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Outline

• Necessary conditions for optimal control with bounded controls:
• Pontryagin’s Minimum Principle (PMP)

• Examples: Applications of PMP (and insights we can derive from the analysis)

• Computational methods
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Necessary conditions for optimal control 
(with unbounded controls)

• The problem is to find an admissible control u∗ which causes the system

ሶ𝐱 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡) 

   to follow an admissible trajectory x∗ that minimizes the functional

𝐽 𝐮 = ℎ 𝐱 𝑡𝑓 , 𝑡𝑓 + 𝑡0

𝑡𝑓 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡  𝑑𝑡 

•  Assumptions: ℎ ∈ 𝐶2, state and control regions are unbounded, 𝑡0 and 𝐱(0) are 
fixed
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Necessary conditions for optimal control 
(with unbounded controls)

• Define the Hamiltonian

𝐻 𝐱 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 𝑇𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)

• The necessary conditions for optimality are

ሶ𝐱∗ 𝑡 =
𝜕𝐻

𝜕𝐩
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

ሶ𝐩∗ 𝑡 = −
𝜕𝐻

𝜕𝐱
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 =
𝜕𝐻

𝜕𝐮
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡0, 𝑡𝑓]

with boundary conditions
𝜕ℎ

𝜕𝐱
𝐱∗ 𝑡𝑓 , 𝑡𝑓 − 𝐩∗ 𝑡𝑓

𝑇

𝛿𝐱𝑓 + 𝐻 𝐱∗ 𝑡𝑓 , 𝐮∗ 𝑡𝑓 , 𝐩∗ 𝑡𝑓 , 𝑡𝑓 +
𝜕ℎ

𝜕𝑡
𝐱∗ 𝑡𝑓 , 𝑡𝑓 𝛿𝑡𝑓 = 0
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Necessary conditions for optimal control 
(with bounded controls)

• So far, we have assumed that the admissible controls and states are not 
constrained by any boundaries

• However, in realistic systems, such constraints do commonly occur
• control constraints often occur due to actuation limits

• state constraints often occur due to safety considerations 

• We will now consider the case with control constraints, which will lead to the 
statement of the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

• By definition, the control 𝐮∗ causes the functional 𝐽 to have a relative minimum 
if

𝐽 𝐮 − 𝐽 𝐮∗ = Δ𝐽 ≥ 0 

   for all admissible controls “close” to 𝐮∗ 

• If we let 𝐮 = 𝐮∗ + 𝛿𝐮, the increment in 𝐽 can be expressed as 

Δ𝐽 𝐮∗, 𝛿𝐮 = 𝛿𝐽 𝐮∗, 𝛿𝐮 + higher order terms 

• The variation 𝛿𝐮 is arbitrary only if the extremal control is strictly within the 
boundary for all time in the interval [𝑡0, 𝑡𝑓] 

• In general, however, an extremal control lies on a boundary during at least one 
subinterval of the interval [𝑡0, 𝑡𝑓] 
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• As a consequence, admissible control variations 𝛿𝐮 exist whose negatives 
(−𝛿𝐮) are not admissible  

• This implies that a necessary condition for 𝐮∗to minimize 𝐽 is 
𝛿𝐽 𝐮∗, 𝛿𝐮 ≥ 0

   for all admissible variations with 𝛿𝐮  small enough

Why do control constraints complicate the analysis?
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Pontryagin’s minimum principle

• Assuming bounded controls 𝐮 ∈ 𝑈, the necessary optimality conditions 
are (𝐻 is the Hamiltonian) 

along with the boundary conditions:

𝜕ℎ

𝜕𝐱
𝐱∗ 𝑡𝑓 , 𝑡𝑓 − 𝐩∗ 𝑡𝑓

𝑇

𝛿𝐱𝑓 + 𝐻 𝐱∗ 𝑡𝑓 , 𝐮∗ 𝑡𝑓 , 𝐩∗ 𝑡𝑓 , 𝑡𝑓 +
𝜕ℎ

𝜕𝑡
𝐱∗ 𝑡𝑓 , 𝑡𝑓 𝛿𝑡𝑓 = 0

ሶ𝐱∗ 𝑡 =
𝜕𝐻

𝜕𝐩
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

ሶ𝐩∗ 𝑡 = −
𝜕𝐻

𝜕𝐱
𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 ≤ 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡 , for all 𝐮(𝑡) ∈ 𝑈 

for all
 𝑡 ∈ [𝑡0, 𝑡𝑓]
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Pontryagin’s minimum principle

• 𝐮∗ 𝑡  is a control that causes 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡  to assume its global 
minimum 

• Harder condition in general to analyze

• Example: consider the system having dynamics:

ሶ𝑥1 𝑡 = 𝑥2 𝑡 ,  ሶ𝑥2 𝑡 = −𝑥2 𝑡 + 𝑢(𝑡);

   it is desired to minimize the functional 

𝐽 = න
𝑡0

𝑡𝑓 1

2
𝑥1

2 𝑡 + 𝑢2 𝑡 𝑑𝑡

   subject to the control constraint 𝑢 𝑡 ≤ 1 with 𝑡𝑓  fixed and the final state free.
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Pontryagin’s minimum principle

Solution:

• If the control is unconstrained, 
𝑢∗ 𝑡 = −𝑝2

∗ 𝑡

• If the control is constrained as 𝑢 𝑡 ≤ 1, then

𝑢∗ 𝑡 = ൞
−1

−𝑝2
∗ 𝑡 ,

+1

for 1 < 𝑝2
∗ 𝑡

 −1 ≤ 𝑝2
∗ 𝑡 ≤ 1

for 𝑝2
∗ 𝑡 < −1

• To determine 𝑢∗ 𝑡  explicitly, the state and co-state equations must still be 
solved
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Additional necessary conditions 

1. If the final time is fixed and the Hamiltonian does not depend explicitly on 
time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 𝑐 for all 𝑡 ∈ 𝑡0, 𝑡𝑓

2. If the final time is free and the Hamiltonian does not depend explicitly on 
time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 0 for all 𝑡 ∈ [𝑡0, 𝑡𝑓]
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Minimum time problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1, … , 𝑚 

   that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

   from an arbitrary state 𝐱0 to the origin, and minimizes time

𝐽 = න
𝑡0

𝑡𝑓

1 𝑑𝑡
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Minimum time problems 

• Form the Hamiltonian

        𝐻 = 1 + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢𝑖(𝑡) to minimize 𝐻, which gives

𝑢𝑖
∗ 𝑡 = ൝

𝑀𝑖
+

𝑀𝑖
−

if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < 0

if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 > 0

• Side note: reminiscent of HJB? 𝐩∗ t = ∇𝐱 𝐽 𝐱∗ t , t  under certain technical 
assumptions (see Kirk Ch. 7)

= 1 + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + [𝐛1 𝐱, 𝑡  𝐛2 𝐱, 𝑡 ⋯ 𝐛𝑚 𝐱, 𝑡 ]𝐮 𝑡 }

= 1 + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡 + 

𝑖=1

𝑚

𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

“Bang-bang” control
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Minimum time problems 

• Note: we showed what to do when 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 ≠ 0

• Not obvious what to do if  𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 = 0

• If 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 = 0 for some finite time interval, then the coefficient of 𝑢𝑖(𝑡) in 
the Hamiltonian is zero, so the PMP provides no information on how to select 
𝑢𝑖(𝑡) 

• The treatment of such a singular condition requires a more sophisticated 
analysis

• The analysis in the linear case is significantly easier, see Kirk Sec. 5.4
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Minimum fuel problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1, … , 𝑚 

   that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

  from an arbitrary state 𝐱0 to the origin in a fixed time, and minimizes 

𝐽 = න
𝑡0

𝑡𝑓



𝑖=1

𝑚

𝑐𝑖 |𝑢𝑖(𝑡)| 𝑑𝑡
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Minimum fuel problems 

• Form the Hamiltonian

        𝐻 = σ𝑖=1
𝑚 𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢𝑖(𝑡) to minimize 𝐻, that is

σ𝑖=1
𝑚 [𝑐𝑖 |𝑢𝑖

∗(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖
∗(𝑡)] ≤ 

= 

𝑖=1

𝑚

𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡 + 

𝑖=1

𝑚

𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

= 

𝑖=1

𝑚

[𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)] +  𝐩 𝑡 𝑇𝐚 𝐱, 𝑡

  σ𝑖=1
𝑚 [𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)]

4/14/2025 AA 203 | Lecture 5 17



Minimum fuel problems 

• Since the components of 𝐮 𝑡  are independent, then one can just look at 
𝑐𝑖 |𝑢𝑖

∗(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖
∗ 𝑡 ≤ 𝑐𝑖 |𝑢𝑖(𝑡)| + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

• The resulting control law is

𝑢𝑖
∗ 𝑡 = ቐ

𝑀𝑖
−

0
𝑀𝑖

+

if 𝑐𝑖 < 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡

 if − 𝑐𝑖 < 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < 𝑐𝑖 

if 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 < −𝑐𝑖

“Bang-off-bang” control
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Minimum energy problems 

• Find the control input sequence 

𝑀𝑖
− ≤ 𝑢𝑖 𝑡 ≤ 𝑀𝑖

+ for 𝑖 = 1, … , 𝑚 

   that drives the control affine system 
ሶ𝐱 = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡

  from an arbitrary state 𝐱0 to the origin in a fixed time, and minimizes 

𝐽 =
1

2
න

𝑡0

𝑡𝑓

𝐮 𝑡 𝑇𝑅𝐮 𝑡 𝑑𝑡 ,

where 𝑅 > 0 and diagonal
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Minimum energy problems 

• Form the Hamiltonian

        𝐻 =
1

2
𝐮 𝑡 𝑇𝑅𝐮(𝑡) + 𝐩 𝑡 𝑇{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, we need to solve

𝐮∗ 𝑡 = arg min
𝐮 𝑡 ∈𝑈



𝑖=1

𝑚
1

2
𝑅𝑖𝑖𝑢𝑖 𝑡 2 + 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡 𝑢𝑖(𝑡)

=
1

2
𝐮 𝑡 𝑇𝑅𝐮 𝑡 + 𝐩 𝑡 𝑇𝐵 𝐱, 𝑡 𝐮 𝑡 + 𝐩 𝑡 𝑇𝐚 𝐱, 𝑡
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Minimum energy problems 

• As in the first example today, in the unconstrained case, the optimal solution 
for each component of 𝐮(𝑡) would be

ො𝑢𝑖 𝑡 = −𝑅𝑖𝑖
−1 𝐩 𝑡 𝑇𝐛𝑖 𝐱, 𝑡

• Considering the input constraints, the resulting control law is

𝑢∗ 𝑡 = ൞

𝑀𝑖
−

ො𝑢𝑖 𝑡

𝑀𝑖
+

 if ො𝑢𝑖 𝑡 < 𝑀𝑖
−

 if 𝑀𝑖
− < ො𝑢𝑖 𝑡 <

 if 𝑀𝑖
+ < ො𝑢𝑖 𝑡

 𝑀𝑖
+

“Saturating” control
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Uniqueness and existence

• Note: uniqueness and existence are not in general guaranteed!

• Example 1 (non uniqueness): find a control sequence 𝑢(𝑡) to transfer the system 
ሶ𝑥 𝑡 = 𝑢(𝑡) from an arbitrary initial state 𝑥0 to the origin, and such that the 

functional 𝐽 = 0

𝑡𝑓 𝑢 𝑡 𝑑𝑡 is minimized. The final time is free, and the admissible 
controls are 𝑢 𝑡 ≤ 1

• Example 2 (non existence): find a control sequence 𝑢(𝑡) to transfer the system 
ሶ𝑥 𝑡 = −𝑥 𝑡 +  𝑢(𝑡) from an arbitrary initial state 𝑥0 to the origin, and such that 

the functional 𝐽 = 𝑡0

𝑡𝑓 𝑢 𝑡 𝑑𝑡 is minimized. The final time is free, and the 

admissible controls are 𝑢 𝑡 ≤ 1
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Computational methods

• Until now, we derived necessary conditions for optimality and analytically studied 
a few special cases

• We now focus on numerical techniques to solve two-point boundary value 
problems; popular methods:

• Indirect shooting method

• Indirect collocation method
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Let’s revisit our example…

Find optimal control 𝑢(𝑡) to steer the system 

ሷ𝑥 𝑡 = 𝑢 𝑡

from 𝑥 0 = 10, ሶ𝑥 0 = 0 to the origin 𝑥 𝑡𝑓 = 0, ሶ𝑥 𝑡𝑓 = 0, and to minimize 

𝐽 =
1

2
𝛼𝑡𝑓

2 +
1

2
𝑡0

𝑡𝑓 𝑏 𝑢2 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

• Solution: optimal time is 

𝑡𝑓 =
1800𝑏

𝛼

1/5
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Indirect methods: practical aspects

To obtain solution to the necessary conditions for optimality, one needs to solve 
two-point boundary value problems

• In python, we’ll be using scipy.integrate.solve_bvp to solve problems 
in “standard” form

ሶ𝑧 = 𝑔 𝑧, 𝑡, 𝒑 ,  𝐵𝐶 𝑧 𝑡0 , 𝑧 𝑡𝑓 = 0

where 𝒑 are extra variables that can also be optimized

• Syntax: sol = solve_bvp(fun, bc, t, z, p=None)

Example:      ሶ𝑧1 = 𝑧2,  ሶ𝑧2 = − 𝑧1 ,  𝑧1 0 = 0,  𝑧1 4 = −2

*solve_bvp uses a collocation formula (three-stage Lobatto)
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Extensions
• What about problems whose necessary conditions to not fit directly the 

“standard” form (e.g., free end time problems)?

• Handy tricks exist to convert problems into standard form:

• Ascher, U., & Russell, R. D. (1981). Reformulation of boundary value problems 
into “standard” form. SIAM review, 23(2), 238-254.

Important case: free final time

1. Rescale time so that 𝜏 = 𝑡/𝑡𝑓, then 𝜏 ∈ [0,1]

2. Change derivatives 
𝑑

𝑑𝜏
 ≔  𝑡𝑓

𝑑

𝑑𝑡

3. Introduce dummy state 𝑟 that corresponds to 𝑡𝑓 with dynamics ሶ𝑟 = 0

4. Replace all instances of 𝑡𝑓 with 𝑟 
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Example

Find optimal control 𝑢(𝑡) to steer the system ሷ𝑥 𝑡 = 𝑢 𝑡

from 𝑥 0 = 10, ሶ𝑥 0 = 0 to the origin 𝑥 𝑡𝑓 = 0, ሶ𝑥 𝑡𝑓 = 0, and to minimize 

𝐽 =
1

2
𝛼𝑡𝑓

2 +
1

2
𝑡0

𝑡𝑓 𝑏 𝑢2 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

Solution

1. Define state as 𝒛 = 𝒙, 𝒑, 𝑟

2. BC are: 𝑥1 0 = 10, 𝑥2 0 = 0, 𝑥1 𝑡𝑓 = 0, 𝑥2 𝑡𝑓 = 0, −
𝑝2 𝑡𝑓

2

2𝑏
+ 𝛼𝑡𝑓 = 0

3. BVP becomes: 
𝑑𝒛

𝑑𝜏
= 𝑡𝑓

𝑑𝒛

𝑑𝑡
= 𝑧5

𝐴 −𝐵[0 1]/𝑏 0

0 −𝐴′ 0
0 0 0

z

4. BC become 𝑧1 0 = 10, 𝑧2 0 = 0, 𝑧1 1 = 0, 𝑧2 1 = 0, −
𝑧4 1 2

2𝑏
+ 𝛼𝑧5(1) = 0
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Next time

• Direct methods
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