),u(0), t), t € [0, tf]
(LOCP) k11 x(0) = x, x(tf) = Xr

u(t) e U € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them
around nominal trajectories!

4. Iterate this procedure until convergence is achieved: linearize f around the solution (xk(-), uk(-)) at
iteration k:

of of
fori(xu,t) = f(x,(t),u,(t),t) + &(xk(t), u,(t), ) (x — x,(t)) + 3u (X (6), upr(t), t) (U — ug (1))

and solve the problem (LOCP);.; for (x4 ("), uk+1(-))
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Sequential Convex Programming

tr
min ] G(x(0),u(t), ) dt
0

X(t) = fk+1(X(t), U(t), t); S [0/ tf]
(LOCP) 41 x(0) = x, x(tf) = Xy

u(t) eU € R™, t €0, tf]

Discretize and solve a convex problem at each iteration

1. Selectadiscretization 0 =ty < t; < - <ty = tf fortheinterval [0, tf] and, foreveryi =0, ..,N — 1,
define x;,1~x(t), u; ~u(t), t € (t;,t;11] and xy~x(0)

2. Bydenotingh; = t;;q1 — t;, (LOCP),4 is transcribed into the following convex optimization problem

N-1

min g, u.) Z hig(x;,u;, t;)
(DLOCP)j 41 i=0

Xi+1 = X; + hifk+1(xi,ui, ti), i=0,..,N—-1
w; €eV,i=0,.. N-—1, Xy = Xf
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Sequential Convex Programming

tf N-1
min x(t),u(t),t) dt .
jo g(x(t), u(e), t) miny; u,) z hig(x;,u;, t;)
X(t) = f01(x(0), u(®), 1), t € [0, t/] (DLOCP)y 11 i=0
(LOCP)k+1 X(O) = X,, X(tf) — Xf Xi+1 = X + hifk+1(Xl',lli, ti)r [ = 0, v, N — 1
U(t)EUg]Rm, tE[O,tf] uiEU,i=O,...,N—1, XN = Xr

SCP Methodology: at each iteration k,

Linearize f around the Define the continuous
solution (x4 (-), ug () - time problem (LOCP) 1

\ 4

) a
Solve (DLOCP);, 4 Via Discretize (LOCP)j .1 in
convex programming for _ time and define the
a discretized version of convex optimization
9 (xk+1(-), uk+1(-)) y 9 problem (DLOCP);. 1
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Sequential Convex Programming

Algorithm
Start
®

Y

Convex
Optimizer

i

Initial
Trajectory > ® Linearize Handle Artificial Temporally Solve
Guess N o Infeasibility and . . Convex
- onconvexities Unboundedness Discretize Subproblem

Starting

Y
Update |_ Eail
Trust Region |"' Test @

Stopping Pass

Iteration

Algorithm X
Stop (Converged) @

For more info: D. Malyuta et al., "Convex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably
and Efficiently," in IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40-113, Oct. 2022.
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Direct Methods in Practice

“As you begin to play with these algorithms on your own problems, you might feel like you're on
an emotional roller-coaster.” - Russ Tedrake

 Better initial guess trajectories (“warm-starting” the optimization, as seen in
zermelo simultaneous)

* Costfunction/constraint tuning (asseenin zermelo scp)
* Penalty methods; augmented Lagrangian-based solvers
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http://underactuated.mit.edu/trajopt.html

To wrap up...

*—I

h

Open-loop |- > MPC R Closed-loop
Ind i"rect Direct } -
methods methods DP HJB /HJI

v
L e
* Local vs Global solution % 3
* Lessvs more compute /L
* High-vs low-dimensional system W X
K&

t Y W, L
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Next time

* Dynamic programming
* Discrete LQR
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