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1. Computational methods for unconstrained optimization
2. Optimization with equality constraints

3. Optimization with inequality constraints
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1. Computational methods for unconstrained optimization
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Computational methods (unconstrained case)

Goal: find “numerical recipes” to solve optimization problem

min f(x)

Key idea: iterative descent. We start at some point x° (initial guess) and
successively generate vectors x1,x?, ... such that f is decreased at each
iteration, I.e.,

) < f(xF),  kE=0,1,...

The hope is to decrease f all the way to the minimum
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Gradient methods

Given x € R™ with Vf(x) # 0, consider the half line of vectors

Xq = X — aV f(x), Va > 0

From first order Taylor expansion (a small)

f(xa) = f(x) + V(%) (xa —x) = f(x) — | Vf(x)]*

So for a small enough f(x,) is smaller than f (x)!
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Gradient methods

Carrying this idea one step further, consider the half line of vectors

Xy = X+ O{d, Va > 0
where Vf(x)'d < 0 (angle > 90°)

By Taylor expansion

f(xa) = f(x) + aVf(x)'d
For small enough a, f (x + ad) is smaller than f (x)!
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Gradient methods

Broad and important class of algorithms: gradient methods

xFtl = x*k 4 oF d¥, k=20,1,...

where if Vf(xX) # 0, d¥is chosen so that
Vf(xF)d* <0

and the stepsize a is chosen to be positive
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Gradient descent

Most often the stepsize is chosen so that

f(x* + o d¥) < f(xM), k=0,1,...

and the method is called gradient descent. “Tuning” parameters:
* selecting the descent direction
* selecting the stepsize
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Selecting the descent direction

General class
d* = —D*Vf(x"), where D* > 0

(Obviously, Vf(xk)’dk < 0)

Popular choices:
« Steepest descent: D* =T

* Newton's method: D* = (sz(xk))_l provided V2 f(x*) >0
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Selecting the stepsize

e Minimization rule: a¥ is selected such that the cost function is
minimized along the direction d¥, i.e.,

f(x" +a"d") = min f(x" + ad")

» Constant stepsize: a® = s

* the method might diverge
» convergence rate could be very slow

e Diminishing stepsize: a® - 0 and Y.1%, a® = o
* it does not guarantee descent at each iteration

4/1/2025 AA 203 | Lecture 2



Undiscussed in this class

Mathematical analysis:
 convergence (to stationary points)
* termination criteria

* convergence rate

Derivative-free methods, e.g.,

e coordinate descent
* Nelder-Mead
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Next: constrained optimization

* constraint set usually specified in terms of equality and inequality
constraints

* sophisticated collection of optimality conditions, involving some
auxiliary variables, called Lagrange multipliers

Viewpoints:
 penalty viewpoint: we disregard the constraints and we add to the
cost a high penalty for violating them

« feasibility direction viewpoint: it relies on the fact that at a local
minimum there can be no cost improvement when traveling a small
distance along a direction that leads to feasible points
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2. Optimization with equality constraints
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Optimization with equality constraints

min f(x)
subject to h;(x) =0, 3= 1 s 5 5000

e f:R"™ - Rand h;: R® > Rare C!
* notation: h := (hy, ..., h,,)
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 14, ..., 4,,, called Lagrange multipliers such that

V") + Y AiVhi(x*) =0
=1

* Example
min xq1 + xo

subject to % + z2 =2
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Lagrange multipliers

min xq + o

subject to 2% + x5 = 2

f(x) =21+ 2
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Lagrange multipliers

* Basic Lagrange multiplier theorem: for a given local minimum x*
there exist scalars 14, ..., 4,,, called Lagrange multipliers such that

V") + Y AiVhi(x*) =0
=1

* Example
min xq1 + xo

subject to f}::% + r% =7 Solution: x*= (-1, -1)
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Lagrange multipliers

Interpretations:

1. Thecostgradient Vf(x™) belongs to the subspace spanned by the constraint
gradients at x*. That is, the constrained solution will be at a point of
tangency of the constrained cost curves and the constraint function

2. Thecostgradient Vf(x") is orthogonal to the subspace of first order feasible
variations

Va(ae® )i =1 gl W il 6 Yl =1 0 4= Lot

This is the subspace of variations Ax for which the vector x = x* + Ax satisfies
the constraint h(x) = 0 up to first order. Hence, at a local minimum, the first
order cost variation Vf(x*)'Ax is zero for all variations Ax in this subspace
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NOC

Theorem: NOC

Let x* be a local minimum of f subject to h(x) = 0 and assume that
the constraint gradients Vh,(X"), ..., Vh,,,(X™) are linearly
independent. Then there exists a unique vector (44, ..., 4,,), called a
Lagrange multiplier vector, such that

Vf(}{*) + Z )\EVhE(X*) =0
=1

(2" order NOC and SOC are provided in AA203-Notes)
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https://github.com/StanfordASL/AA203-Notes

e
Discussion

* A feasible vector x for which {Vh;(x)}; are linearly independent is
called regular

* Proof relies on transforming the constrained problem into an

unconstrained one

1. penalty approach: we disregard the constraints while adding to the cost a
high penalty for violating them — extends to inequality constraints

2. elimination approach: we view the constraints as a system of m
equations with n unknowns, and we express m of the variables in terms

of the remaining n — m, thereby reducing the problem to an
unconstrained problem

* There may not exist a Lagrange multiplier for a local minimum that
is not regular
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The Lagrangian function

* |t is often convenient to write the necessary conditions in terms of
the Lagrangian function L: R**™ — R

L(x,\) = f(x)+ Z Aihi(x)

* Then, if x* is a local minimum which is regular, the NOC conditions
are compactly written

V. L(x*, \*)
v, L(x*, \*)
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3. Optimization with inequality constraints
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Optimization with inequality constraints

min  f(x)
subject to  h;(x) =
g;(x) <
* fa hiagj are c?
* In compact form (ICP problem)

min  f(x)
subject to h(x)
g(x)
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e
Active constraints

For any feasible point, the set of active inequality constraints is denoted

A(x) == {Jj| g;(x) = 0}
If j € A(X), then the constraintis inactive at x.

Key points

* ifx* isalocal minimum of the ICP, then x* is also a local minimum for the
identical ICP without the inactive constraints

* at a local minimum, active inequality constraints can be treated to a
large extent as equalities
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Active constraints

* Hence, if x*is a local minimum of ICP, then x* is also a local
minimum for the equality constrained problem

min  f(x)
subject to h(x) =0
g;(x) =0,  Vj€A(x")

4/1/2025 AA 203 | Lecture 2



Active constraints

* Thus if x* is regular, there exist Lagrange multipliers (14, ..., 4,,;) and
1, j € A(X*), such that

* or equivalently

+Z)\ Vhi( +Z,ujvgj Hi=10

J=l

p; =0 Vjé¢ AX") (indeed p} > 0)
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Karush-Kuhn-Tucker NOC

Define the Lagrangian function
L(x,\ ) : +Z)\h )+ > pigs(x)
j=1

Theorem: KKT NOC

Let x™ be a local minimum for ICP where f, h;, g; are Cl and assume x* is

regular (equality + active inequality constraints gradients are linearly
independent). Then, there exist unique Lagrange multiplier vectors
(A3, ..., A), (U3, ..., 1y) such that

VxL(X*, A*,u*) =0
p; >0, j=1,...,7
=0 Vg A)
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Example

min x? + y?
s.t. 2x+y <2

Solution: (0,0)
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Next time

Calculus of variations
(infinite-dimensional optimization!)
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