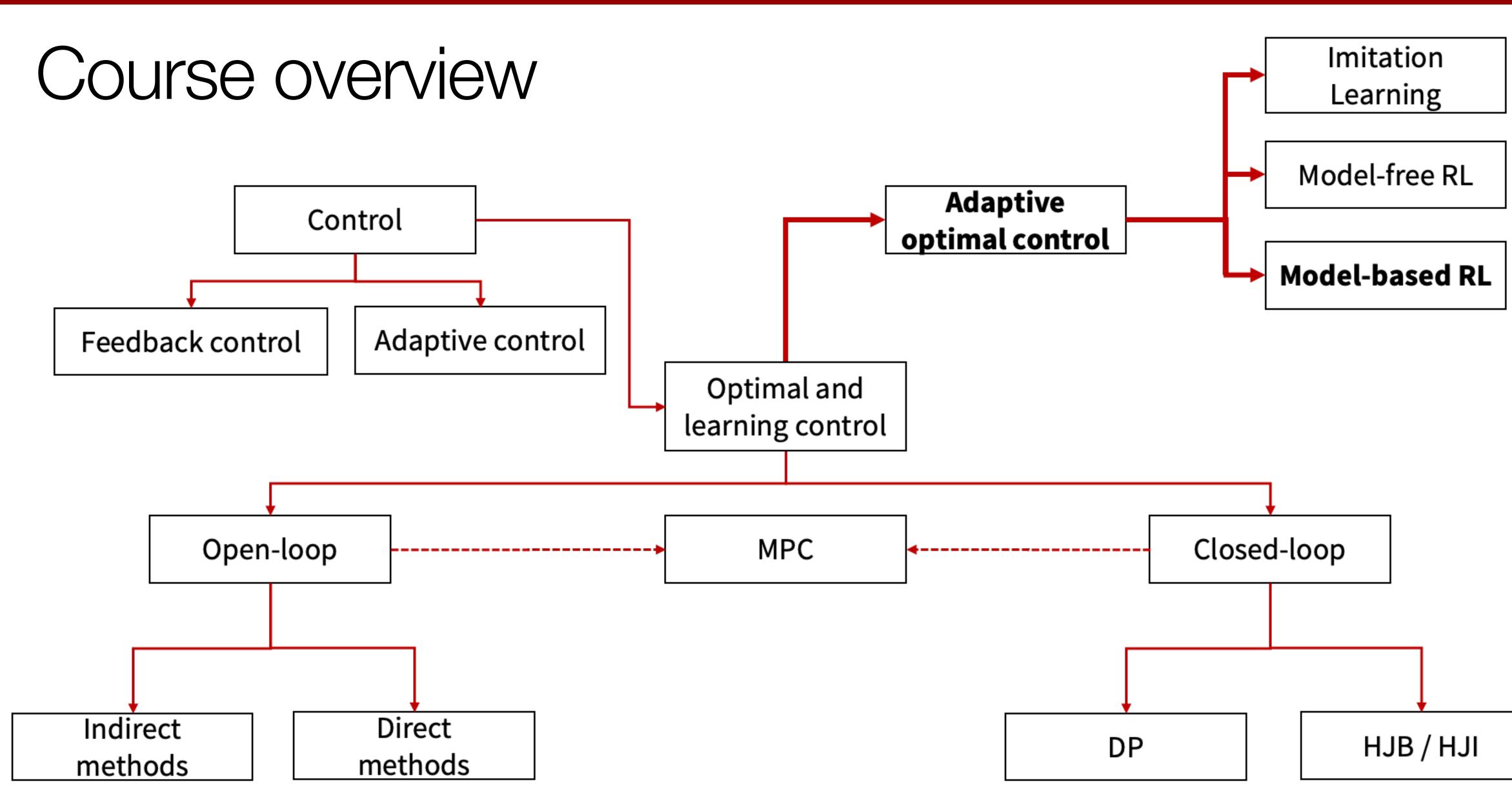
AA203 **Optimal and Learning-based Control** Model-based Reinforcement Learning



Last time: Outline

Intro to policy gradients

- REINFORCE algorithm
- Reducing variance of policy gradient

Actor-Critic methods

- Advantage
- Architecture design

Deep RL Algorithms & Applications

Reducing RL to optimization

- Much of modern ML entails reducing learning to a numerical optimization problem
 - Supervised learning as *training error minimization*
- This is different from what we have seen so far in RL: •
 - wrong objective
 - Policy gradient: yes, stochastic gradients of the RL objective, but no optimization problem
- data sampled from π

• Q-learning: fixed-point iteration \rightarrow can (in principle) include all transitions seen so far, however, it optimizes for the

• We'll discuss approaches that define an optimization problem that allows us to do a small update to policy π , based on

Defining the objective

- To implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following • loss function:

- But we don't want to optimize it too far, since we are not working with the *true* advantage, rather with a noisy • estimate
- Equivalently differentiate

 $L^{IS}(\theta) = \mathbb{E}_{\tau \sim t}$

• If we take the derivative of L^{IS} and evaluate at $\theta = \theta_{old}$, we get the same gradient

$$\nabla_{\theta} \log f(\theta) \Big|_{\theta_{\text{old}}} = \frac{\nabla_{\theta} f(\theta) \Big|_{\theta_{\text{old}}}}{f(\theta_{\text{old}})} = \nabla_{\theta} \left(\frac{f(\theta)}{f(\theta_{\text{old}})} \right) \Big|_{\theta_{\text{old}}}$$

6/4/2025

• We discussed how, in PO, we want to compute the following gradient $\nabla_{\theta} J(\theta) = \mathbb{E} \left[\nabla_{\theta} \log \pi_{\theta}(u_t \mid x_t) A(x_t, u_t) \right]$

 $L^{PG}(\theta) = \mathbb{E}\left[\log \pi_{\theta}(u_t \mid x_t) A(x_t, u_t)\right]$

$$p_{\theta}(\tau) \left[\frac{\pi_{\theta}(u_t | x_t)}{\pi_{\theta_{old}}(u_t | x_t)} A(\tau) \right]$$

Trust Region Policy Optimization (TRPO)

$$\begin{aligned} & \underset{\theta}{\text{maximize}} \, \hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta} \left(u_{t} \mid x_{t} \right)}{\pi_{\theta_{old}} \left(u_{t} \mid x_{t} \right)} \hat{A}_{t} \right] \\ & \text{subject to} \, \hat{\mathbb{E}}_{t} \left[\text{KL}[\pi_{\theta_{old}} \left(\cdot \mid x_{t} \right), \pi_{\theta} \left(\cdot \mid x_{t} \right) \right] \leq \delta \end{aligned}$$

Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space) •

- Hard to use with architectures with multiple outputs, e.g., policy and value function
- Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs
- Conjugate gradient makes implementation more complicated

Proximal Policy Optimization (PPO)

Can we solve the problem defined in TRPO without second-order optimization?

PPO v1 - Surrogate loss with Lagrange multipliers

$$\underset{\theta}{\text{maximize }} \hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta} \left(u_{t} \mid x_{t} \right)}{\pi_{\theta_{old}} \left(u_{t} \mid x_{t} \right)} \hat{A}_{t} \right] + \beta \left(\hat{\mathbb{E}}_{t} \left[\text{KL}[\pi_{\theta_{old}} \left(\cdot \mid x_{t} \right), \pi_{\theta} \left(\cdot \mid x_{t} \right) \right] - \delta \right)$$

- Run SGD on the above objective
- Do dual descent update for β

PPO v2 - Clipped surrogate loss

$$r(\theta) = \frac{\pi_{\theta} \left(u_t \mid x_t \right)}{\pi_{\theta_{old}} \left(u_t \mid x_t \right)}, \quad r(\theta_{old}) = 1$$

 $\underset{\theta}{\text{maximize }} \hat{\mathbb{E}}_t \left[\min(r(\theta)A(\tau), \operatorname{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon)A(\tau) \right]$

- Heuristically replicates constraint in the objective
- One of the (if not the) most popular PO algorithm lacksquare

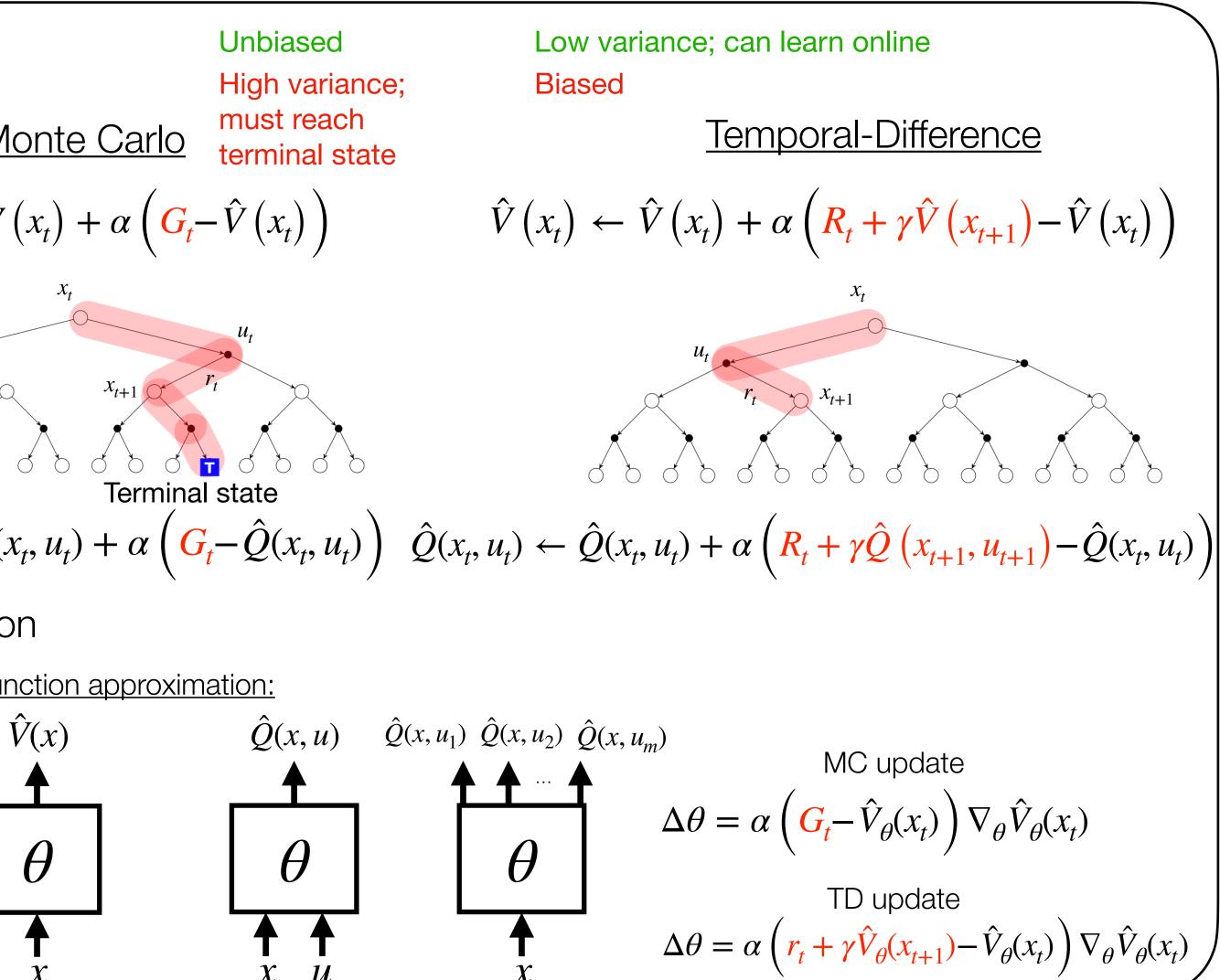
Summary: Model-free RL

We discussed different ways to estimate value functions

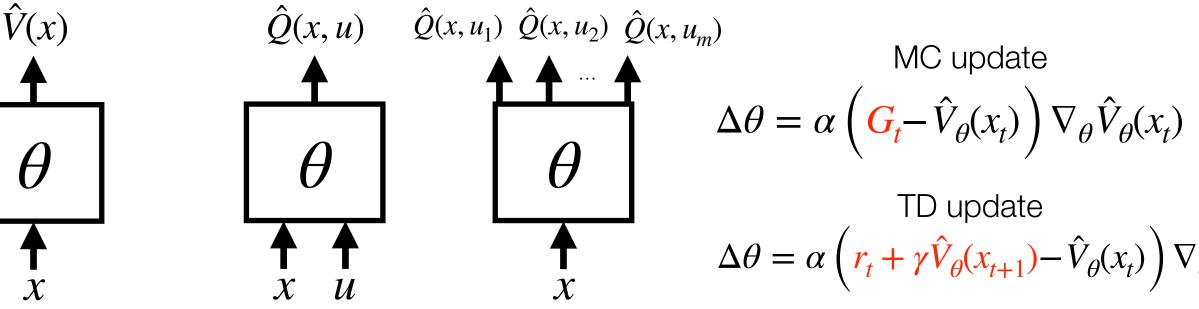
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Dynamic Programming} \\ \hat{V}\left(x_{t}\right) \leftarrow \mathbb{E}\left[R_{t} + \gamma \hat{V}\left(x_{t+1}\right)\right] \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Exact} \\ \text{Requires} \\ \text{knowledge} \\ \text{of MDP} \end{array} \end{array} \\ \begin{array}{c} \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t}\right) \end{array} \end{array} \\ \begin{array}{c} \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t}\right) \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t}\right) \end{array} \\ \begin{array}{c} \hat{V}\left(x_{t}\right) \leftarrow \hat{V}\left(x_{t+1}\right) \end{array} \end{array} \end{array} \end{array} \end{array}$$

 And how to scale these ideas through function approximation Tabular representation:

$$\hat{V}(x) = \begin{bmatrix} \hat{V}(x_1) \\ \hat{V}(x_2) \\ \vdots \\ \hat{V}(x_n) \end{bmatrix} \hat{Q}(x, u) = \begin{bmatrix} \hat{Q}(x_1, u_1) & \hat{Q}(x_1, u_2) \dots \hat{Q}(x_1, u_m) \\ \hat{Q}(x_2, u_1) & \hat{Q}(x_2, u_2) \dots \hat{Q}(x_2, u_m) \\ \vdots \\ \hat{Q}(x_n, u_1) & \hat{Q}(x_n, u_2) \dots \hat{Q}(x_n, u_m) \end{bmatrix}$$

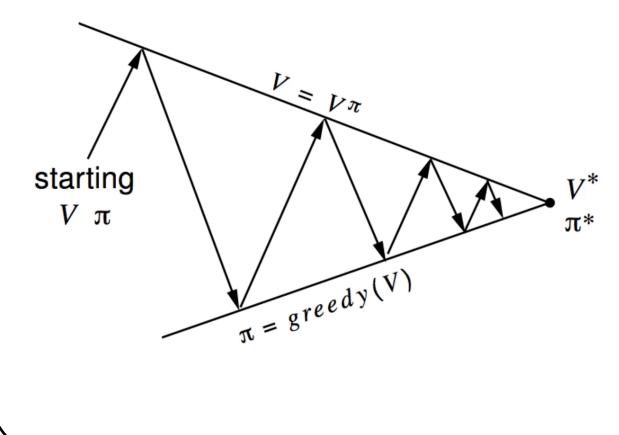


Function approximation:



Summary: Model-free RL

Generalized Policy Iteration \bullet



 $\frac{\theta^*}{\theta} = \arg \max_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\sum_{t \ge 0} \gamma^t R\left(x_t, u_t\right) \right]$

• Sarsa & Q-learning

SARSA: on-policy

 $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha (r_t + \gamma)$

<u>Q-learning:</u> off-policy

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \right)$$

On-policy: evaluate or improve the po **Off-policy:** evaluate or improve a polic generate the data

In policy optimization, we care about learning an (explicit) pa ullet

(1) estimate its gradient(2) do approximate grad

Policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(u_{i,t} \mid x_{i,t} \right) \right) \left(\sum_{t=1}^{T} R \left(x_{i,t}, u_{i,t} \right) \right) \right]^{H}$$

Maximum Likelihood: $\nabla_{\theta} J_{MLE}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(u_{i,t} \mid x_{i,t} \right) \right) \right]^{H}$

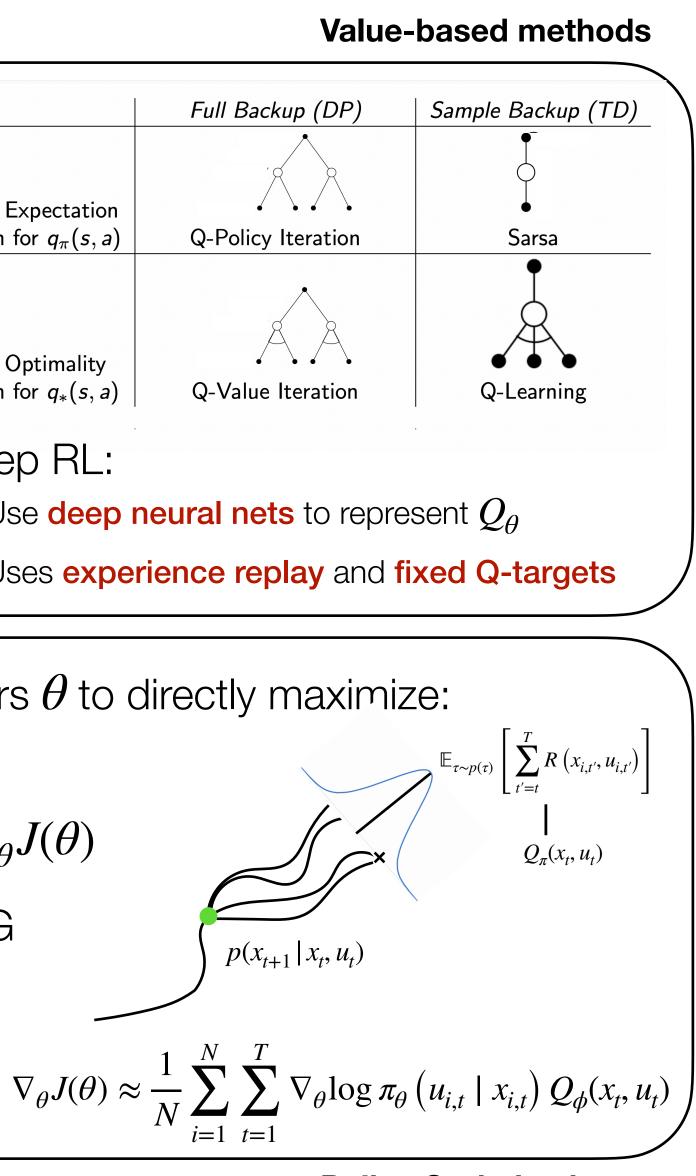
6/4/2025

Value-based methods

		Full Backup (DP)	Sample Backup
MO(x, y)	Bellman Expectation Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
$\gamma Q \left(x_{t+1}, u_{t+1} \right) - Q(x_t, u_t) \right)$ $\gamma \max_{u'_{t+1}} Q \left(x_{t+1}, u'_{t+1} \right) - Q(x_t, u_t) \right)$	Bellman Optimality Equation for $q_*(s, a)$	Q-Value Iteration	Q-Learning
olicy that is used to make decisions	• Deep RL:		
licy different from that used to		neural nets to repre	
	(2) Uses expe	rience replay and fi	xed Q-targe
parametric policy $\pi_{ heta}$, with parameters $ heta$ to directly maximize:			
nt $ abla_{ heta} J(heta)$ adient ascent on $J(heta)$: $ heta \leftarrow heta$ -	$\vdash \alpha \nabla_{\theta} J(\theta)$	X	$\int_{\tau \sim p(\tau)} \left[\sum_{t'=t}^{T} R\left(x_{t}\right) \right]_{Q_{\pi}(x_{t}, \tau)} $
N Problem: high variance	of PG	$p(x_{t+1} x_t, u_t)$	
$(u_{i,t}) \left \right $ Solution: baselines, "cr	ritics"		
		1 N T	

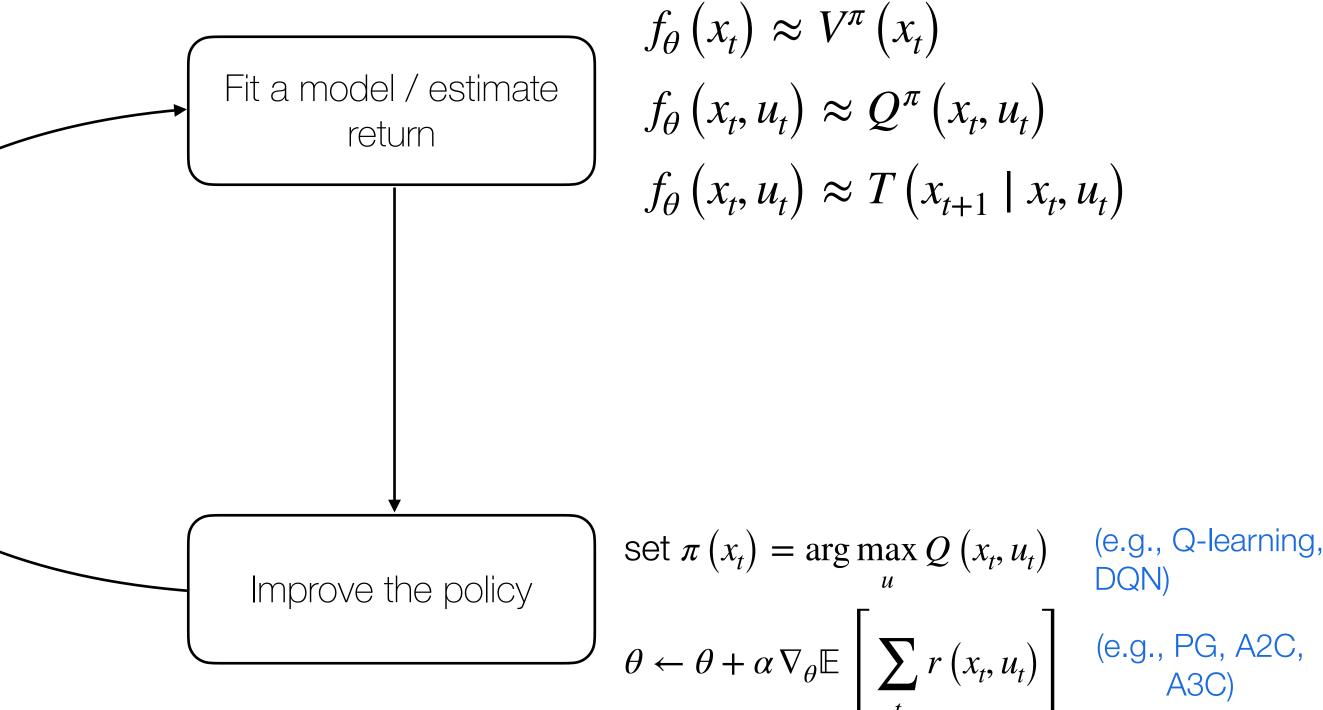
Change parameters heta s.t. trajectories with higher reward have higher probability"

Policy Optimization



A bird's eye view on the RL algorithms covered so far

 $\pi(u_t | x_t)$ $\tau = (x_0, u_0, \dots, x_N, u_N)$ Generate samples



Revisiting the discussion on trade-offs

• Different tradeoffs:

- Sample efficiency
- Stability & easy of use

• Different assumptions:

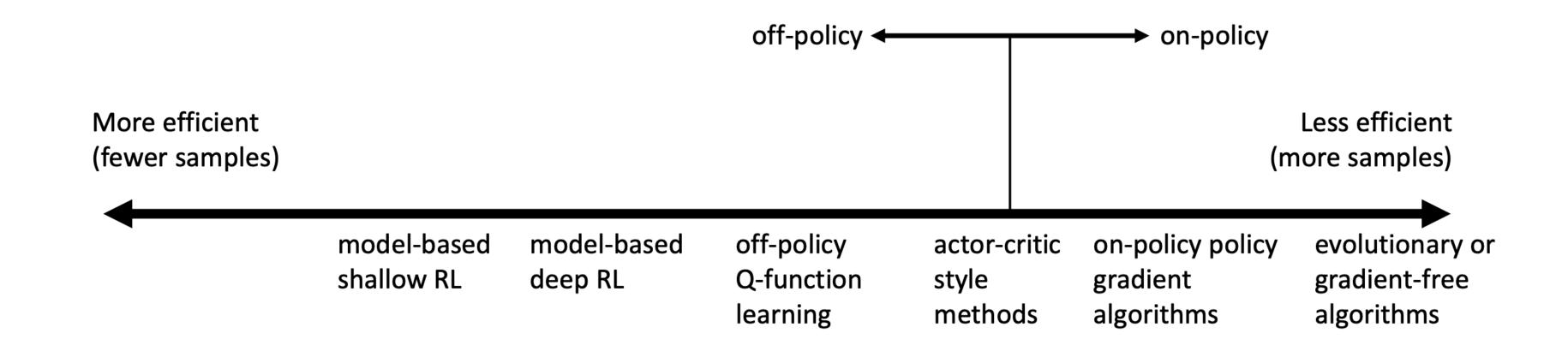
- Stochastic or deterministic
- Continuous or discrete
- Episodic or infinite horizon

• Different things are easy or hard in different settings:

- Easier to represent the policy?
- Easier to represent the model?

Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Crucial question: is the algorithm *on- or off-policy?*
 - Off policy: able to improve the policy without generating new samples from the current policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples



Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!

Outline

Basics of model-based RL

- A basic recipe (and its limitations)
- Learning with high-capacity models: distributional shift

Uncertainty quantification in model-based RL

- Gaussian Processes
- Bootstrap Ensembles

Examples & Applications (e.g., PETS)

General recipe

- If we knew the dynamics $T(x_{t+1} | x_t, u_t)$, we could use tools from optimal control
- Main idea: learn a model $f_{\theta}(x_t, u_t) \approx T(x_{t+1} | x_t, u_t)$ from data (or $p(x_{t+1} | x_t, u_t)$ in the stochastic case)

At a high-level, we could apply the following strategy:

- 1. Run base policy $\pi_0(u_t | x_t)$ in the environment (e.g., range $\mathcal{D} = \{(x_t, u_t, x_{t+1})_i\}$
- 2. Fit dynamics model to data to minimize error (or equivale $\theta^* = \arg\min_{\theta} \sum_{i=1}^{n} \sum_{i=1}^{n} e_{i}$
- 3. Use the learned model to plan a sequence of actions

pols from optimal control n data (or $p(x_{t+1} | x_t, u_t)$ in the stochastic case)

1. Run base policy $\pi_0(u_t | x_t)$ in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

Lently, maximize (log) likelihood
$$\int \|f_{\theta}(x_t, u_t) - x_{t+1}\|^2$$

Will this work?

YES

- In cases with e.g., linear-time invariant dynamics, this tends to work pretty well
- few parameters
 - design a good base policy)
- This is essentially how system identification works

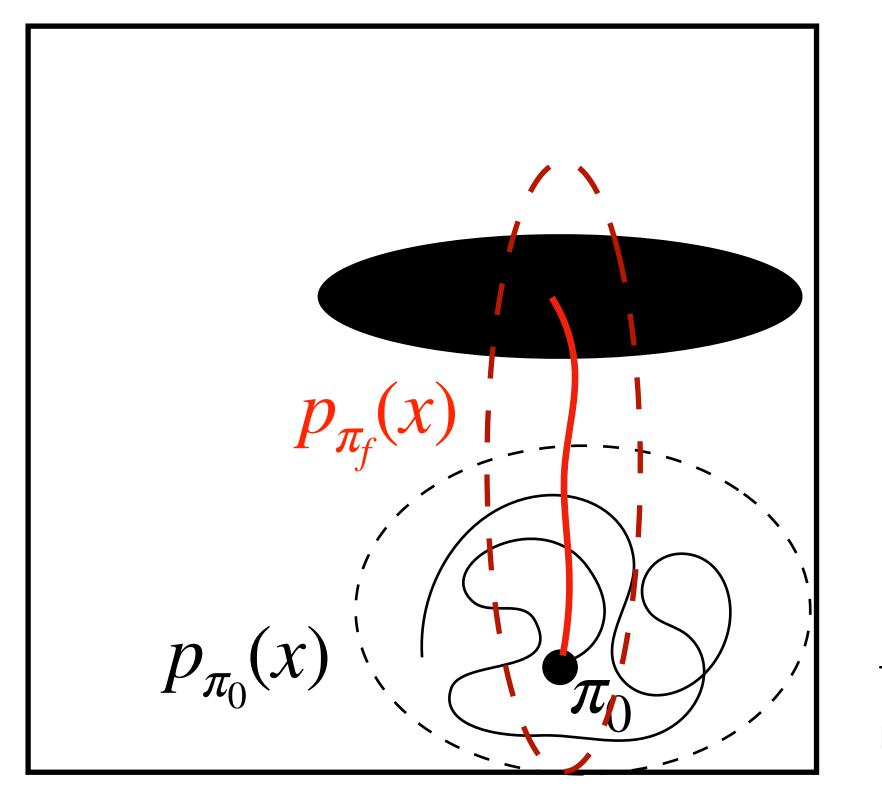
NO

and can be misleading

• Particularly effective if we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a • If the dataset is generated with sufficient excitation, it gives global knowledge (i.e., some care should be taken to

• If we're dealing with non-linear dynamics (and high-capacity models! e.g., neural networks) extrapolation is difficult

Motivating example



- •
- •

ullet

The more (i) the dynamics are complex, (ii) we use high-capacity models, the easier it is incur in distribution mismatch

The goal is to go as further north as possible The base policy defines state distribution (under π_0) When planning under the model we observe a different state distribution, i.e., $p_{\pi_f}(x)$

A simple improvement

- We can leverage ideas from adaptive and receding-horizon control:
- 1. Run base policy $\pi_0(u_t | x_t)$ in the environment (e.g., random policy, exploration policy) and collect dataset of transitions $\mathcal{D} = \{(x_t, u_t, x_{t+1})_i\}$
- 2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

$$\theta^* = \arg\min_{\theta} \sum_{i} \left\| f_{\theta} \left(x_t, u_t \right) - x_{t+1} \right\|$$

- Use the learned model to plan a sequence of actions З.
- 4. Execute only the first action and measure the new state x_{t+1} (i.e., MPC)
- 5. Add the observed transition (x_t, u_t, x_{t+1}) to the dataset \mathscr{D} and update model (i.e., gradually closing the gap between $p_{\pi_0}(x) \text{ and } p_{\pi_f}(x)$

Outline

Uncertainty quantification in model-based RL

- Gaussian Processes
- Bootstrap Ensembles

The main challenge in MBRL

- Ideally, we'd want our model to:
 - Have high-capacity to represent complex dynamics in the high-data regime
 - Not overfit to observed data in the low-data regime
- For example, consider the case where we fit our model to observed data and use it to plan, according to the previous scheme
- Run base policy $\pi_0(u_t | x_t)$ in the environment (e.g., random policy, exploration policy) and collect dataset of transitions $\mathcal{D} = \{(x_t, u_t, x_{t+1})_i\}$
- Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood) 2.

$$\theta^* = \arg\min_{\theta} \sum_{i} \left\| f_{\theta}(x_t, u_t) - x_{t+1} \right\|$$

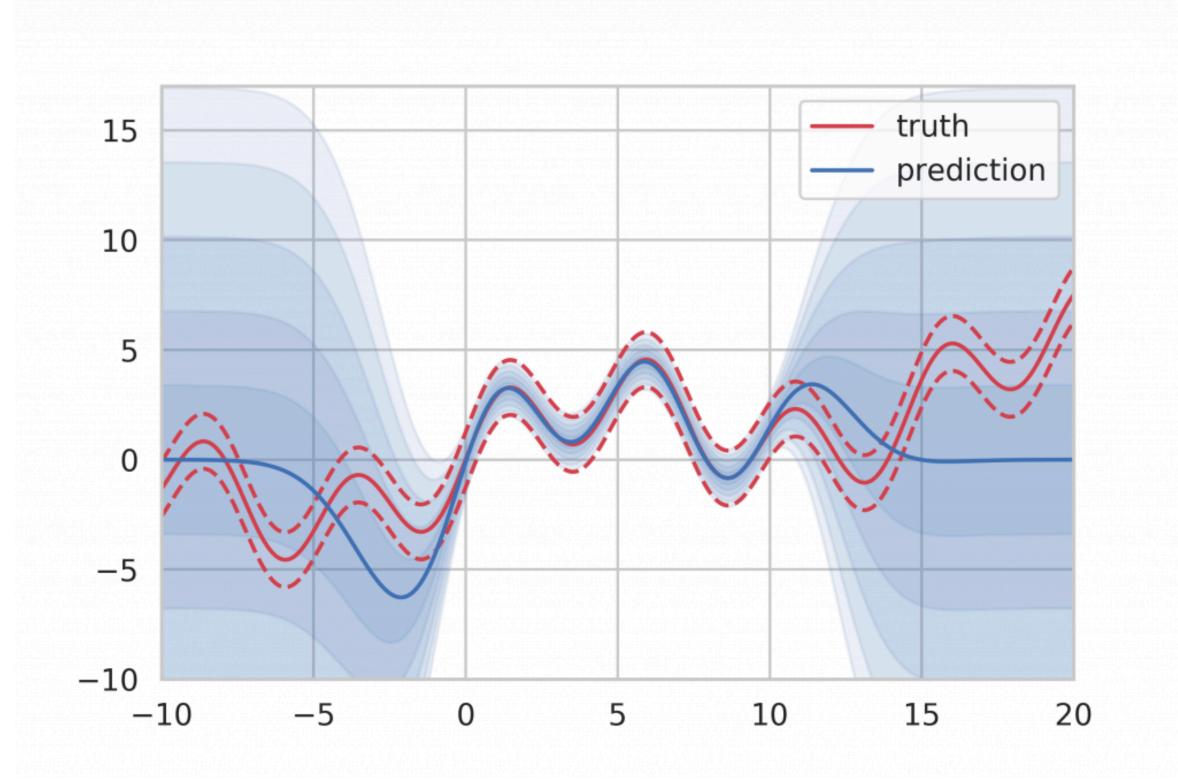
- Use the learned model to plan a sequence of actions З.
- Execute only the first action and measure the new state x_{t+1} (i.e., MPC) 4.
- Add the observed transition (x_t, u_t, x_{t+1}) to the dataset \mathcal{D} and update model (i.e., gradually closing the gap 5. between $p_{\pi_0}(x)$ and $p_{\pi_f}(x)$)

Problem: we'll likely *erroneously* exploit our model where it is less knowledgeable (Possible) Solution: consider how "certain" we our about the prediction

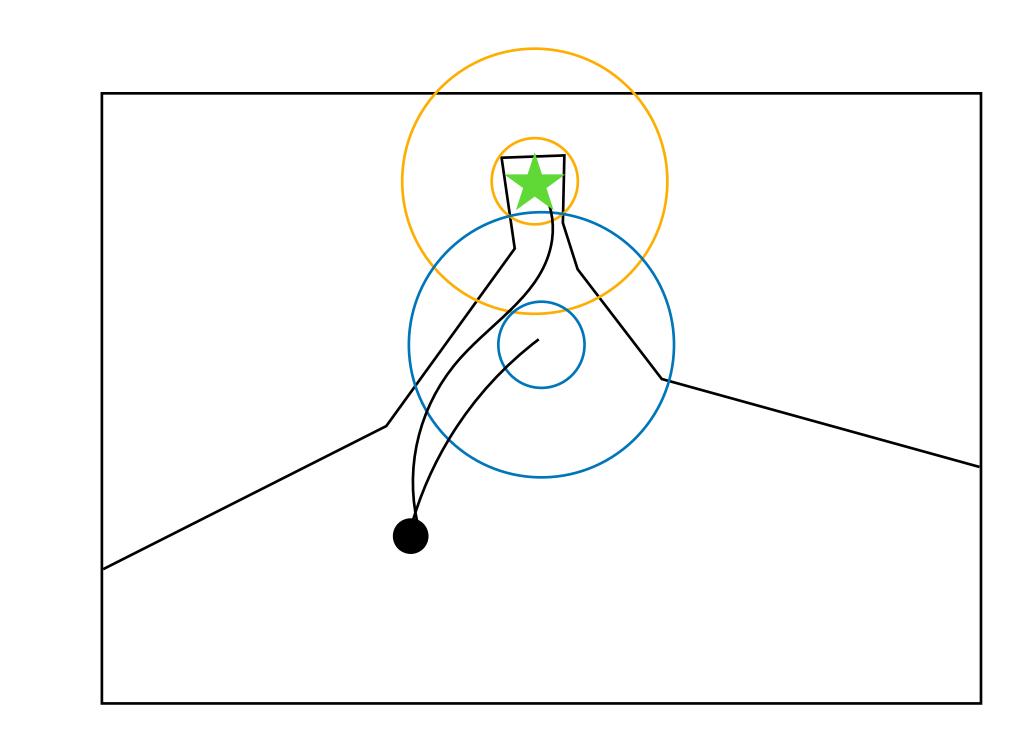
 $R(\tau)$ $\boldsymbol{\tau}$ L

The role of uncertainty estimation

- Specifically, by uncertainty on our predictions, we mean an expression of a distribution over possible outcomes
- This allows us to reason in terms of expectations under our model



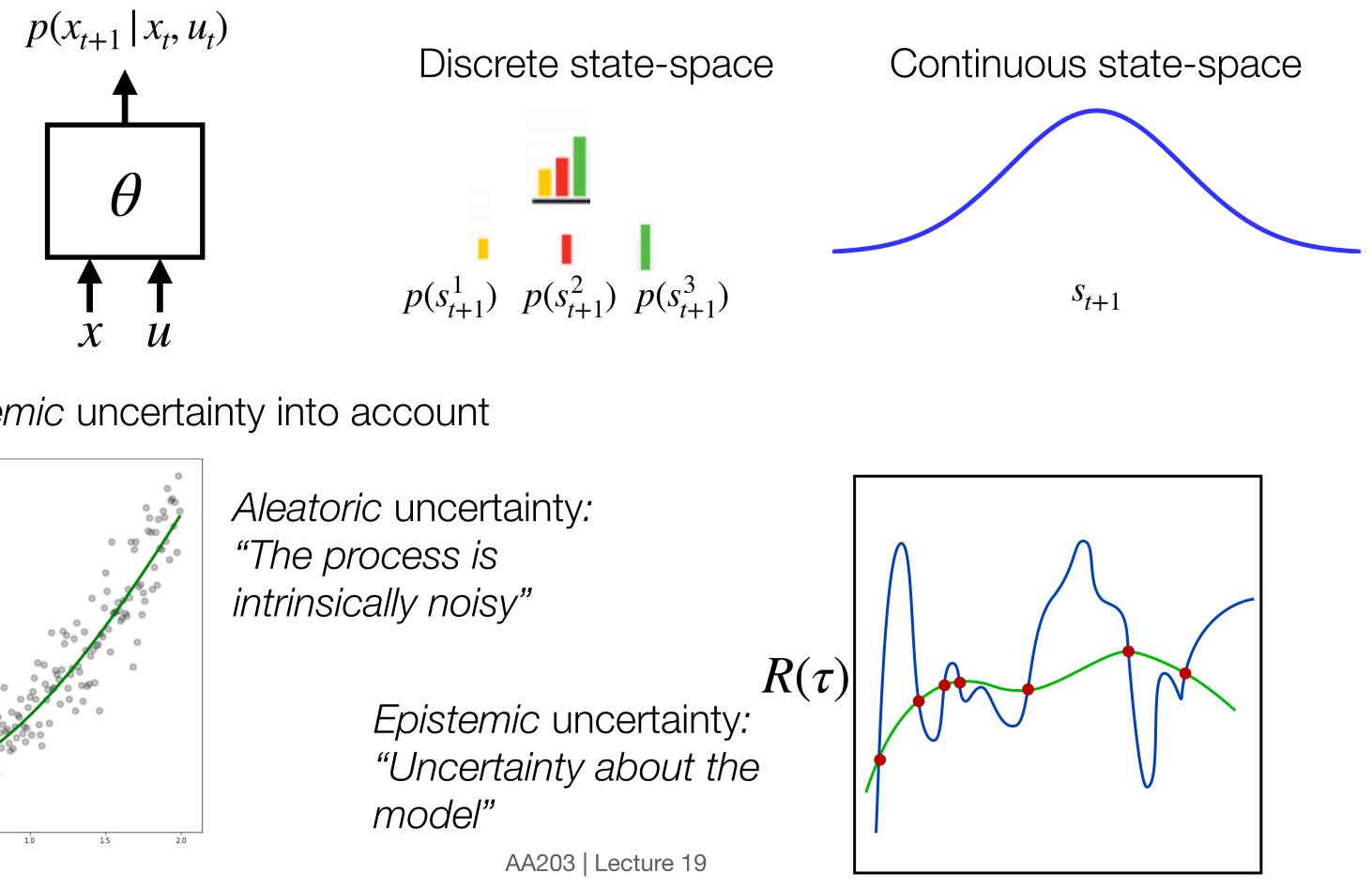
n expression of *a distribution over possible outcomes* ur model



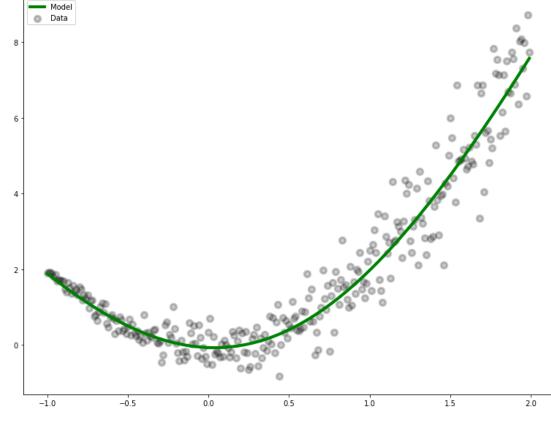
Expected reward under high-variance prediction is low

How can we model uncertainty?

- Idea 1: use output entropy
- Suppose we estimated a model, why not use its entropy?



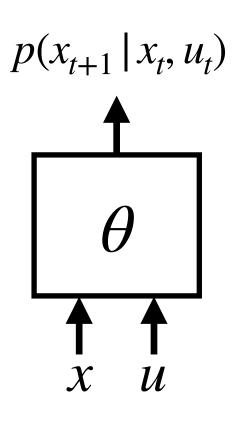
Doing so will not take *epistemic* uncertainty into account \bullet



6/4/2025

How can we model uncertainty?

• Idea 2: estimate model uncertainty



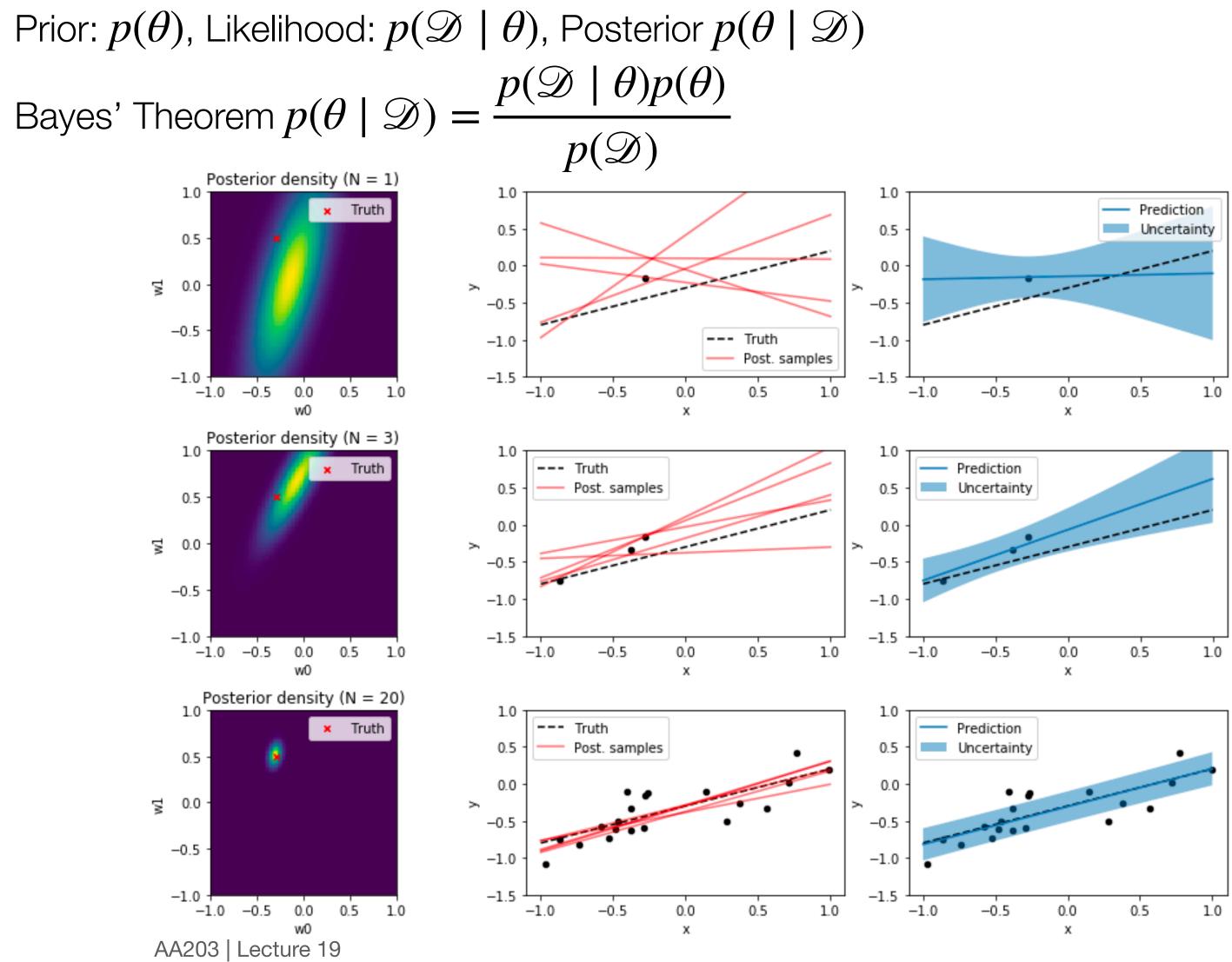
• Typically, given a dataset \mathcal{D} , we estimate: $\arg\max\log p(\mathcal{D} \mid \theta)$

• To express model uncertainty means estimating:

$$p(\theta \mid \mathscr{D})$$

and predict according to the predictive posterior $p\left(x_{t+1} \mid x_t, u_t, \theta\right) p(\theta \mid \mathcal{D}) d\theta$ distribution

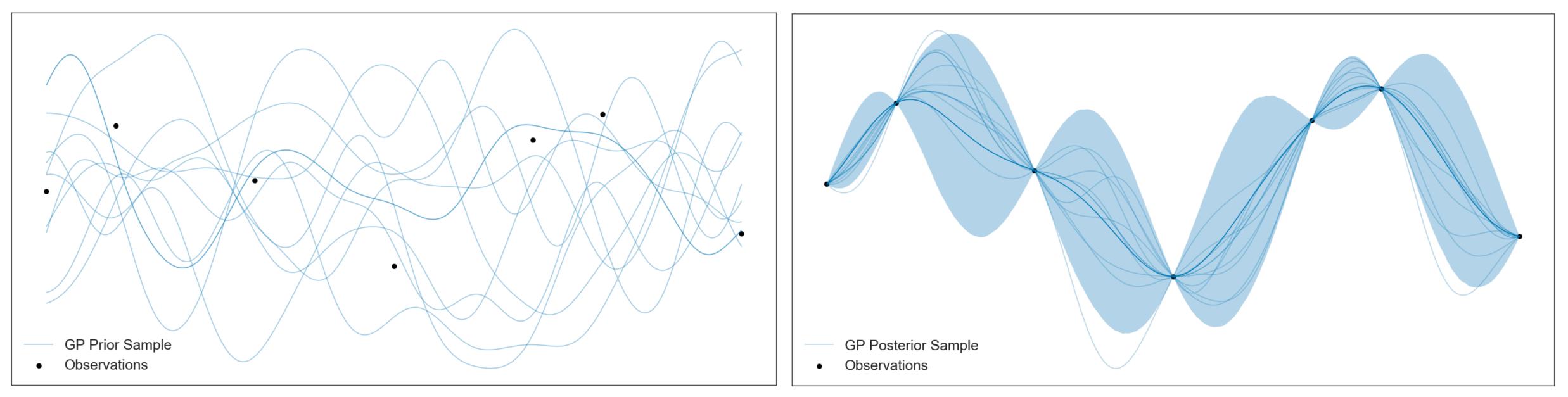
6/4/2025



(1) Gaussian Processes

• Represent "distribution over functions"

Samples from **prior** distribution



- Strengths
 - Data efficient
 - Exact posterior

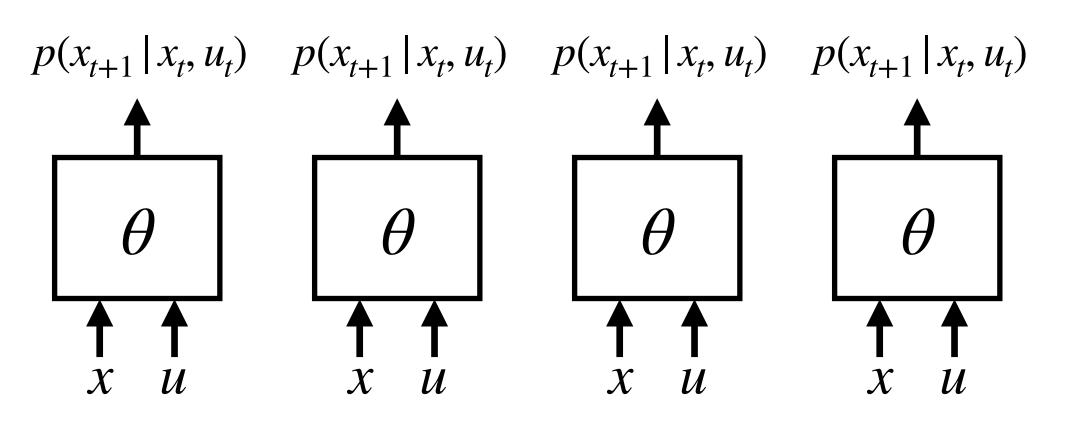
6/4/2025

Bayesian inference

- Weaknesses \bullet
 - High computational complexity
 - Cannot learn expressive features

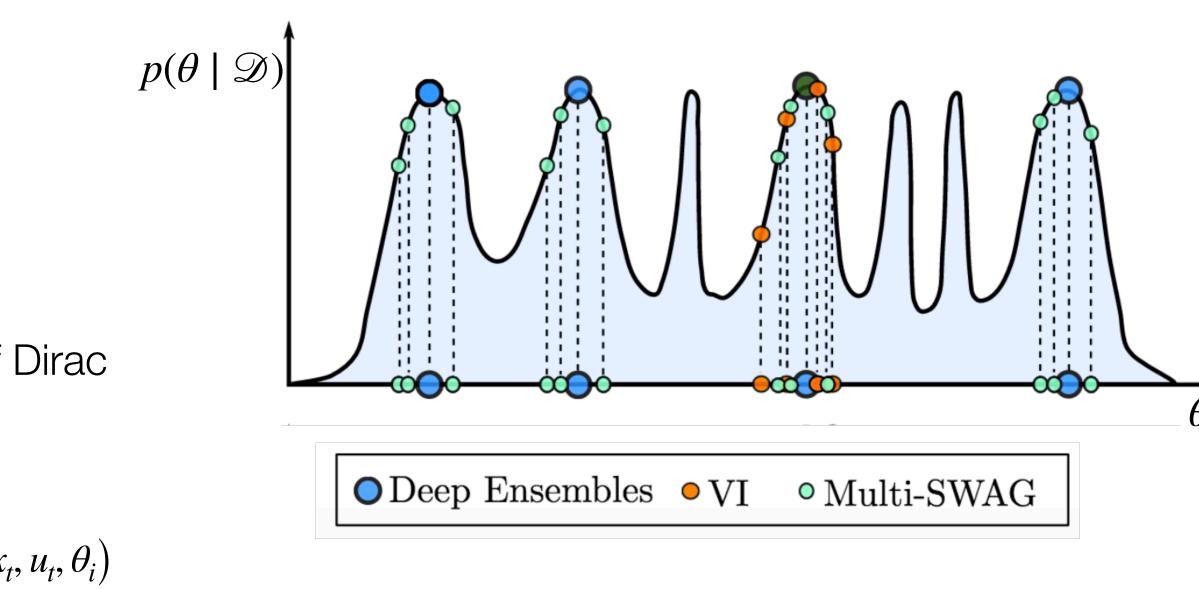
(2) Bootstrap ensembles

- High level idea: "train multiple models and see if they agree" ullet
 - Different models will likely agree in regions where we have data and disagree where we do not ullet



- Formally, we approximate the posterior with a mixture of Dirac • $p(\theta \mid \mathscr{D}) \approx \frac{1}{N} \sum_{i} \delta(\theta_{i})$ $\int p(x_{t+1} \mid x_{t}, u_{t}, \theta) p(\theta \mid \mathscr{D}) d\theta \approx \frac{1}{N} \sum p(x_{t+1} \mid x_{t}, u_{t}, \theta_{i})$ distributions: T A
- Usually, no need for resampling or independent datasets: SGD and random initialization make the models ulletsufficiently independent

6/4/2025



Outline

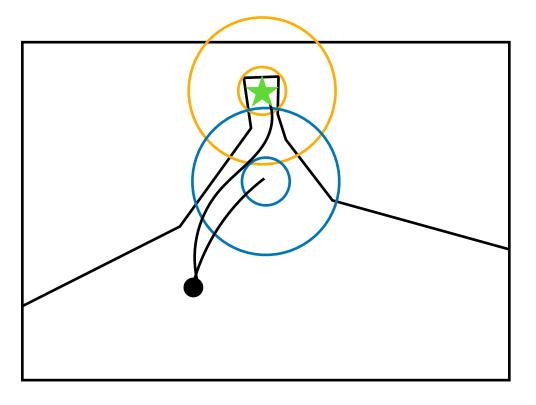
Examples & Applications (e.g., PETS)

Planning with uncertainty

- How can we use this additional knowledge in planning?
- Given a candidate action sequence u_1, \ldots, u_T :
 - 1. Sample $\theta_i \sim p(\theta | \mathcal{D})$ (in the case of ensembles, this is equivalent to choosing one among the models)
 - 2. Propagate forward the learned dynamics according to $x_{t+1} \sim p_{\theta_i}(x_{t+1} | x_t, u_t)$, for all t
 - 3. Compute (predicted) rewards $\sum r(x_t, u_t)$
 - 4. Repeat steps 1-3 and compute the average reward $J(u_1, ..., u_T) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{H} r(x_{t,i}, u_t)$, where x_{t+1}
- Caveat: this is only a choice, one could think of other ways to approximate the posterior predictive distribution.
 - The general idea is that, when planning, we want to evaluate the expected reward under our model

is is equivalent to choosing one among the models) to $x_{t+1} \sim p_{\theta_i}(x_{t+1} | x_t, u_t)$, for all t

$$_{1,i} \sim p_{\theta_i} \left(x_{t+1,i} \,|\, x_{t,i}, u_t \right)$$



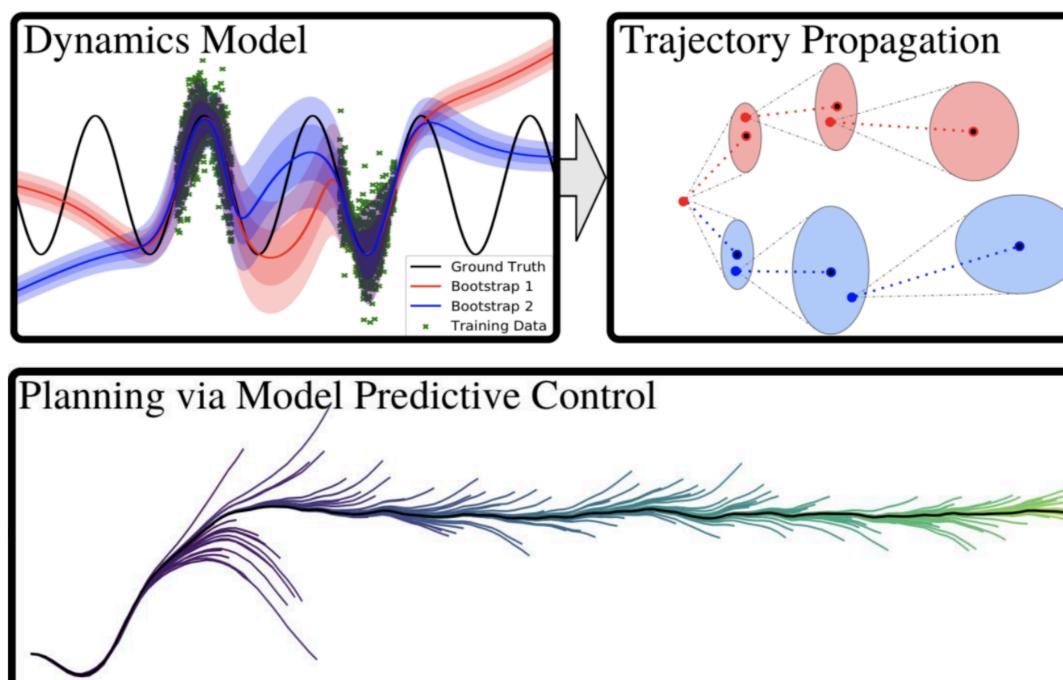
vs to approximate the posterior predictive distribution.

Case study: PETS

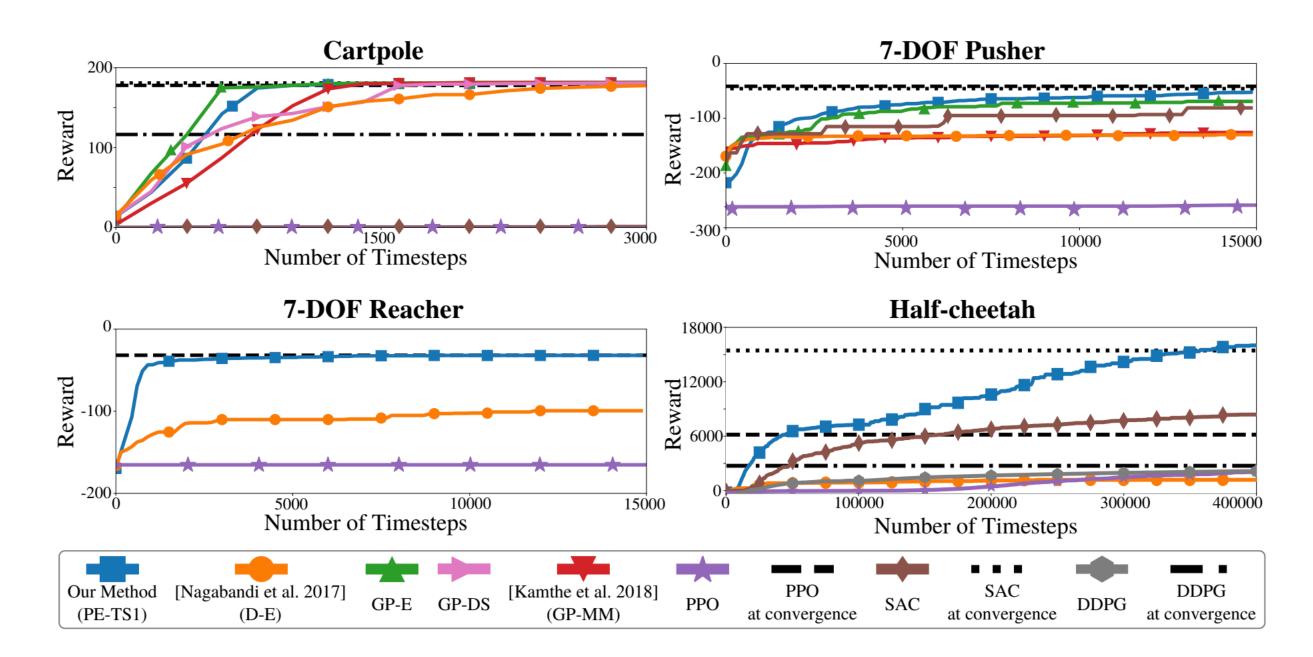
- Probabilistic Ensembles with Trajectory Sampling
- Key idea:
 - **Model:** Use ensemble of NNs to approximate posterior over model
 - **Propagation:** sample different models and use them to generate predictions of different "futures"
 - **Planning:** apply MPC (compute action sequence via sampling, i.e., cross-entropy method (CEM))

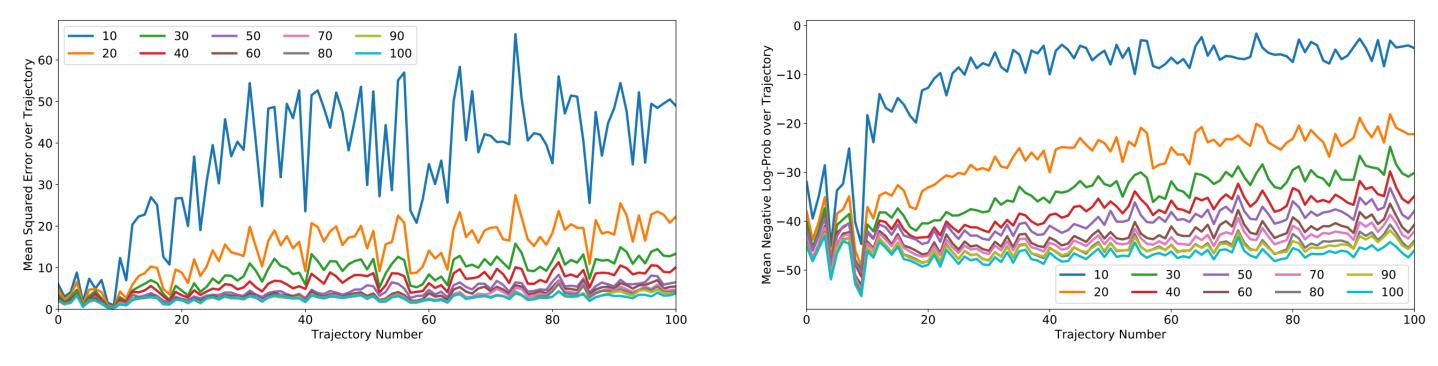
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

Sergey Levine **Kurtland Chua Roberto Calandra Rowan McAllister** Berkeley Artificial Intelligence Research University of California, Berkeley {kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

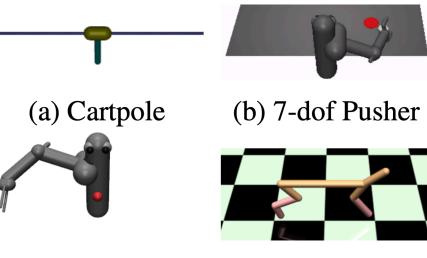


Case study: PETS

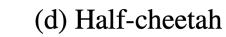




(a) Mean squared error.



(c) 7-dof Reacher



(b) Negative log likelihood.

