
AA203
Optimal and Learning-based Control

Optimization theory



Outline

1. Computational methods for unconstrained optimization

2. Optimization with equality constraints

3. Optimization with inequality constraints
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Computational methods (unconstrained case)

Goal: find “numerical recipes” to solve optimization problem

Key idea: iterative descent. We start at some point x0 (initial guess) and 
successively generate vectors x1, x2, … such that 𝑓 is decreased at each 
iteration, i.e.,

The hope is to decrease 𝑓 all the way to the minimum
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Gradient methods

Given x ∈ ℝ𝑛 with ∇𝑓 𝐱 ≠ 0, consider the half line of vectors

From first order Taylor expansion (𝛼 small)

So for 𝛼 small enough 𝑓(𝐱𝛂) is smaller than 𝑓(𝐱)!
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Gradient methods

Carrying this idea one step further, consider the half line of vectors

where ∇𝑓 𝐱 ′𝐝 < 𝟎 (angle > 90∘)

By Taylor expansion

For small enough 𝛼, 𝑓(𝐱 + 𝛼𝐝) is smaller than 𝑓(𝐱)!
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Gradient methods

Broad and important class of algorithms: gradient methods

where if ∇𝑓 𝐱k ≠ 0, 𝐝k is chosen so that

and the stepsize 𝛼 is chosen to be positive  
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Gradient descent

Most often the stepsize is chosen so that

and the method is called gradient descent. “Tuning” parameters:

• selecting the descent direction

• selecting the stepsize
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Selecting the descent direction

General class

(Obviously, ∇𝑓 𝐱𝑘 ′
𝐝𝑘 < 0)

Popular choices:

• Steepest descent:

• Newton's method:                                             provided
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Selecting the stepsize

• Minimization rule: 𝛼𝑘  is selected such that the cost function is 
minimized along the direction 𝐝𝑘, i.e., 

• Constant stepsize: 𝛼𝑘 = 𝑠
• the method might diverge

• convergence rate could be very slow  

• Diminishing stepsize: 𝛼𝑘 → 0 and σ𝑘=0
+∞ 𝛼𝑘 = ∞ 

• it does not guarantee descent at each iteration

4/1/2025 AA 203 | Lecture 2



Undiscussed in this class

Mathematical analysis:

• convergence (to stationary points)

• termination criteria 

• convergence rate

Derivative-free methods, e.g., 

• coordinate descent

• Nelder-Mead
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Next: constrained optimization

• constraint set usually specified in terms of equality and inequality 
constraints

• sophisticated collection of optimality conditions, involving some 
auxiliary variables, called Lagrange multipliers

Viewpoints:

• penalty viewpoint: we disregard the constraints and we add to the 
cost a high penalty for violating them 

• feasibility direction viewpoint: it relies on the fact that at a local 
minimum there can be no cost improvement when traveling a small 
distance along a direction that leads to feasible points
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Optimization with equality constraints

• 𝑓: ℝ𝑛 → ℝ and ℎ𝑖:  ℝ𝑛 → ℝ are 𝐶1

• notation: 𝐡 ≔ (ℎ1, … , ℎ𝑚)
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗ 
there exist scalars 𝜆1, … , 𝜆𝑚  called Lagrange multipliers such that

• Example
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Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum 𝐱∗ 
there exist scalars 𝜆1, … , 𝜆𝑚  called Lagrange multipliers such that

• Example
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Solution: 𝐱∗= (-1, -1)
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Lagrange multipliers

Interpretations:

1. The cost gradient ∇𝑓(𝐱∗) belongs to the subspace spanned by the constraint 
gradients at 𝐱∗. That is, the constrained solution will be at a point of 
tangency of the constrained cost curves and the constraint function 

2. The cost gradient ∇𝑓(𝐱∗) is orthogonal to the subspace of first order feasible 
variations

This is the subspace of variations Δ𝐱 for which the vector 𝐱 = 𝐱∗ + Δ𝐱 satisfies 
the constraint 𝐡 𝐱 = 0 up to first order. Hence, at a local minimum, the first 
order cost variation ∇𝑓 𝐱∗ ′Δ𝒙 is zero for all variations Δ𝐱 in this subspace 
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NOC

Theorem: NOC

Let 𝐱∗ be a local minimum of 𝑓 subject to 𝐡 𝐱 = 0 and assume that 
the constraint gradients ∇ℎ1(𝐱∗), … , ∇ℎ𝑚(𝐱∗) are linearly 
independent. Then there exists a unique vector (𝜆1, … , 𝜆𝑚), called a 
Lagrange multiplier vector, such that 
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(2nd order NOC and SOC are provided in AA203-Notes)

https://github.com/StanfordASL/AA203-Notes


Discussion

• A feasible vector 𝐱 for which ∇ℎ𝑖 𝐱 𝑖  are linearly independent is 
called regular

• Proof relies on transforming the constrained problem into an 
unconstrained one

1. penalty approach: we disregard the constraints while adding to the cost a 
high penalty for violating them → extends to inequality constraints

2. elimination approach: we view the constraints as a system of 𝑚 
equations with 𝑛 unknowns, and we express 𝑚 of the variables in terms 
of the remaining 𝑛 − 𝑚, thereby reducing the problem to an 
unconstrained problem

• There may not exist a Lagrange multiplier for a local minimum that 
is not regular
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The Lagrangian function

• It is often convenient to write the necessary conditions in terms of 
the Lagrangian function 𝐿: ℝ𝑛+𝑚 → ℝ

• Then, if 𝐱∗ is a local minimum which is regular, the NOC conditions 
are  compactly written
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System of 𝑛 + 𝑚 equations 
with 𝑛 + 𝑚 unknowns
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Optimization with inequality constraints

• 𝑓, ℎ𝑖, 𝑔𝑗  are 𝐶1

• In compact form (ICP problem)
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Active constraints

For any feasible point, the set of active inequality constraints is denoted

If 𝑗 ∉  𝐴(𝐱), then the constraint is inactive at 𝐱.

Key points

• if 𝐱∗ is a local minimum of the ICP, then 𝐱∗ is also a local minimum for the 
identical ICP without the inactive constraints

• at a local minimum, active inequality constraints can be treated to a 
large extent as equalities 
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Active constraints

• Hence, if 𝐱∗is a local minimum of ICP, then 𝐱∗ is also a local 
minimum for the equality constrained problem 
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Active constraints

• Thus if 𝐱∗ is regular, there exist Lagrange multipliers (𝜆1, … , 𝜆𝑚) and 
𝜇𝑗

∗, 𝑗 ∈ 𝐴(𝐱∗), such that

• or equivalently
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Karush-Kuhn-Tucker NOC

Define the Lagrangian function

Theorem: KKT NOC

Let 𝐱∗  be a local minimum for ICP where 𝑓, ℎ𝑖, 𝑔𝑗 are 𝐶1 and assume 𝐱∗  is 
regular (equality + active inequality constraints gradients are linearly 
independent). Then, there exist unique Lagrange multiplier vectors 
(𝜆1

∗ , … , 𝜆𝑚
∗ ), 𝜇1

∗, … , 𝜇𝑚
∗  such that
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Example
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Solution: (0,0)
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min  𝑥2 + 𝑦2

    s. t.  2𝑥 + 𝑦 ≤ 2 



Next time
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Calculus of variations

(infinite-dimensional optimization!)
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