
AA203 Optimal and Learning-based Control
Lecture 17

Model-based RL

Autonomous Systems Laboratory
Daniele Gammelli

AA203
Optimal and Learning-based Control

Model-based Reinforcement Learning

AA203 | Lecture 196/4/2025

Course overview

AA203 | Lecture 196/4/2025

Last time: Outline

Intro to policy gradients
• REINFORCE algorithm
• Reducing variance of policy gradient

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage
• Architecture design

AA203 | Lecture 196/4/2025

Reducing RL to optimization
• Much of modern ML entails reducing learning to a numerical optimization problem

• Supervised learning as training error minimization

• This is different from what we have seen so far in RL:
• Q-learning: fixed-point iteration can (in principle) include all transitions seen so far, however, it optimizes for the

wrong objective
• Policy gradient: yes, stochastic gradients of the RL objective, but no optimization problem

• We’ll discuss approaches that define an optimization problem that allows us to do a small update to policy , based on
data sampled from

→

π
π

AA203 | Lecture 196/4/2025

• We discussed how, in PO, we want to compute the following gradient

• But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy
estimate

• Equivalently differentiate

LIS(θ) = 𝔼τ∼pθ(τ) [πθ(ut |xt)
πθold

(ut |xt)
A(τ)]

• If we take the derivative of and evaluate at , we get the same gradient LIS θ = θold

∇θlog f(θ)
θold

=
∇θ f(θ)

θold
f (θold)

= ∇θ(f(θ)
f (θold))

θold

∇θJ(θ) = 𝔼 [∇θlog πθ(ut ∣ xt) A(xt, ut)]

LPG(θ) = 𝔼 [log πθ(ut ∣ xt) A(xt, ut)]

Defining the objective

• To implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following
loss function:

AA203 | Lecture 196/4/2025

Trust Region Policy Optimization (TRPO)

maximize
θ

𝔼̂t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At]

 subject to 𝔼̂t [KL[πθold (⋅ ∣ xt), πθ (⋅ ∣ xt)] ≤ δ

• Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

• Hard to use with architectures with multiple outputs, e.g., policy and value function
• Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs
• Conjugate gradient makes implementation more complicated

AA203 | Lecture 196/4/2025

Proximal Policy Optimization (PPO)
• Can we solve the problem defined in TRPO without second-order optimization?

maximize
θ

𝔼̂t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At] + β (𝔼̂t [KL[πθold (⋅ ∣ xt), πθ (⋅ ∣ xt)] − δ)

PPO v1 - Surrogate loss with Lagrange multipliers

• Run SGD on the above objective
• Do dual descent update for β

maximize
θ

𝔼̂t [min(r(θ)A(τ), clip(r(θ),1 − ϵ,1 + ϵ)A(τ)]
• Heuristically replicates constraint in the objective
• One of the (if not the) most popular PO algorithm

PPO v2 - Clipped surrogate loss r(θ) =
πθ (ut ∣ xt)

πθold (ut ∣ xt)
, r(θold) = 1

AA203 | Lecture 196/4/2025

Summary: Model-free RL

Dynamic Programming

xt

V̂ (xt) ← 𝔼 [Rt + γV̂ (xt+1)]
Monte Carlo Temporal-Difference

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))
xt

ut

xt+1
rt

ut

xt+1rt

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))

Q̂(xt, ut) ← Q̂(xt, ut) + α (Rt + γQ̂ (xt+1, ut+1)−Q̂(xt, ut))Q̂(xt, ut) ← Q̂(xt, ut) + α (Gt−Q̂(xt, ut))Q̂ (xt, ut) ← 𝔼 [Rt + γQ̂ (xt+1, ut+1)]

θ

x

̂V(x)

θ

x

Q̂(x, u)

θ

xu

Q̂(x, u1) Q̂(x, u2) Q̂(x, um)
…

• We discussed different ways to estimate value functions
Exact
Requires
knowledge
of MDP

Unbiased
High variance;
must reach
terminal state

Low variance; can learn online
Biased

• And how to scale these ideas through function approximation

V̂ (x) =

̂V(x1)
̂V(x2)
⋮
̂V(xn)

Tabular representation:

Q̂ (x, u) =

Q̂(x1, u1) Q̂(x1, u2) … Q̂(x1, um)

Q̂(x2, u1) Q̂(x2, u2) … Q̂(x2, um)
⋮

Q̂(xn, u1) Q̂(xn, u2) … Q̂(xn, um)

Function approximation:

Δθ = α (Gt− ̂Vθ(xt))∇θ
̂Vθ(xt)

Δθ = α (rt + γ ̂Vθ(xt+1)− ̂Vθ(xt))∇θ
̂Vθ(xt)

MC update

TD update

AA203 | Lecture 196/4/2025

• Generalized Policy Iteration • Sarsa & Q-learning

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))

SARSA: on-policy

On-policy: evaluate or improve the policy that is used to make decisions
Off-policy: evaluate or improve a policy different from that used to
generate the data

Q-learning: off-policy

(1) Use deep neural nets to represent Qθ

(2) Uses experience replay and fixed Q-targets

• Deep RL:

• In policy optimization, we care about learning an (explicit) parametric policy , with parameters to directly maximize:πθ θ
(1) estimate its gradient
(2) do approximate gradient ascent on :

∇θJ(θ)
J(θ) θ ← θ + α∇θJ(θ)

Policy gradient: ∇θ J(θ) ≈
1
N

N

∑
i=1 [(

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))]
Maximum Likelihood: ∇θ JMLE(θ) ≈

1
N

N

∑
i=1 [(

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t))] “Change parameters s.t. trajectories with
higher reward have higher probability”

θ

Problem: high variance of PG
Solution: baselines, “critics”

p(xt+1 |xt, ut)

𝔼τ∼p(τ) [
T

∑
t′￼=t

R (xi,t′￼, ui,t′￼)]
Qπ(xt, ut)

=

∇θ J(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t) Qϕ(xt, ut)

Value-based methods

Policy Optimization

θ* = arg max
θ

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)

J(θ)

Summary: Model-free RL

AA203 | Lecture 196/4/2025

A bird’s eye view on the RL algorithms covered so far

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ T (xt+1 ∣ xt, ut)

(e.g., Q-learning,
DQN)

(e.g., PG, A2C,
A3C)

Generate samples

Fit a model / estimate
return

Improve the policy
 set π (xt) = arg max

u
Q (xt, ut)

θ ← θ + α∇θ𝔼 [∑
t

r (xt, ut)]

AA203 | Lecture 196/4/2025

Revisiting the discussion on trade-offs

• Different tradeoffs:
• Sample efficiency
• Stability & easy of use

• Different assumptions:
• Stochastic or deterministic
• Continuous or discrete
• Episodic or infinite horizon

• Different things are easy or hard in different settings:
• Easier to represent the policy?
• Easier to represent the model?

AA203 | Lecture 196/4/2025

Comparison: sample efficiency

• Sample efficiency = how many samples do we need to get a good policy?

• Crucial question: is the algorithm on- or off-policy?
• Off policy: able to improve the policy without generating new samples from the current policy
• On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!

AA203 | Lecture 196/4/2025

Outline

Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

• A basic recipe (and its limitations)
• Learning with high-capacity models: distributional shift

• Gaussian Processes
• Bootstrap Ensembles

AA203 | Lecture 196/4/2025

General recipe
• If we knew the dynamics , we could use tools from optimal control
• Main idea: learn a model from data (or in the stochastic case)

At a high-level, we could apply the following strategy:

1. Run base policy in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

3. Use the learned model to plan a sequence of actions

T(xt+1 |xt, ut)
fθ(xt, ut) ≈ T(xt+1 |xt, ut) p(xt+1 |xt, ut)

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

AA203 | Lecture 196/4/2025

Will this work?

• In cases with e.g., linear-time invariant dynamics, this tends to work pretty well

• Particularly effective if we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a
few parameters

• If the dataset is generated with sufficient excitation, it gives global knowledge (i.e., some care should be taken to
design a good base policy)

• This is essentially how system identification works

• If we’re dealing with non-linear dynamics (and high-capacity models! e.g., neural networks) extrapolation is difficult
and can be misleading

YES

NO

AA203 | Lecture 196/4/2025

Motivating example

π0
pπ0

(x)

• The goal is to go as further north as possible
• The base policy defines state distribution (under)
• When planning under the model we observe a different state

distribution, i.e.,

π0

pπf
(x)

pπf
(x)

The more (i) the dynamics are complex, (ii) we use high-capacity
models, the easier it is incur in distribution mismatch

AA203 | Lecture 196/4/2025

A simple improvement
• We can leverage ideas from adaptive and receding-horizon control:

1. Run base policy in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

3. Use the learned model to plan a sequence of actions
4. Execute only the first action and measure the new state (i.e., MPC)
5. Add the observed transition to the dataset and update model (i.e., gradually closing the gap between

)

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

xt+1
(xt, ut, xt+1) 𝒟

pπ0
(x) and pπf

(x)

AA203 | Lecture 196/4/2025

Outline

Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

• A basic recipe (and its limitations)
• Learning with high-capacity models: distributional shift

• Gaussian Processes
• Bootstrap Ensembles

AA203 | Lecture 196/4/2025

The main challenge in MBRL
• Ideally, we’d want our model to:

• Have high-capacity to represent complex dynamics in the high-data regime
• Not overfit to observed data in the low-data regime

τ

R(τ)

• For example, consider the case where we fit our model to observed data and use
it to plan, according to the previous scheme

1. Run base policy in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

3. Use the learned model to plan a sequence of actions
4. Execute only the first action and measure the new state (i.e., MPC)
5. Add the observed transition to the dataset and update model (i.e., gradually closing the gap

between)

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

xt+1
(xt, ut, xt+1) 𝒟

pπ0
(x) and pπf

(x)

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we our about the prediction

AA203 | Lecture 196/4/2025

The role of uncertainty estimation
• Specifically, by uncertainty on our predictions, we mean an expression of a distribution over possible outcomes
• This allows us to reason in terms of expectations under our model

Expected reward under high-variance prediction is low

AA203 | Lecture 196/4/2025

How can we model uncertainty?
• Idea 1: use output entropy
• Suppose we estimated a model, why not use its entropy?

τ

R(τ)

st+1p(s1
t+1) p(s2

t+1) p(s3
t+1)

θ

x

p(xt+1 |xt, ut)

u

Discrete state-space Continuous state-space

• Doing so will not take epistemic uncertainty into account

Aleatoric uncertainty:
“The process is
intrinsically noisy”

Epistemic uncertainty:
“Uncertainty about the
model”

AA203 | Lecture 196/4/2025

How can we model uncertainty?
• Idea 2: estimate model uncertainty

θ

x

p(xt+1 |xt, ut)

u
• Typically, given a dataset , we estimate: 𝒟

arg max
θ

log p(𝒟 ∣ θ)
• To express model uncertainty means

estimating:

and predict according to the predictive posterior

distribution

p(θ ∣ 𝒟)

∫ p (xt+1 ∣ xt, ut, θ) p(θ ∣ 𝒟)dθ

Prior: , Likelihood: , Posterior p(θ) p(𝒟 ∣ θ) p(θ ∣ 𝒟)

Bayes’ Theorem p(θ ∣ 𝒟) =
p(𝒟 ∣ θ)p(θ)

p(𝒟)

AA203 | Lecture 196/4/2025

(1) Gaussian Processes

Samples from prior distribution Samples from posterior distribution

Bayesian inference
• Represent “distribution over functions”

• Strengths
• Data efficient
• Exact posterior

• Weaknesses
• High computational complexity
• Cannot learn expressive features

AA203 | Lecture 196/4/2025

(2) Bootstrap ensembles
• High level idea: “train multiple models and see if they agree”

• Different models will likely agree in regions where we have data and disagree where we do not

p(θ ∣ 𝒟)

θ
p(θ ∣ 𝒟) ≈

1
N ∑

i

δ (θi)

∫ p (xt+1 ∣ xt, ut, θ) p(θ ∣ 𝒟)dθ ≈
1
N ∑

i

p (xt+1 ∣ xt, ut, θi)

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

• Formally, we approximate the posterior with a mixture of Dirac
distributions:

• Usually, no need for resampling or independent datasets: SGD and random initialization make the models
sufficiently independent

AA203 | Lecture 196/4/2025

Outline

Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantifi

• A basic recipe (and its limitations)
• Learning with high-capacity models: distributional shift

• Gaussian Processes
• Bootstrap Ensembles

AA203 | Lecture 196/4/2025

Planning with uncertainty
• How can we use this additional knowledge in planning?

• Given a candidate action sequence :
1. Sample (in the case of ensembles, this is equivalent to choosing one among the models)
2. Propagate forward the learned dynamics according to , for all
3. Compute (predicted) rewards

4. Repeat steps 1-3 and compute the average reward

u1, …, uT
θi ∼ p(θ |𝒟)

xt+1 ∼ pθi
(xt+1 |xt, ut) t

∑
t

r(xt, ut)

J (u1, …, uT) =
1
N

N

∑
i=1

H

∑
t=1

r (xt,i, ut), where xt+1,i ∼ pθi (xt+1,i |xt,i, ut)

• Caveat: this is only a choice, one could think of other ways to approximate the posterior predictive distribution.
• The general idea is that, when planning, we want to evaluate the expected reward under our model

AA203 | Lecture 196/4/2025

Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling
• Key idea:

• Model: Use ensemble of NNs to approximate
posterior over model

• Propagation: sample different models and use them
to generate predictions of different “futures”

• Planning: apply MPC (compute action sequence via
sampling, i.e., cross-entropy method (CEM))

AA203 | Lecture 196/4/2025

Case study: PETS

AA203 | Lecture 196/4/2025

Concluding thoughts

AA203 | Lecture 196/4/2025

“World model”

Closed-loop / High-level decision making

Open-loop

MPC (e.g., tracking)

Actuators

(e.g., via HJ reachability)

(e.g., PID controller)

