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Outline

* Necessary conditions for optimal control with bounded controls:
* Pontryagin’s Minimum Principle (PMP)

« Examples: Applications of PMP (and insights we can derive from the analysis)

 Computational methods
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Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u* which causes the system

x(t) = f(x(t), u(?), t)

to follow an admissible trajectory x* that minimizes the functional
@) = h(x(tr), t) + [,” g (x(8), u(®), 1) dt

 Assumptions: h € C?, state and control regions are unbounded, t, and x(0) are
fixed
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Necessary conditions for optimal control
(with unbounded controls)

e Define the Hamiltonian

H(x(t),u(t),pt),t) = gx(®),u(t),t) + p() f(x(t), u(t), t)
* The necessary conditions for optimality are

X'(6) = 5 (¢ (), (0, p°(0), )
pr(t) = — 22 (x"(0),w'(£), p* (D), £) - foralit € [0t

a k * k
0 === (x*(t), u(t), p*(t), 1)
with boundary conditions

% (X*(tf)' tf) — p*(tf)] 5Xf + [H(X*(tf), ll*(tf), p*(tf), tf) + % (x*(tf)’ tf) 5tf =0
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Necessary conditions for optimal control
(with bounded controls)

» So far, we have assumed that the admissible controls and states are not
constrained by any boundaries

* However, in realistic systems, such constraints do commonly occur
» control constraints often occur due to actuation limits
* state constraints often occur due to safety considerations

* We will now consider the case with control constraints, which will lead to the
statement of the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

By definition, the control u* causes the functional J to have a relative minimum
if

J(u) —J(u*) =4] =0
for all admissible controls “close” to u”
* [fweletu =u" + du, the incrementin J can be expressed as
AJ(u*, du) = §J(u*, du) + higher order terms

* Thevariation du is arbitrary only if the extremal control is strictly within the
boundary for all time in the interval [t, t¢]

* In general, however, an extremal control lies on a boundary during at least one
subinterval of the interval [t,, tf]
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Why do control constraints complicate the analysis?

* As a consequence, admissible control variations éu exist whose negatives
(—d6u) are not admissible

* This implies that a necessary condition for u*to minimize J is
5/(u*,éu) =0

for all admissible variations with ||du|| small enough
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-
Pontryagin’s minimum principle

* Assuming bounded controls u € U, the necessary optimality conditions
are (H is the Hamiltonian)

X'(6) = 5 (¢ (0,0 (0, " (0),0)

—_

for all
p(t) = —‘Z—'Z (x*(t),u*(t),p*(t),t) B f Irea[to» trl

H(x*(t),u*(t),p*(t),t) < Hx*(t),u(t),p*(t),t), forallu(t) € U

—

along with the boundary conditions:

Z—Z (x*(tr ) tr) - P*(tf)] 0Xy + [H (x*(tr)ow () 07 (tr) ) + % (x"(tr).tr) |6t = 0
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Pontryagin’s minimum principle

* u*(t) is a control that causes H(x*(t),u(t), p*(t), t) to assume its global
minimum

» Harder condition in general to analyze

* Example: consider the system having dynamics:

x1(t) = x,(2), X, (t) = —x5(t) + u(t);
it is desired to minimize the functional
tf 1
J=| Fh@® +u(®)]dt
to

subject to the control constraint |u(t)| < 1 with ¢ fixed and the final state free.
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-
Pontryagin’s minimum principle

Solution:
* If the control is unconstrained,

u*(t) = —pz(t)
* If the controlis constrained as |u(t)| < 1, then

( —1 for 1 < p;(t)

u (t) =9 -p2(t), —-1=<py(t)<1
\ +1 for p;(t) < —1

* Todetermine u*(t) explicitly, the state and co-state equations must still be
solved
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Additional necessary conditions

1. Ifthefinal time is fixed and the Hamiltonian does not depend explicitly on
time, then

H(x*(0),u*(),p*(t)) = ¢ forallt € |¢to, tf]

2. Ifthefinal time s free and the Hamiltonian does not depend explicitly on
time, then

H(x*(0),u*(),p*(t)) =0 forallt € [t tf]
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Minimum time problems

* Find the control input sequence
M7 <u(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x, t)u(t)
from an arbitrary state x, to the origin, and minimizes time
Ly
] = 1dt

o
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Minimum time problems

 Form the Hamiltonian
H=1+p@®) {alxt) + B(x,t)u(t)}

=1+ p(®)'{a(xt) + [bi(x,t) by(x,t) by (x t)]u(t)}
= 1+ p(O7a(x 1) + ) POTbi(x, i (t)
=1

* By the PMP, select u;(t) to minimize H, which gives
WD) = MFif p(t)'b;(x,t) <0
L IMT i p(D)Thi(x,t) > 0

“Bang-bang” control
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Minimum time problems

* Note: we showed what to do when p(t)"b;(x,t) # 0
* Not obvious whatto do if p(t)'b;(x,t) =0

« If p(t)"b;(x,t) = 0 for some finite time interval, then the coefficient of u;(t) in
the Hamiltonian is zero, so the PMP provides no information on how to select

u;(t)

* The treatment of such a singular condition requires a more sophisticated
analysis

* The analysis in the linear case is significantly easier, see Kirk Sec. 5.4
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Minimum fuel problems

* Find the control input sequence
M <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x, t)u(t)

from an arbitrary state x, to the origin in a fixed time, and minimizes

J = ffici uc()] dt

Lo =1
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Minimum fuel problems

 Form the Hamiltonian
H = Zl 1 6w ()] +p) {alx, t) + B(x, t)u(t)}

Z ci [y (6)] + p(OTa(x, ) + 2 p()"b;(x, ;1

= 1

= Z[Ci lu; ()] +p(®)Th;(x, Ou; ()] + p(H)Ta(x, t)
i=1

* By the PMP, select u;(t) to minimize H, that is
i=1lei [ui (O] + pO) ' bi(x, u; ()] < T4 [c; [y (O] + p() by (x, )u; ()]

4/14/2025 AA 203 | Lecture 5 17



Minimum fuel problems

* Since the components of u(t) are independent, then one can just look at
¢; [ui (O] +p@®) b (x, Du; () < ¢; luy(t)| + p() b (x, )u; (t)
* The resulting control law is

fMl_ if C; < p(t)Tbi(X, t)
uf(t) =< 0 if —¢; < p(t)Tbi(X, t) < Cj
\Ml+ ifp(t)Tbi(X, t) < —(;

“Bang-off-bang” control
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Minimum energy problems

* Find the control input sequence
M7 <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x, t)u(t)

from an arbitrary state x, to the origin in a fixed time, and minimizes

_ 1 i T
J = EL u(t)’ Ru(t)dt,

0

where R > 0 and diagonal
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Minimum energy problems

* Form the Hamiltonian

H = ~u(®)TRu(t) + p()T {a(x, t) + B(x, t)u(t)}

= ~u()TRu(t) + p()"B(x, t)u(t) + p() a(x, 1)

* By the PMP, we need to solve

u*(t) = arg min [Z%Riiui(t)z +p () b;(x, ), (t)

u(t)eu
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Minimum energy problems

 Asinthe first example today, in the unconstrained case, the optimal solution
for each component of u(t) would be

2;(t) = =R p(O)bi(x, 1)
* Considering the input constraints, the resulting control law is
(M7 i @) < M;
w (t) =< 1;(t) if M; <a;(t) <M}
\ M if M <4;(t)

“Saturating” control
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Uniqueness and existence

* Note: uniqueness and existence are not in general guaranteed!

« Example 1 (non uniqueness): find a control sequence u(t) to transfer the system
x(t) = u(t) from an arbitrary initial state x, to the origin, and such that the

functional ] = fotflu(t)ldt is minimized. The final time is free, and the admissible
controls are |u(t)| <1

« Example 2 (non existence): find a control sequence u(t) to transfer the system
x(t) = —x(t) + u(t) from an arbitrary initial state x, to the origin, and such that

the functional ] = fti)flu(t)ldt is minimized. The final time is free, and the
admissible controls are |[u(t)| < 1
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Computational methods

* Until now, we derived necessary conditions for optimality and analytically studied
a few special cases

* We now focus on numerical techniques to solve two-point boundary value
problems; popular methods:
* Indirect shooting method

e Indirect collocation method
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Let’s revisit our example...

Find optimal control u(t) to steer the system
X(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢;) = 0, %(tf) = 0, and to minimize
J = %atf +%ft’;fbu2(t)dt, a,b >0

 Solution: optimal time s
(1800b)1/ >
tf —
a
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Indirect methods: practical aspects

To obtain solution to the necessary conditions for optimality, one needs to solve
two-point boundary value problems

* In python, we’ll be using scipy.integrate.solve bvp to solve problems
in “standard” form

z=g(zt.p), BC (2(to), 2(tr)) = 0
where p are extra variables that can also be optimized

* Syntax: sol = solve bvp(fun, bc, t, z, p=None)
Examp|e: Zl = Zy, Z.2: _|Z1|, Zl(O) — 0, Z1(4) = —2

*solve Dbvp usesa collocation formula (three-stage Lobatto)

4/14/2025 AA 203 | Lecture 5 25



Extensions

* What about problems whose necessary conditions to not fit directly the

“standard” form (e.g., free end time problems)?

* Handy tricks exist to convert problems into standard form:

* Ascher, U., & Russell, R. D. (1981). Reformulation of boundary value problems

into “standard” form. SIAM review, 23(2), 238-254.

Important case: free final time

1.

2
3.
4

Rescale time so that T = t/t¢, then 7 €[0,1]
Change derivatives L tr 4
dt dt

Introduce dummy state r that corresponds to ty with dynamics 7 = 0

Replace all instances of t; with r
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Example

Find optimal control u(t) to steer the system i (t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢;) = 0, %(tf) = 0, and to minimize
1 1 ot
J = atf +2 [/ bu*()dt, a,b>0

Solution
1. Definestateasz = [x,p, 1]
2

2. BCare: x,(0) = 10,x,(0) = 0,x,(¢t;) = 0, x2(¢5) = 0,—1’2(2’? +at; =0

. ; A —-B[01]/b O

Z YA P
3. BVP becomes: = tfa =2Zc |0 —A o]z
0 0 0
Zy

4., BCbecomez;(0) =10,2,(0)=0,2z;,(1) =0,2,(1) =0, —

(1)?
b + aZS(l) =0
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Next time

* Direct methods
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