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e
CoV extension |: generalized boundary conditions

* Letx : R = R™ be a vector-valued function, where each component x; isin
the class of functions with continuous first der

ivatives. It is desired to find
the function x* for which the fu ntctional
f
J0 = | g(x(0), (o), )
Lo
has a relative extremum

* Assumptions:
« g € C*?
* to and x(0) are fixed
* tr might be fixed or free, and each component of x(tf) might be fixed or free

* Reading:
e D. E. Kirk. Optimal Control Theory: An Introduction, 2004.

4/8/2025 AA 203 | Lecture 4



CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

(X (0, % (1), ) = 93X (£), X" (1), 1) = 0
must be satisfied

4/8/2025 AA 203 | Lecture 4



CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

gx(x*(£), X" (1), 1) — = gz (x* (), X°(£),1) = O
must be satisfied
* The required boundary conditions are found from the equation
gx(x (1), %" (t), t7) 6% + lg(X*(tf)'X*(tf)’ tr) = gx(X*(tf)'X*(tf)'tf)TX*(tf)] oty =0

by making the “appropriate” substitutions for §x¢ and 6t

4/8/2025 AA 203 | Lecture 4



CoV extension |: generalized boundary conditions

* 6X; and Oty capture the notion of “allowable” variations at the
end point, thus §t; = 0 if the final time is fixed, and &x;(¢t;) = 0 if
the end value of state variable x; (tr) is fixed

» For example, suppose that t¢ is fixed, x;(t¢),i = 1, ..., r are fixed,
and x;(ts),j =7 + 1, ...,n are free. Then the substitutions are:
Stf =0
6xi(tf) — O, I = 1, wn, I
0x;(ts) arbitrary, j=r+1,..,n
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CoV extension |: generalized boundary conditions

Problem description Substitution Boundary conditions Remarks

1. x(z5), t7 both specified oxy = 0x(ty) = 0 | x*(2,) = Xo 2n equations to determine 2n
(Problem I) oty =0 x*(ty) = Xy constants of integration

2. x(ty) free; t5 specified O0xy = 0x(t5) x*(2,) = Xxo 2n equations to determine 2
(Problem 2) oty =0 g__ig (), $*(t5), 15) = 0 constants of integration

3. ty free; x(z5) specified oxy =0 x*(2) = Xo (2n + 1) equations to deter-
(Problem 3) x*(ty) = xr mine 2n constants of integra-

g(x*(ts), X*(tr), t5) tion and ¢

— [Baen, 52, 10] 32 = 0

4. ts, x(ts) free and x*(ty) = Xo (2n + 1) equations to deter-
independent . 08 (v y (1), 1) — mine 2n constants of integra-
(Problem 4) ox (c*p), X015, 1) = 0 tion and 7

g(x*(tr), X*(15), t5) = 0

5. ty, X(t5) free but 5% = de (t7) 6tst x*(t,) = Xo (27 + 1) equations to deter-
related by dt x*(ts) = 0(ty) mine 2» constants of integra-
x(ty) = 6(t5) g(x*(ty), X*(ty), t5) tion and #¢

. . .
KEroblent ) =+ [g—i’(x*(ff), X*(t5), tf)] [%?(tf) - x*(ff)] = 0t
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Example

* Determine the smooth curve of smallest length connecting the
pointx(0) = 1tothelinet =5
* Solution: x(t) =1
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CoV extension IlI: constrained extrema

* Letw : R —» R™™ be a vector-valued function, where each component w;
is in the class of functions with continuous first derivatives. It is desired to

find the function w* for which tfge functional
f
Jow) = [ 9w, v, 0t

Lo
has a relative extremum, subject to the constraints
fitw@®),w(),t) =0, i=1,..,n
* Assumptions:
« g €C*>
* ty and w(0) are fixed
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CoV extension IlI: constrained extrema

* Because of the n differential constraints, only m of
then + m components of w are independent

 Constraints of this type may represent the state
equation constraints in optimal control problems
where w corresponds to the n + m vectorw = [x, u]!

 Similar to the case of constrained optimization,
define the augmented integrand function

g,(w(t), w(t),p(t),t) :=
g(w(®), w(t), t) +p(O)TfF(w(D), w(t), t)

\ Lagrange multipliers (now

functions of time!), the “costate”
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CoV extension IlI: constrained extrema

* A necessary condition for optimality is then

204 (w (&), W* (), P (£), ) — =222 (w* (&), W* (1), P’ (£), £) = O
along with
f(w* (£), w*(£),t) = 0

* Thatis, to determine the necessary conditions for an extremal we
simply form the augmented integrand g, and write the Euler
equations as if there were no constraints among the functions w(t)

* Note the similarity with the case of constrained optimization!
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The variational approach to optimal control

Roadmap:

1. We will first derive necessary conditions for optimal control assuming that
the admissible controls are not bounded

2. Next, we will heuristically introduce Pontryagin’s Minimum Principle as a
generalization of the fundamental theorem of CoV

3. Finally, we will consider special cases of problems with bounded controls
and state variables
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Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u™ which causes the
system

x(t) = f(x(¢), u(t), t)

to follow an admissible trajectory x* that minimizes
the functional

J) = h(x(tr),tr) + 7 g x(®),u(®), ) dt

 Assumptions: h € C?, state and control regions are unbounded,
to and x(0) arefixed,xisn X 1anduism X 1
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Necessary conditions for optimal control
(with unbounded controls)

e Define the Hamiltonian

H(x(t), u(t), p(t), t) = g(x(t),u(t),t) + p(t)" f(x(t), u(®), t)
* The necessary conditions for optimality (proof to follow) are

X'(0) = 50 (x (0,0 (0, p(©), 0
p*(t) = = ?3_1: (x*(t),u*(t), p*(t), t) | forallt € [t,, te]

a k * *
0 =22 (x* (1), u' (1), p*(6), £)
with boundary conditions

% (X*(tf)' tf) — p*(tf)] 5Xf + [H(X*(tf), u*(tf), p*(tf), tf) + %l (x*(tf), tf) 5tf =0

4/8/2025 AA 203 | Lecture 4

J—



Necessary conditions for optimal control

(with unbounded controls)

Problem Description Substitution Boundary-condition equations Remarks
in Eg. (5.1-18)

t 5 fixed 1. x(ty) = x¢ 0Xy = 0x(ty) =0 x*(t9) = Xg 2n equations to determine 2n
specified oty =0 x*(ty) = xy constants of integration
final state

2. x(t) free oxy = 0x(ty) x*(to) = Xo 2n equations to determine 2n
oty =0 gﬁ_ x*1p) — p*(ty) = 0 constants of integration
3. x(tf) on the oxy = 0x(ty) x*(t0) = X (2n + k) equations to deter-
surface oty =0 ok, N k om; ,_ . mine the 2n constants of
m(x(t)) = 0 ax X)) — PH(ts) = i§1 d"[_[?? (x*(ty ))] integration and the variables
m(x*(15)) = 0 di,...,dk

ty free 4. x(t5) = x5 oxr =10 x*(to) = Xxo (2n + 1) equations to deter-
specified x*(ts) = xy mine the 2n constants of
final state A ,), utty), pHt ), £1) + 3_}: X*(t), t7) = 0 integration and 75

5. x(¢y) free x*(19) = Xo (2n + 1) equations to deter-
0h 4 k() — mine the 2n constants of
ax (tr)tg) —p*ts) =0 integration and ¢ s
oh
';?(X*(rf): u*(tf): p*(tf)) tf) + EF(X*(:}’)’ tf) =0
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Necessary conditions for optimal control
(with unbounded controls)

* Necessary conditions consist of a set of 2n, first-order, differential equations
(state and costate equations), and a set of m algebraic equations (control
equations)

* The solution to the state and costate equations will contain 2n constants of
Integration

 To obtain values for the constants, we use the n equations x(t,) = X,,and an
additional set of n (orn 4+ 1) equations from the boundary conditions

* Once again: 2-point boundary value problem
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-
Example

Find optimal control u(t) to steer the system
x(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢;) = 0, %(t;) = 0, and to minimize
J = satf + [T but(D)dt, ab>0

(note: the final time t¢ is free)
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-
Example

Find optimal control u(t) to steer the system
x(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢;) = 0, %(t;) = 0, and to minimize
J = satf + [T but(D)dt, ab>0

e Solution: optimal time is

(1800b>1/ >
tf —
a
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Necessary conditions for optimal control
(with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality
conditionsare (H = g + p'f is the Hamiltonian)

x*(t) = ‘3—’; (x*(£), u* (1), p*(©), ©)
() = =2 (x"(0),w(6),p*(D),6) - foralit € [to.t7]
0 =22 (x* (1), u'(£), p(1), ©)

along with the bou ndary conditions:
2 e e )| o+ 6w (). ). 1) + )|y =

—_

—
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e
Proof sketch of NOC

* For simplicity, assume that the terminal penalty is equal to zero, and
that tr and x(t¢) are fixed and given

* Consider the augmented cost function
ga(x(6), %X(t), u(®), p(t), t) = g(x(),u(t), t) + p()" [f(x(t), u(t), t) — %x(t)]

where the {p;(t)}’s are Lagrange multipliers
* Note that we have simply added zero to the cost function!

* The augmented cost fu?ction is then
f

Ja = [ gax(0,%0,u(0,p(0), ) dt

to
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e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

094
dx

v tf aga d !
O=6]a(u)=j ([ (x*(t),)'(*(t),u*(t),p*(t),t)—E (X*(t),x*(t),u*(t),p*(t),t)] ox(t)

to 0xX

a T
a‘i“ (x*(t),x*(t),u"(t), p*(¢v), t)] 6p(t)> dt

T
+ [aai“ (x*(t), x*(¢), u"(t), p*(0), t)] su(t) + [
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e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem
==X, w(®),0) + = (x’(t),u (0, ) p*(t) == (=p" (1)

)
/ : [ \

' tr (T8 d 0 '
0=26/,(u) = j f([ Ja (x*(t),)'(*(t),u*(t),p*(t),t)—E Ja (x*(t),x*(t),u*(t),p*(t),t)] 6x(t)

I 0x
09a ,_, . x * T5 294
+ [au (x* (), x*(t),u"(t),p (t)'t)] u() + ! op

T
(x*(t),x*(t),u"(t), p*(¢v), t)] 6p(t)> dt
J

|
= f(x*(t),u*(t),t) — x*(t)
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e
Proof sketch of NOC

Considering each term in sequence,
e f(x*(t),u*(t),t) —x*(t) = 0, on an extremal

* The Lagrange multipliers are arbitrary, so we can select
them to make the coefficient of §x(t) equal to zero, that is

9 of
p(6) = = (' (), 0(0),6) — = (x* (), w' (), TP’ (1)

* The remaining variation du(t), is independent, so its
coefficient must be zero; thus

5o @, u (@), 1) + - (0, (), )Tp (1) = 0

By using the Hamiltonian formalism, one obtains the claim
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Next time

* Pontryagin’s Minimum Principle
 Special cases
 Computational methods
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