
AA203 Optimal and Learning-based Control
Lecture 16

Model-free RL: Policy optimization

Autonomous Systems Laboratory
Daniele Gammelli

AA203
Optimal and Learning-based Control

Model-free Reinforcement Learning: Policy Optimization

AA203 | Lecture 175/28/2025

Course overview

AA203 | Lecture 186/2/2025 3

A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL
objective

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via
 or V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)

AA203 | Lecture 186/2/2025

Outline

4

Intro to policy gradients
• REINFORCE algorithm
• Reducing variance of policy gradient

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage
• Architecture design

AA203 | Lecture 186/2/2025 5

The goal of reinforcement learning
take action

observe state
observe reward

ut

rt

xt rt+1
xt+1

• The agent interacts with the environment to generate trajectories
• We define the trajectory distribution

• We can express the RL objective as an expectation under the trajectory distribution

τ = (x0, u0, x1, u1, …xT)

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

π(ut |xt)p(xt+1 |xt, ut)

π* = arg max
π

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)

AA203 | Lecture 186/2/2025 6

Policy Optimization
• In policy optimization, we care about learning an (explicit) parametric policy , with parameters
• In light of this, we can re-write the Eqs from the previous slide w.r.t. :

To simplify the notation, we’ll ignore discounting for now and consider

πθ θ
θ

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

πθ(ut |xt)p(xt+1 |xt, ut)

θ* = arg max
θ

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)

J(θ)

(γ = 1)

θ* = arg max
θ

𝔼τ∼p(τ) ∑
t≥0

R (xt, ut)

J(θ)

AA203 | Lecture 186/2/2025 7

Evaluating the objective
• Opposed to value-based methods, policy optimization attempts to learn the policy directly (i.e., optimize w.r.t.)

How can we evaluate the expectation in the objective? As usual in RL, through samples

J(θ) θ

J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut)

J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut) ≈
1
N ∑

i
∑

t

R(xi,t, ui,t)

One of the most direct ways to optimize this objective is to:

(1) estimate its gradient
(2) cast the learning process as approximate gradient ascent on

∇θJ(θ)
J(θ) θ ← θ + α∇θJ(θ)

…

τ = (x0, u0, x1, u1, …xT)

AA203 | Lecture 186/2/2025 8

Direct policy gradient
• In order to solve the problem through gradient-based optimization we need to compute

• Let us define the compact notation

• By definition of expectation

• We can then write the gradient

∇θJ(θ)

r(τ) =
T

∑
t=1

R(xt, ut)

J(θ) = 𝔼τ∼p(τ) [r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ(θ) = ∫ ∇θ pθ(τ)r(τ)dτ

∇θJ(θ) = ∫ ∇θ pθ(τ)r(τ)dτ = ∫ pθ(τ)∇θlog pθ(τ)r(τ)dτ = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)]

Problem: gradient depends on unknown
dynamics and initial state distribution
through pθ(τ)

Useful identity:
pθ(τ)∇θlog pθ(τ) = pθ(τ)

∇θ pθ(τ)
pθ(τ)

= ∇θ pθ(τ)

On the right track since we can evaluate
expectations through samples… but we still
have in the equation∇θlog pθ(τ)

AA203 | Lecture 186/2/2025 9

Direct policy gradient

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)] = 𝔼τ∼pθ(τ) ∇θ[log p(x0) +
T

∑
t=1

log πθ(ut |xt) + log p(xt+1 |xt, ut)] r(τ)

∇θJ(θ) = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut))

• When taking the gradient w.r.t. , do not depend on
• While we can evaluate the log probability under our parametric policy
• This enable us to re-write the gradient as:

θ log p(x0), log p(xt+1 |xt, ut) θ
πθ

∇θJ(θ)

Everything inside this
expectation is known

Let us recall the trajectory distribution

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

π(ut |xt)p(xt+1 |xt, ut)

log p(τ) = log p(x0) +
T

∑
t=1

log πθ(ut |xt) + log p(xt+1 |xt, ut)

AA203 | Lecture 186/2/2025 10

Direct policy gradient
∇θJ(θ) = 𝔼τ∼pθ(τ) (

T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut)) Everything inside this
expectation is known

• Recall how we use samples to evaluate the objective: J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut) ≈
1
N ∑

i
∑

t

R(xi,t, ui,t)

• We can use the same idea to evaluate the gradient:

∇θJ(θ) = 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut))] ≈
1
N

N

∑
i=1 [(

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))]

AA203 | Lecture 186/2/2025 11

REINFORCE algorithm
The procedure described so far gives us the basic policy gradient algorithms, a.k.a. REINFORCE:

1. Sample trajectories from , i.e. run the policy in the environment

2. Evaluate the policy gradient

3. Take a gradient step to update the policy

{τi}N
i=1 πθ(ut |xt)

∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))
θ ← θ + α∇θJ(θ)

Generate samples

Fit a model / estimate
return

Improve the policy

{τi}N
i=1

Estimate the return (via MC)
T

∑
t=1

R (xi,t, ui,t)

θ ← θ + α∇θJ(θ)

Run the policy and observe

AA203 | Lecture 186/2/2025 12

Intuition: “what is PG doing?”
Consider the expression we derived for the policy gradient ∇θJ(θ) ≈

1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

Acceleration

Discrete action space Continuous action space

Let’s compare it with the expression of the gradient when performing maximum likelihood (e.g., supervised learning):

∇θJMLE(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t))
xt ut

The policy gradient is a weighted version of the MLE gradient

AA203 | Lecture 186/2/2025 13

Intuition: “what is PG doing?”

Policy gradient: ∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

…

“Change parameters s.t. trajectories with
higher reward have higher probability”

θ

Maximum Likelihood: ∇θJMLE(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t))

PG formalizes the idea of learning by “trial and error”

Taking a step in the direction the policy gradient essentially means:

AA203 | Lecture 186/2/2025

Outline

14

Intro to policy gradients
• REINFORCE algorithm
• Reducing variance of policy gradient

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage
• Architecture design

AA203 | Lecture 186/2/2025 15

Policy gradient: ∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))
Let’s consider the following example:

T

∑
t=1

R (xi,t, ui,t)

τ
• Depending on the sample, the policy gradient can vary wildly: PG estimator has high variance
• This negatively affects learning: worse performance, slower convergence

A lot of research in the domain of Policy Optimization revolves around finding ways to lower the variance of the policy gradient

Problem: high variance of the PG

AA203 | Lecture 186/2/2025 16

Reducing the variance

A first simple approach to reduce the variance entails using causality: “policy at time cannot affect reward at time ”t′ t < t′

∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (
T

∑
t′ =t

R (xi,t′ , ui,t′))

Consider this equivalent expression:

AA203 | Lecture 186/2/2025 17

Baseline
A second (and extremely important) approach to reduce variance of PG estimators relates with the concept of baseline

Let’s reconsider our intuition on PG, i.e., “making good behavior more likely”
T

∑
t=1

R (xi,t, ui,t)

τ

T

∑
t=1

R (xi,t, ui,t)

τ

However, PG will only do this if the returns are centered (e.g., consider the counter-example on the right)

Intuitively, we want to “center” our returns, such that:
• The probability of behavior that is better than average gets increased
• The probability of behavior that is worse than average gets decreased

∇θJ(θ) ≈
1
N

N

∑
i=1

∇θlog πθ (τ) [r (τ) − b]We are going to subtract a baseline from the expression of the PGb

AA203 | Lecture 186/2/2025 18

A closer look at the baseline

Claim: adding the baseline does not change the value of the expected gradient

𝔼 [∇θlog pθ (τ) b] = ∫ pθ(τ)∇θlog pθ(τ)b dτ = ∫ ∇θ pθ(τ)b dτ = b∇θ ∫ pθ(τ) dτ = b∇θ1 = 0

• To prove that, let’s consider the following expectation:

which makes our estimate of the gradient (with baseline) unbiased in expectation

Useful identity:
pθ(τ)∇θlog pθ(τ) = pθ(τ)

∇θ pθ(τ)
pθ(τ)

= ∇θ pθ(τ)

• An extremely effective choice of the baseline is the average return, b =
1
N

N

∑
i=1

r(τi)

(We’ll see how this motivates many popular RL algorithms…)

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)] → ∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)(r(τ) − b)]

AA203 | Lecture 186/2/2025 19

Example

AA203 | Lecture 186/2/2025 20

Properties of policy gradient
At a high-level, we’ve been defining a scheme where:

• Given the RL objective

• We maximize the objective w.r.t. by:
• Computing the gradient

• Taking a gradient step to update the policy

θ

θ ← θ + α∇θJ(θ)

J(θ) = 𝔼τ∼p(τ) [r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)]

Question:
Is this on- or off-policy? And why?

AA203 | Lecture 186/2/2025

Outline

21

Intro to policy gradients
• REINFORCE algorithm
• Reducing variance of policy gradient

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage
• Architecture design

AA203 | Lecture 186/2/2025 22

From PG to Actor-Critic methods

Once again, let’s consider the policy gradient ∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (
T

∑
t′ =t

R (xi,t′
, ui,t′))

“reward-to-go”

p(xt+1 |xt, ut)

𝔼τ∼p(τ) [
T

∑
t′ =t

R (xi,t′ , ui,t′)]The idea of actor-critic methods is to define:
• An “actor", i.e., a policy
• A “critic” to better estimate the “reward-to-go”,

e.g., estimate Q-values through function approximation

πθ(ut |xt)

Qϕ(xt, ut)
Qπ(xt, ut)

By using this better estimate of the reward-to-go we can get a lower variance policy gradient:

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Qϕ(xt, ut)

This one-sample estimate of the reward-to-go contributes to the high variance of the PG

=

AA203 | Lecture 186/2/2025

What about the baseline?
Can we use a baseline when using the approximate reward-to-go and reduce the variance even further?

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (Qϕ(xi,t, ui,t) − b)

• An effective choice for is a state-dependent baseline
• We can thus rewrite:

b b(xt) = 𝔼ut∼π(ut|xt) [Q(xt, ut)] = V(xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (Qϕ(xi,t, ui,t) − V(xi,t))
“How much is
better than the
average action
in ”

ut

xt

Following this gradient:
• increases the probability of actions that have

returns better than average
• decreases the probability of actions that have

returns worse than average

• The function is usually referred to as advantage functionA(xt, ut) = Qϕ(xt, ut) − V(xt)

Set target
yt ← rt + γ max

u
Qϕ(xt+1, u)

Update to minimize ϕ
min

ϕ
𝔼π [yt − Qϕ(xt, ut)]Generate

samples

Fit a model /
estimate return

Improve the
policy

Run policy
and observe
trajectories

Generate
samples

Fit a model /
estimate return

Improve the
policy

Estimate the return (via MC)
T

∑
t=1

R (xi,t, ui,t)

θ ← θ + α∇θJ(θ)

∇θ J(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

Generate samples

Fit a model /
estimate return

Improve the policy

Run policy and
observe trajectories

Run policy
and observe
trajectories

Fitted Q-learning: REINFORCE:

Actor-Critic:

θ ← θ + α∇θJ(θ)

Fit or Vπ, Qπ Aπ

 set π (xt) = arg max
u

Qθ (xt, ut)

AA203 | Lecture 186/2/2025 25

Generate samples

Fit a model /
estimate return

Improve the policy

Run policy and
observe trajectories

θ ← θ + α∇θJ(θ)

Fit or Vπ, Qπ Aπ

Qπ(xt, ut) = 𝔼τ∼p(τ) [
T

∑
t′ =t

R (xi,t′
, ui,t′)] = r (xt, ut) + 𝔼xt+1∼p(xt+1 ∣ xt, ut) [Vπ (xt+1)] ≈ r (xt, ut) + Vπ (xt+1)

Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) ≈ r (xt, ut) + Vπ (xt+1)−Vπ (xt)

This enables us to “only” fit Vπ

What quantity should we estimate? What are the trade-offs between estimating or ? No wrong/right,
answer, it depends. For now, let’s consider the complexity of the estimation problem (i.e., fitting is easier: only as input)

Vπ(xt), Qπ(xt, ut) Aπ
Vπ xt

Actor-Critic:

AA203 | Lecture 186/2/2025 26

Generate samples

Fit a model /
estimate return

Improve the policy

Run policy and
observe trajectories

Advantage Actor-Critic (A2C):

θ ← θ + α∇θJ(θ)

Fit

Compute

Vπ

This enables us to “only” fit Vπ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

What quantity should we estimate? What are the trade-offs between estimating or ? No wrong/right,
answer, it depends. For now, let’s consider the complexity of the estimation problem (i.e., fitting is easier: only as input)

Vπ(xt), Qπ(xt, ut) Aπ
Vπ xt

Qπ(xt, ut) = 𝔼τ∼p(τ) [
T

∑
t′ =t

R (xi,t′
, ui,t′)] = r (xt, ut) + 𝔼xt+1∼p(xt+1 ∣ xt, ut) [Vπ (xt+1)] ≈ r (xt, ut) + Vπ (xt+1)

Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) ≈ r (xt, ut) + Vπ (xt+1)−Vπ (xt)

AA203 | Lecture 186/2/2025 27

Generate samples

Fit a model /
estimate return

Improve the policy

Run policy and
observe trajectories

θ ← θ + α∇θJ(θ)

Fit

Compute

Vπ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

When fitting , we can use different targets to define the supervised learning labelsVπ

Question:
How to fit with MC target? 1. Collect dataset 𝒟 = {(xt, Gt)}, Gt =

T

∑
t′ =t

R(xt, ut) 2. Supervised regression on 𝒟

How to fit with TD target? 1. Collect dataset 𝒟 = {(xt, rt + γ ̂Vθ(xt))} 2. Supervised regression on 𝒟

Advantage Actor-Critic (A2C):

AA203 | Lecture 186/2/2025 28

Architecture design

Generate samples

Fit a model /
estimate return

Improve the policy

Run policy and
observe trajectories

θ ← θ + α∇θJ(θ)

Fit

Compute

Vπ

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

In practice, one could opt for different designs of this same algorithms, e.g.,:

• Two network vs shared network
• Parallel processing: synchronized vs asynchronous

Vπ(x)

π(u |x)x

x

Simple, typically more stable
Does not share features

Get (xt, ut, xt+1, rt)
Update θ
Get (xt, ut, xt+1, rt)
Update θ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)

AA203 | Lecture 186/2/2025

Outline

29

Intro to policy gradients
• REINFORCE algorithm
• Reducing variance of policy gradient

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage
• Architecture design

AA203 | Lecture 186/2/2025

Reducing RL to optimization
• Much of modern ML entails reducing learning to a numerical optimization problem

• Supervised learning as training error minimization

• This is different from what we have seen so far in RL:
• Q-learning: fixed-point iteration can (in principle) include all transitions seen so far, however, it optimizes for the

wrong objective
• Policy gradient: yes, stochastic gradients of the RL objective, but no optimization problem

• We’ll discuss approaches that define an optimization problem that allows us to do a small update to policy , based on
data sampled from

→

π
π

AA203 | Lecture 186/2/2025

• We discussed how, in PO, we want to compute the following gradient

• But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy
estimate

• Equivalently differentiate

LIS(θ) = 𝔼τ∼pθ(τ) [πθ(ut |xt)
πθold

(ut |xt)
A(τ)]

• If we take the derivative of and evaluate at , we get the same gradient LIS θ = θold

∇θlog f(θ)
θold

=
∇θ f(θ)

θold
f (θold)

= ∇θ(f(θ)
f (θold))

θold

∇θJ(θ) = 𝔼 [∇θlog πθ(ut ∣ xt) A(xt, ut)]

LPG(θ) = 𝔼 [log πθ(ut ∣ xt) A(xt, ut)]

Defining the objective

• To implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following
loss function:

AA203 | Lecture 186/2/2025

Trust Region Policy Optimization (TRPO)

maximize
θ

�̂�t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At]

 subject to �̂�t [KL[πθold (⋅ ∣ xt), πθ (⋅ ∣ xt)] ≤ δ

• Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

• Hard to use with architectures with multiple outputs, e.g., policy and value function
• Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs
• Conjugate gradient makes implementation more complicated

AA203 | Lecture 186/2/2025

Proximal Policy Optimization (PPO)
• Can we solve the problem defined in TRPO without second-order optimization?

maximize
θ

�̂�t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At] + β (�̂�t [KL[πθold (⋅ ∣ xt), πθ (⋅ ∣ xt)] − δ)

PPO v1 - Surrogate loss with Lagrange multipliers

• Run SGD on the above objective
• Do dual descent update for β

maximize
θ

�̂�t [min(r(θ)A(τ), clip(r(θ),1 − ϵ,1 + ϵ)A(τ)]
• Heuristically replicates constraint in the objective
• One of the (if not the) most popular PO algorithm

PPO v2 - Clipped surrogate loss r(θ) =
πθ (ut ∣ xt)

πθold (ut ∣ xt)
, r(θold) = 1

AA203 | Lecture 186/2/2025 34

Examples: Maze Navigation
• Mnih et al. 2016 “Asynchronous

Methods for Deep Reinforcement
Learning"

• Advantage Actor-Critic

• Asynchronous parallel workers

• Policy and Value networks: CNNs &
RNNs

https://www.youtube.com/watch?v=nMR5mjCFZCw
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783

AA203 | Lecture 186/2/2025 35

Examples: Alignment of ChatGPT

AA203 | Lecture 186/2/2025 36

Examples: Robot manipulation
• PPO

• Trained entirely in Sim

https://www.youtube.com/watch?v=jm-ihc7CASY

AA203 | Lecture 186/2/2025 37

Next time

• Model-based RL

