AA203
Optimal and Learning-based Control

Model-based Reinforcement Learning

’: I. ‘. .) an O
4N A I
‘ML 51
= <
- - 3

- .0

" University

»
......

Course overview Leaming

Model-free RL

Control {\daptlve
optimal control
I |] Model-based RL
Feedback control Adaptive control
’ Optimal and
learning control
| !
Open-loop [-—--==========-mmmmmmmmm » MPC R Closed-loop
Indirect Direct
methods methods i HJB/HJI

6/4/2025 AA203 | Lecture 19

| ast time: Outline

Intro to policy gradients
* REINFORCE algorithm

* Reducing variance of policy gradient

Actor-Critic methods
« Advantage

* Architecture design

Deep RL Algorithms & Applications

6/4/2025 AA203 | Lecture 19

Reducing RL to optimization

* Much of modern ML entails reducing learning to a numerical optimization problem
* Supervised learning as training error minimization

e This Is different from what we have seen so far in RL;

« Q-learning: fixed-point iteration — can (in princi
wrong objective
* Policy gradient: yes, stochastic gradients of the

ole) include all transitions seen so far, however, it optimizes for the

RL objective, but no optimization problem

o \We’'ll discuss approaches that define an optimization problem that allows us to do a small update to policy &, based on

data sampled from 7

6/4/2025

AA203 | Lecture 19

Defining the objective

» \We discussed how, in PO, we want to compute the following gradient VJ(0) = E [Vgl()g m(u, | x) Alx, Mt)]

* o implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following
loss function:

L"C(0) = E |log my(u, | x,) A(x,,u,)|

« But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy
estimate
* Equivalently differentiate

LIS(H) —

A(7)

A ”QOId(Mr | X;)

+ If we take the derivative of L’ and evaluate at @ = 6, , ,, we get the same gradient

Vo (0)]
0 f(60)
Ve ()| = dd _y ()
’ ‘%m f(6oid) \f (6oid) ;
old

6/4/2025 AA203 | Lecture 19

Trust Region Policy Optimization (TRPO)

. A [T (ut ‘ xt) A]
maximize [, A,
0 0,14 (uf | X,)

subject to E, [KL[@M(| x,),m (- \xt)] <6

* Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

« Hard to use with architectures with multiple outputs, e.g., policy and value function
« Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs
« (Conjugate gradient makes implementation more complicated

6/4/2025 AA203 | Lecture 19

Proximal Policy Optimization (PPO)

* Can we solve the problem defined in TRPO without second-order optimization?

PPO v1 - Surrogate loss with Lagrange multipliers

Vo

maximize

0

| [7o (1,1 %) At] s (KLt (- 1)o7 (1) _5>

70,14 (ut ‘ At)

* Run SGD on the above objective
» Do dual descent update for

. 7o (1| x,)
PPO v2 - Clipped surrogate loss r(0) = , r@,)=1
ﬂeold <ut ‘ xt)
maximize E, [min(r(@)A(z), clip(r(),1 — €,1 + €)A(7)]
0

* Heuristically replicates constraint in the objective
* One of the (if not the) most popular PO algorithm

6/4/2025

AA203 | Lecture 19

summary: Model-free RL

K We discussed different ways to estimate value functions Unbiased Low variance; can learn online \
High variance; Biased
, . Exact must reach :
Dynamic Programming e Monte Caro 1 minal state Temporal-Difference
n A knowledge A A A A A
\Y (xt) = [Rt+yV (xm)] of MDP V(xt) «— V(xt) +a<Gt—V(xt)> V(xt) V(xt) +a <R +7/V(z+1) V(x))
X, Xt Xt
O " O
Q @ X1 o ® o e 0y X o A

S I & Do de N S N

Terminal state

O (x%y1t) = B R+ 70 (1,14 | Ok, t) — Oty) +a (G0t 1)) Oy) < O+t (R + 70 (11,11 = 00,)
* And how to scale these ideas through function approximation
Tabular representation: Function approximation:
V(x) O(c,u) OGu) Oteuz) OCx,u)

‘A/(xl) _Q(Xl, ul) Q(xp uz) Q(Xl, Mm)_ MC update
¥ (x) = ‘A’(f@ O (x. 1) = O(xy, uy) Q(xz,.uz) . Oy, A = a G Vg(xt)) V,V,0x)
| : TD update
K _‘A/(xn)_ _Q(x”’) Q(x”’) . Q(xn’ um)_ AO = 0{ r,+ }/VQ(X¢+1) VQ(Xt)> VQVHW

6/4/2025 AA203 | Lecture 19

summary: Model-free RL

Value-based methods

K Generalized Policy lteration

Sarsa & Q-learning

SARSA: on-policy

Full Backup (DP)

Bellman Expectation

AN

Sample Backup (TD)\

O(x, 1) — Q) + a (r,+ 70 (X1 Uiy) — QX 11)) S| e (&
starting . Q-learning: off-policy @ :
vV
Bellman Optimalit
v v Q(—xta ut) <« Q(-xta ut) + <l" + }/ max Q (xt+17 t+1) o Q(xta ut)) ESuZTc?c?n fc[))rlgla(sl,};) Q-Value lteration Q-Learning
Upy

Deep RL:

(1) Use deep neural nets to represent Qg

(2) Uses experience replay and fixed Q-targetsj

<

On-policy: evaluate or improve the policy that is used to make decisions
Off-policy: evaluate or improve a policy different from that used to
generate the data

K In policy optimization, we care about learning an (explicit) parametric policy 7y, with parameters 6 to directly maximize:

(1) estimate its gradient V ,J(6)

0" =argmax E__,, 2 Y'R xt, ut |
0 >0 (2) do approximate gradient ascent on J(0): 0 < 0 + a 'V ,J(0) J\x 0 o)
J(O) Problem: high variance of PG ——/

J p (xz+1 |xt7 ur)

N T

1
EY; Z Z Vglog (ui,t | Xi,z) Qqs(xty
N

=1 =1

Policy gradient: Solution: baselines, “critics”

1 & /T T 1
VQJ(Q)%NZ (ZVQIOgEQ ltl'xlt ><2R lt’ lt>
u =1

i=1

13|
\I\/Iaximum Likelihood: VgJuwe0) ~ Iv; Z (Z Vglog m (ui,t | xi,t>>

i=1 L \ r=1

"Change parameters 0 s.t. trajectories with
higher reward have higher probability”

V,J(0) ~

6/4/2025 AA203 | Lecture 19

Policy Optimization

A bird’s eye view on the RL algorithms covered so far

- N Jo (xr) ~ V" (xr)
Fit a model / estimate
fo (

return ’) ’
N y,
’ ~ T ’
m(u, | x,) fo (% ;) EARRENTY
R

AGENT 4
?
T = (XO, Uys -« -5 Xns l/tN) Generate samples
_ W,
4 . R
setn (xt) = arg max Q (xt, “t) (e.9., Q-learning,
Improve the policy o - DON)
.) e ovavye | Bt | Co 00

I

6/4/2025 AA203 | Lecture 19

Revisiting the discussion on trade-ofts

» Different tradeoffs:
o Sample efficiency
o Stability & easy of use

* Different assumptions:
» Stochastic or deterministic
« (Continuous or discrete
* Episodic or infinite horizon

* Different things are easy or hard in different settings:

» Easier to represent the policy?
» Easier to represent the model?

6/4/2025 AA203 | Lecture 19

Comparison: sample efficiency

« Sample efficiency = how many samples do we need to get a good policy”?
» Crucial question: is the algorithm on- or off-policy?

» Off policy: able to improve the policy without generating new samples from the current policy
* On policy: each time the policy is changed, even a little bit, we need to generate new samples

off-policy ey O N-policy

More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why even bother using less efficient algorithms”? Wall-clock time is not the same as efficiency!

6/4/2025 AA203 | Lecture 19

Outline

Basics of model-based RL

* A basic recipe (and its limitations)

* Learning with high-capacity models: distributional shift

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

Examples & Applications (e.q., PETS)

6/4/2025 AA203 | Lecture 19

General recipe

» If we knew the dynamics T(x, { | x,, u,), we could use tools from optimal control
» Main idea: learn a model fy(x,, u,) ~ T(x,, | x,, u,) from data (or p(x,, | | X, 4,) in the stochastic case)

At a high-level, we could apply the following strategy:

1. Run base policy ﬂo(l/tt | xt) in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

D = {(x[a U, x;+1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

2
0% = arg mein Z fo (xt, ut) — X4 1 |

l

3. Use the learned model to plan a sequence of actions

6/4/2025 AA203 | Lecture 19

Will this work®?

YES

* |In cases with e.qg., linear-time invariant dynamics, this tends to work pretty well

* Particularly effective If we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a

few parameters
 |f the dataset is generated with sufficient excitation, it gives global knowledge (i.e., some care should be taken to

design a good base policy)

* Thisis essentially how system identification works

NO

 |f we're dealing with non-linear dynamics (and high-capacity models! e.g., neural networks) extrapolation is difficult
and can be misleading

6/4/2025 AA203 | Lecture 19

Vlotivating example

6/4/2025

'he goal is to go as further north as possible

* \When planning under the model we observe a different state

'he base policy defines state distribution (under 7))

distribution, i.e., pﬂf(x)

The more (i) the dynamics are complex, (i) we use high-capacity

models, the easier it Is incur In distribution mismatch

AA203 | Lecture 19

A simple improvement

* \We can leverage ideas from adaptive and receding-horizon control:

1. Run base policy ﬂO(ut | xt) in the environment (e.q., random policy, exploration policy) and collect dataset of transitions

@ — {(.Xt, uta xt-|-1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

2
0 = arg min Z fo (xt, ut) — Xy 1 |
0

l

3. Use the learned model to plan a sequence of actions
4. Execute only the first action and measure the new state x,_ ; (i.e., MPC)

5. Add the observed transition (x,, u,, X, +1) to the dataset & and update model (i.e., gradually closing the gap between
P1,(x) and p, (x))

6/4/2025 AA203 | Lecture 19

Outline

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

6/4/2025 AA203 | Lecture 19

1he main challenge in MBRL

» |deally, we’d want our model to:
* Have high-capacity to represent complex dynamics in the high-data regime
* Not overtit to observed data in the low-data regime

* For example, consider the case where we fit our model to observed data and use
it to plan, according to the previous scheme

ﬁ Run base policy ﬂo(ut | xt) in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

9 — {(xp l/lt, xt+1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)
2
0* = arg mem Z Hfg (xt, ut) — Xp 1 ‘
i

Use the learned model to plan a sequence of actions
Execute only the first action and measure the new state x,; (i.e., MPC)

Add the observed transition (x,, u,, X,) to the dataset & and update model (i.e., gradually closing the gap
between pﬂo(x) and pﬂf(x))

N

~

/

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we our about the prediction

6/4/2025 AA203 | Lecture 19

R(7)

1 he role of uncertainty estimation

o Specifically, by uncertainty on our predictions, we mean an expression of a distribution over possible outcomes

* This allows us to reason in terms of expectations under our model

15 — truth
— prediction

Ex

nected reward under high-variance prediction is low

6/4/2025 AA203 | Lecture 19

How can we model uncertainty”

* |dea 1: use output entropy
* Suppose we estimated a model, why not use its entropy?

p (xH-l | xta I/tt)

Discrete state-space Continuous state-space
n ll
1|
1 2 3 <
p(SH_l) p(SH_l) p(SH_l) t+1

X U

* Doing so will not take epistemic uncertainty into account

m— Model

Aleatoric uncertainty:
“The process is /\
intrinsically noisy”

R(7)
Epistemic uncertainty:
“Uncertainty about the \)

. model”
6/4/2025 AA203 | Lecture 19

How can we model uncertainty”

* |dea 2: estimate model uncertainty

Py | X uy)

X U

- Typically, given a dataset &, we estimate:
arg max log p(& | 0)
0

* Jo express model uncertainty means
estimating:

p@ | 2)

and predict according to the predictive posterior
distribution J p (xt w1 | X, Uy 6’) p(@ | 2)do

6/4/2025

Prior: p(@), Likelihood: p(<J | 8), Posterior p(8 | &)

Bayes’ Theorem p(0 | D) =

Posterior density (N = 1)

wl

-0.5

-1.0
-1.0 -05 00 05 10
w0
Lo Posterior density (N = 3)
0.5 ‘
= 00 e
-0.5
-1.0
-10 -05 00 05 10
w0
Posterior density (N = 20)
05 »
= 00 B
-0.5
-1.0

-10 -05 00 05 10
w0

AA203 | Lecture 19

05
0.0 ’ o

p(Z | O)p(0)
p(D)

-
-
-
-
-
—
-
-

-
'-—
-
-

Post. samples

=15 T T T
-1.0 -0.5 0.0 05 10

=== Truth

-1.0 -0.5 0.0 05 10

=== Truth

-1.0 -0.5 0.0 05 10

- Prediction
Uncertainty

=
-
-
—

—“
-
~ -
-
-
-
-
. -
-

-1.0 -0.5 0.0 0.5 10

- Prediction
Uncertainty

-
"
-

-
-
-
o
o
-

-1.0 -0.5 0.0 0.5 10

— Prediction
Uncertainty °

-1.0 -0.5 0.0 0.5 10

(1) Gaussian Processes

* Represent “distribution over functions”
Bayesian inference

A

Samples from prior distribution Samples from posterior distribution

° / / \\
/ ° \ A\ /
GP Prior Sample GP Posterior Sample
e Observations e Observations
e Strengths * \Weaknesses
* Data efficient * High computational complexity
» Exact posterior » Cannot learn expressive features

6/4/2025 AA203 | Lecture 19

(2) Bootstrap ensembles

* High level idea: “train multiple models and see if they agree”
» Different models will likely agree in regions where we have data and disagree where we do not

p (xt+1 |Xt, Ltt) p (xt+1 |Xt, l/tt) p (xt+1 |xt9 Ltt) p (xz+1 |Xt, l/tt)

o
X U X U X U X U

« Formally, we approximate the posterior with a mixture of Dirac
distributions: 1
0|l D)~—) 6(0:
p(0 | 2) Nzi‘, (6)

-

Vo gtk

O Deep Ensembles o VI o Multi-SWAG

1
Jp (xt+1 | x,, u,, (9) pO| 9)do ~ ~ Zp (xtH | x, u,, Hi)

« Usually, no need for resampling or independent datasets: SGD and random initialization make the models
sufficiently independent

6/4/2025 AA203 | Lecture 19

Outline

Examples & Applications (e.q., PETS)

6/4/2025 AA203 | Lecture 19

Planning with uncertainty

* How can we use this additional knowledge in planning”

 Given a candidate action sequence Uy, ..., Uy:
1. Sample 6; ~ p(8| D) (in the case of ensembles, this is equivalent to choosing one among the models)

2. Propagate forward the learned dynamics according to X, | ~ pg (X4 | X, #,), for all £
3. Compute (predicted) rewards Z r(x, u,)

[
4, Repeat steps 1-3 and compute the average reward

1 N H
J (Mp cee MT> Yy, Z Z r (xt,i’ ut)’ where X1 ; ~ Dy (xt+1,i | X ”t)
=1 =1

l

« Caveat: this is only a choice, one could think of other ways to approximate the posterior predictive distribution.
* The general idea is that, when planning, we want to evaluate the expected reward under our model

6/4/2025 AA203 | Lecture 19

Case study: PETS

* Probabilistic Ensembles with Trajectory Sampling
« Key idea:
 Model: Use ensemble of NNs to approximate

posterior over model
Propagation: sample different models and use them

to generate predictions of different “futures”
Planning: apply MPC (compute action sequence via
sampling, i.e., cross-entropy method (CEM))

6/4/2025

Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

Kurtland Chua Roberto Calandra Rowan McAllister Sergey Levine
Berkeley Artificial Intelligence Research
University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

Dynamics Model

o

Trajectory Propagation

—— Ground Truth

- Bootstrap 1

- Bootstrap 2
= Training Data

V.

AA203 | Lecture 19

ase study: PETS

6/4/2025

T

(a) Cartpole

(c) 7-dof Reacher

e

(b) 7-dof Pusher

il

(d) Half-cheetah

00 Cartpole 0 7-DOF Pusher
'E - £
< — o — e vl — . — N W— N W— N W— N W— N — N — — O — . —
= 1001
(3}
a7
. . R “ - x x % %* % -3 >
0 h——h———% %* % -300 ' :
0 1500 3000 % 5000 10000 15000
Number of Tlmesteps Number of Timesteps
7-DOF Reacher Half-cheetah
0 18000
- e RN NN N SIS sssEEEEsssssssssEEEEEEssssess
o =12000-
= S
3 - *>—=oo———9 ® 2
&) &) 6000 == = o T e, et (R i -
e e e T N S o g SR ————————
-200 : : 0 5 :
0 5000 10000 15000 0 100000 200000 300000 400000
Number of Timesteps Number of Timesteps
* * Eli\ * * -_— - * (I ‘ -
Our Method [Nagabandi et al. 2017] [Kamthe et al. 2018] PPO SAC DDPG
(PE-TSI) (D-E) GP-E GP-DS (GP-MM) PPO at convergence SAC at convergence DDPG at convergence
0..
— 10 —— 30 —— 50 —— 70 90
60l — 20 — 40 — 60 80 100
_10-
50 1
_20.
401
30

w
o

N
o

Mean Squared Error over Trajectory

—401'ff

|
U
i
= L
¢
/1
>(

Mean Negative Log-Prob over Trajectory

Trajectory Number

(a) Mean squared error.

AA203 | Lecture 19

Trajectory Number

(b) Negative log likelihood.

A=A A\,/“/\”‘/\/\ =
109, \ — 10 — 30 — 50 70 90
v/ —— 20 —— 40 —— 60 —— 80 —— 100
0 : : :
0 0 20 60 80

100

Concluding thoughts

Imitation

Learning

Model-free RL

Model-based RL

Closed-loop

|

Control | Adaptive
| optimal control
' | v
Feedback control Adaptive control
. Optimal and
learning control
: 1

Open-loop f--=--====mmmmmmmmmmmmees MPC m o mmmee
Indirect Direct .-
methods methods

6/4/2025

AA203 | Lecture 19

HJB / HJI

“World model”

|
-
(CELf)k _ Closed-loop / High-level decision making
HV Q‘T) '.‘B LV - g -
NV .=a Lane change m LV l ’ 0a
-
Open-loop
\
l Trajeiory/\
-
MPC (e.qg., tracking)
\
~)
Actuators (e.g., PID controllen)
- ,

6/4/2025 AA203 | Lecture 19

