AA203
Optimal and Learning-based Control

Model-free Reinforcement Learning: Policy Optimization

vy
v

..\‘ b
- \‘ J -
N ,‘ ‘.. '-;;
KL 2
o - -]

\&&%/ University

.......

Autonomous Systems Lab

Imitation
Learning

Course overview

Model-free RL

Control I.\daptlve
optimal control
[| l Model-based RL
Feedback control Adaptive control
.| Optimaland
learning control
% I %
| !
Open-loop [-------mmmmmmmmmmee- MPLC e Closed-loop

|

Indirect
methods

Direct
methods

5/28/2025

AA203 | Lecture 17

|

DP

HJB / HJI

A taxonomy of RL

RL Algorithms j

do not use dynamics 7(x,, | x,, u,) NVodel-free j

|

~
[Policy optimization [Value-based j
J
directly maximize the RL policy implicitly defined via
objective) V(x) or O(x, u)
H
set 7 <Xt) = arg max QJ (Xt, ut)

Ezep@ 2 r'r (%,) "

| =0 _

6/2/2025 AA203 | Lecture 18 3

Outline

Intro to policy gradients
* REINFORCE algorithm

* Reducing variance of policy gradient

Actor-Critic methods

« Advantage

* Architecture design

Deep RL Algorithms & Applications

6/2/2025 AA203 | Lecture 18 4

Ihe goal of reinforcement learning

AGENT ENVIRONMENT
take action i,

>

1
1
- v

observe state X, : Xit1
observe reward 7, Fie1

» The agent interacts with the environment to generate trajectories T = (X, Uy, Xy, Uy, - - -X7)
* \We define the trajectory distribution

T
(s thys -, x7) = p(0) = p(xo) | [e, | x)pCxyy 13, 10)
=1

* \We can express the RL objective as an expectation under the trajectory distribution

m* =argmax E__ Z 'R (X, u,)

4 >0

6/2/2025 AA203 | Lecture 18 5

Policy Optimization

» In policy optimization, we care about learning an (explicit) parametric policy 7y, with parameters v

» |n light of this, we can re-write the Egs from the previous slide w.r.t. 0

(X, Uy -, X7) = plT) = <x0>1'[ng<ut EAVZCASIEATA

- J—
0* = argmax E,_,, Z 'R xt, ut
0 >0

J(O)

To simplify the notation, we’ll ignore discounting for now (y = 1) and consider

0* = argmax E,_,, Z R (xt, ut)
0 >0

J(O)

6/2/2025 AA203 | Lecture 18 6

Evaluating the objective

» Opposed to value-based methods, policy optimization attempts to learn the policy directly (i.e., optimize J(&) w.r.t. O)

JO) = Eppiey | 2R (% 1)

>0
One of the most direct ways to optimize this objective is to: log () i P 4
(1) estimate its gradient V 4J(6) Vel
(2) cast the learning process as approximate gradient ascent on J(6) 0 — 0+ aV,yJ(0) -

How can we evaluate the expectation in the objective”? As usual in RL, through samples

1=0

J(0) =E. Z R ('xt’ ut) ~ %Z Z R(x; ;» u; ;)
t

>0 l

. X7)

6/2/2025 AA203 | Lecture 18 7

Direct policy gradient

» In order to solve the problem through gradient-based optimization we need to compute V ,J(0)

T
Let us define the compact notation r(r) = 2 R(x,, u,)

. =1 Problem: gradient depends on unknown
. By definition of expectation J(6) = = rmop(7) [F(T)] — [pH(T)I’(T)dT dynamics and inftial state distribution
through py(7)
. We can then write the gradient V ,J(0) = JVQ po(0)r(t)dr Useful identity:
Vg Py(7)

Py(7) Vglog py(7) = py(7) = Vypy(7)

Po(7)

V,J(0) = J' Vopy(o)r(t)dr = J po(1) Vylog py(r)r(r)dr = = mp(7) [V(glog pe(T)I”(T)]

On the right track since we can evaluate
expectations through samples... but we still

have Vglog py(t) in the equation

6/2/2025 AA203 | Lecture 18

Let us recall the trajectory distribution
T

Direct policy gradient

(s g - x7) = p() = p(xg) | | =, | x)p iy |50 1)
=1

log p(7) = log p(xg) +) log my(u,| x,) + log p(x 1 | X, 1)
=1

(xo) + Z log my(u, | x,) + 10%9(}/%1 | X, ut)] (1)

=1

VoJ(O0) =E. ., | Vylog py(0)r(n)| = = p(o) | Vo [10

» When taking the gradient w.r.t. 8, log p(x,), log p(x,. { | x,, u,) do not depend on &

« While we can evaluate the log probability under our parametric policy

» This enable us to re-write the gradient V 4J(0) as:

o Everything inside this
VoS (0) = T~py(7) (21 Velog & ut | xl‘) (Z R At ut) expectation is known
=

6/2/2025 AA203 | Lecture 18 9

Direct policy gradient

— Everything inside this
Ve] (0) T~Py(7) [(Z Velog & uf | &) (2 R At u")} expectation is known

=1

* Recall how we use samples to evaluate the objective: J(0) = E,_,, [Z R (xt U, } N — Z Z R(x; ,, u; ,)

>0

* \We can use the same idea to evaluate the gradient:

IO = vy [(S Vg (1| xt>> (iR -)] Ly K S V,log (1, | >) (iR o >)]

6/2/2025 AA203 | Lecture 18 10

REINFORCE algorithm

The procedure described so far gives us the basic policy gradient algorithms, a.k.a. REINFORCE:

1. Sample trajectories {Ti}é\; from my(u, | x,), i.e. run the policy in the environment

1N T T
2. Evaluate the policy gradient V,J(0) ~ — Vylogrm, (u;, | x: R (x; . u.
0 N 2 Z plOg Ty (it z,t) Z (1t l,t)
i=1 =1 =1
3. Take a gradient step to update the policy 0 < 0 + a 'V ,J(0)
4 N Estimate the return (via MC)
Fit a model / estimate -
t
. return) Z R (xi,ﬂ uﬂ)
=1
, a)
Run the policy and observe
N Generate samples
r : N

Improve the policy 0 — 0+ aV,yJ0)
_ ,

6/2/2025 AA203 | Lecture 18 11

Intuition: “what is PG doing”?”

. 1 &
Consider the expression we derived for the policy gradient Vv ,J(0) ~ ~ Z} (; Vg(og n@ u;, | x; t]) (Z R xl o Ui)

F Discrete action space Continuous action space \

Ly all
1|
Actions * 4. * .} |
K Acceleration J

Let’s compare it with the expression of the gradient when performing maximum likelihood (e.g., supervised learning):

X, U
Demonstrations State/Action pairs - (. >

|
Volyre0) = — 2 2 Vylog 7 (ui,t | xi,t)
=1

Ni=1 i .

The policy gradient is a weighted version of the MLE gradient

6/2/2 AA203 | Lecture 18 12

Intuition: “what is PG doing”?”

| | LS
Policy gradient: V,J(0) %NZ (nglogﬂe U ¢ | X,)(ZR g Ui g)

=1 =1

| - 1 N T
Maximum Likelihood: VyJy, g(0) & T 2 < ; Vglog 7 (u;, | xi,t)>

i=1

& aking a step in the direction the policy gradient essentially means:

) "Change parameters 0 s.t. trajectories with

0« 0
+ aVeJ(my higher reward have higher probability”

PG formalizes the idea of learning by “trial and error”

6/2/2025 AA203 | Lecture 18 13

Outline

Intro to policy gradients
* REINFORCE algorithm

* Reducing variance of policy gradient

6/2/2025 AA203 | Lecture 18 14

Problem: high variance of the PG

| | I <
Policy gradient: V,J(0) %NZ (Zvelog@ U, | x;, ><2R Xip U)

=1 =1

Let’s consider the following example:

T

Z KR (xi,t’ ui,t) s

=1

- -
- N
L J

4
4
4
4
X4
L4
l ~
- ~
--------- T ~§
>

* Depending on the sample, the policy gradient can vary wildly: PG estimator has high variance
* This negatively affects learning: worse performance, slower convergence

A lot of research in the domain of Policy Optimization revolves around finding ways to lower the variance of the policy gradient

6/2/2025 AA203 | Lecture 18 15

Reducing the variance

N
VHJ(Q)z%Z (nglogng U, | X,)(213 X; 1 ult>

=1 =1

A first simple approach to reduce the variance entails using causality: “policy at time t’ cannot affect reward at time t < ¢'”

Consider this equivalent expression:

1 NI I
V,J(0) ~ ~ Z Z V,log n, (ui,t | xi,t) < Z R (xi,t,, ui,ﬂ)>

6/2/2025 AA203 | Lecture 18 16

Baseline

A second (and extremely important) approach to reduce variance of PG estimators relates with the concept of baseline

Let’s reconsider our intuition on PG, i.e., “making good behavior more likely”

T

Z R (xi,tv ui,t) A Jn Z R (xi,t’ ui,t) A
L4 ‘\
4 “

=1

~§
~

However, PG will only do this if the returns are centered (e.q., consider the counter-example on the right)

Intuitively, we want to “center” our returns, such that:
* The probability of behavior that is better than average gets increased

* The probability of behavior that is worse than average gets decreased

1 N
We are going to subtract a baseline b from the expression of the PG V,J(0) ~ ~ Z Vlog (1) [r (1) — b]
=1

6/2/2025 AA203 | Lecture 18 17

A closer |ook at the baseline

Vol(0) = E,_, o | Volog pg(0)r(z)| = VeJ(0) = E,_, oy | Volog py(7)(r(z) — b))

Claim: adding the baseline does not change the value of the expected gradient

» To prove that, let's consider the following expectation: Usetul identity:

Vo Po(7)

Po(7) Vglog py(7) = py(7)
Py(7)

E | Vologpy(z) b| = Jpg(f) V,log py(7)b dr = Jv@ po(D)bdr = bV, | py(t)dr =bV,1 =0

which makes our estimate of the gradient (with baseline) unbiased in expectation
1 &

« An extremely effective choice of the baseline is the average return, b = — Z r(t;)

N =1

(We’ll see how this motivates many popular RL algorithms..)

6/2/2025 AA203 | Lecture 18

= Vpy(7)

18

Example

6/2/2025

total reward on episode

_10 -

_20 -

—30 -

_40 -

—-50 -

_60 -

-70 -

_80 -

—-——= -11.6
- Reinforce without baseline
- Reinforce with baseline

200

400 600 800 1000
episode

AA203 | Lecture 18 19

Properties of policy gradient

At a high-level, we’ve been defining a scheme where:

» Given the RL objective J(0) = E,_,,, [r(?)] = ij(T)F(T)dT

« We maximize the objective w.r.t. @ by:

» Computing the gradient V,J(0) = = omp(7) [Velog p@(r)r(’c)]
» Taking a gradient step to update the policy 0 < 0 + a V,J(0)

Question:
s this on- or off-policy”? And why"?

6/2/2025 AA203 | Lecture 18 20

Outline

Actor-Critic methods

« Advantage

* Architecture design

6/2/2025 AA203 | Lecture 18 21

From PG to Actor-Critic methods

N T

i T
Once again, let’s consider the policy gradient V,J(0) ~ — V,log | x; R :
0 N 2 Z gl0g (9 t Z zt

l:l t:l f,=t

“reward-to-go”
This one-sample estimate of the reward-to-go contributes to the high variance of the PG

m
?
=
>
| |
Noh

The idea of actor-critic methods Is to define:
« An “actor", i.e., a policy my(u, | x,)

1
« A “critic” to better estimate the “reward-to-go”, % Q. (x,, u,)
e.g., estimate Q-values through function approximation ng(xt, u,) J/

By using th|s better eshmate of the reward-to-go we can get a lower variance policy gradient:

V,J(0) ~ Z Z Volog my (u;, | x;,) Op(x,, u,)
=1 =1

6/2/2025 AA203 | Lecture 18

R (X0 ;)

22

What about the baseline”

Can we use a baseline when using the approximate reward-to-go and reduce the variance even further?

VoJ(0) = ~ Z Z V,log 7, (ui,t | xi,t) (Q(p(xi,t, U; ;) — b>

=1 r=1

» An effective choice for b is a state-dependent baseline b(x,) = £, _) [Q(xt, ut)] = V(x,)
* \We can thus rewrite:
1 NI
Vol(0) = N 2 Z Vylog m (ui,t | xi,t) (ng(xi,t’ Ui ;) — V(xi,t)>
i=1 t=1 oW MUGH 1. i Following this gradient:
Cetter than th é * increases the probability of actions that have
> returns better than average

average action

S * decreases the probability of actions that have
A

returns worse than average

. The function A(x,, u,) = Q¢(x,, u,) — V(x,) is usually referred to as advantage function

6/2/2025 AA203 | Lecture 18

Fitted Q-learning:

Run policy
and observe
trajectories

Fit a model /

estimate retum

(Generate
samples

]

A4

Improve the
policy

Actor-Critic:

Run policy and
olbserve trajectories

set n (x,) = arg max Q, (xt, ut)

Set target

Y, < 1+ ymax Qu(x,, u)
u

Update ¢ to minimize
minE, |y, ~ Q)05 1)

u

~

-

~

Generate samples

_J

REINFORCE:

.

Improve the policy

Generate
samples
Run policy
and observe
trajectories
4 | N
Fit a model /
estimate return
_ y,
\4
4 A

J

Fit a model /

estimate return

A4

Improve the
policy

]

| &
V,J(0) = NZ (Z Vglogng u;, | x;,

=1

i=1

0 — 0+ aV,J©O)

Fit V_, O or A,

0— 0+ aVyJ0)

Estimate the return (via MC)

ZR

)3

Actor-Ciritic:

4)

Fit a model / Fit Vﬂ, Qﬂ or A,,

/ estimate retum
_ .
N

Generate samples

J
\ v
(")
Improve the policy

_ J

Run policy and s

observe trajectories

_

0 — 0+ aV,yJ0)

What quantity should we estimate? What are the trade-offs between estimating V_(x,), O (x,, u,) or A_? No wrong/right,

answer, it depends. For now, let’s consider the complexity of the estimation problem (i.e., fitting V_is easier: only x, as input)

T
Qﬂ(xt’ ut) — _TNp(T) Z R (xi,t” ui,t’) =T (xz" ut) + _xt+1~p(xt+1 | x,, ut) [Vﬂ <xt+1>] ~ T (Xt’ ut) + VJZ' (xt+1>
t'=t

A(x,u)=0(x,u)—V(x)~r (xt, ut) +V_ (xt +1) -V (xt)

This enables us to “only” fit V_

6/2/2025 AA203 | Lecture 18 25

What quantity should we estimate? What are the trac
answer, it depends. For now, let’s consider the comp

Qyz'(xt9 l/tt) —

Run policy and
olbserve trajectories

Advantage Actor-Critic (A2C):

\/ﬂ

-

_

Generate samples

T
= z~p(7) 2 R (xi,t’a ui,t’) =T ('xl" ut) +
t'=t

N

(

Fit a model /
estimate retum

\

J

\ 4

_

Improve the policy

~

J

A(x,u)=0(x,u)—V(x)~r (xt, ut) +V_ (xt +1) -V (xt)

This enables us to “only” fit V_

6/2/2025

AA203 | Lecture 18

Fit V_

Compute

A (X, u) =r (xt’ ut) + V., (xt+1) -V, (xt)

5

N T
Z Vlog 7y (ui,t | xi,t) Aqb(xi,t’ U; ;)

=1 =1

0 — 0+ aV,yJ0)

e-offs between estimating V_(x,), Q(x,, u,) or A_? No wrong/right,
exity of the estimation problem (i.e., fitting V_is easier: only x, as input)

_-xt+1Np<xt+1 | x,, ut) [Vﬂ <xt+1>] ~ T (Xt’ ut) T V]Z' (xt+1>

26

Advantage Actor-Critic (A2C):

-

it a model /
estimate retumn

~

J

Fit V_

Compute

A(x,u)=r (xt, ut) + V* (xt +1) -V (xt)

\/1

Generate samples

J
1 N T
\f y ~N VQ](Q) ~ N Z Z V@log 71'6 (ui,l‘ | xi,t) A¢(xi,t’ ui,t)
Improve the policy i=1 r=1

L) 00+ aVyJ0)

Run policy and !

olbserve trajectories

-

When fitting V_, we can use different targets to define the supervised learning labels

Question:

T
How to fit with MC target? 1. Collect dataset ¥ = {(x,, G)) }, G, = Z R(x,,u,) 2. Supervised regression on &

t'=t

How to fit with TD target” 1. Collect dataset D = {(x,, r, + yf/e(xt))} 2. Supervised regression on &

6/2/2025 AA203 | Lecture 18 27

Architecture design

()

Generate samples
_ Y,

Run policy and
olbserve trajectories

In practice, one could opt for different designs of this same algorithms, e.g.,:

* [wo network vs shared network
« Parallel processing: synchronized vs asynchronous

Get (x, u,x,, 1, 1)

Update 6 — Em =
(Get (xt, Uy X1 15 7}) 4_I I I I
Update 6 — el :

6/2/2025

-

(|)
it a model /
estimate return
_ Y,
\4
~ N

Improve the policy

J

Fit V_

Compute
A (x,u)=r (xt, ut) +V_ (xt +1) -V,

(%)

V,J(0) ~ — Z Z V,log x, (ui,t | xl-,t) A 5% ;)

N i=1 =1
0 — 0+ aV,yJ0)

Simple, typically more stable
Does not share features

D
9
4
@

)

()
y
T

()
Q¢
W
A
.{

t\
157
m{
AR
R
()

AN
()
/
(‘;
()
5

!
:
)

N
i
v 4 > ¢, DG
N2
‘ O IRZS R
< <)
¢
A\

O

28

Outline

Deep RL Algorithms & Applications

6/2/2025 AA203 | Lecture 18 29

Reducing RL to optimization

* Much of modern ML entails reducing learning to a numerical optimization problem
* Supervised learning as training error minimization

e This Is different from what we have seen so far in RL;

« Q-learning: fixed-point iteration — can (in princi
wrong objective
* Policy gradient: yes, stochastic gradients of the

ole) include all transitions seen so far, however, it optimizes for the

RL objective, but no optimization problem

o \We’'ll discuss approaches that define an optimization problem that allows us to do a small update to policy &, based on

data sampled from 7

6/2/2025

AA203 | Lecture 18

Defining the objective

» \We discussed how, in PO, we want to compute the following gradient VJ(0) = E [Vgl()g m(u, | x) Alx, Mt)]

* o implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following
loss function:

L"C(0) = E |log my(u, | x,) A(x,,u,)|

« But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy
estimate
* Equivalently differentiate

LIS(H) —

A(7)

A ”QOId(Mr | X;)

+ If we take the derivative of L’ and evaluate at @ = 6, , ,, we get the same gradient

Vo (0)]
0 f(60)
Ve ()| = dd _y ()
’ ‘%m f(6oid) \f (6oid) ;
old

6/2/2025 AA203 | Lecture 18

Trust Region Policy Optimization (TRPO)

. A [T (ut ‘ xt) A]
maximize [, A,
0 0,14 (uf | X,)

subject to E, [KL[@M(| x,),m (- \xt)] <6

* Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

« Hard to use with architectures with multiple outputs, e.g., policy and value function
« Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs
« (Conjugate gradient makes implementation more complicated

6/2/2025 AA203 | Lecture 18

Proximal Policy Optimization (PPO)

* Can we solve the problem defined in TRPO without second-order optimization?

PPO v1 - Surrogate loss with Lagrange multipliers

Vo

maximize

0

| [7o (1,1 %) At] s (KLt (- 1)o7 (1) _5>

70,14 (ut ‘ At)

* Run SGD on the above objective
» Do dual descent update for

. 7o (1| x,)
PPO v2 - Clipped surrogate loss r(0) = , r@,)=1
ﬂeold <ut ‘ xt)
maximize E, [min(r(@)A(z), clip(r(),1 — €,1 + €)A(7)]
0

* Heuristically replicates constraint in the objective
* One of the (if not the) most popular PO algorithm

6/2/2025

AA203 | Lecture 18

—xamples: Maze Navigation

 Mnih et al. 2016 “Asynchronous
Methods for Deep Reinforcement
Learning”

» Advantage Actor-Critic
* Asynchronous parallel workers

» Policy and Value networks: CNNs &
RNNs

6/2/2025 AA203 | Lecture 18 34

https://www.youtube.com/watch?v=nMR5mjCFZCw
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783

Examples: Alignment of ChatGPT

6/2/2025

Step 2

Collect comparison data and
train a reward model.

A prompt and >

-

x. v/
several model SV
xplain reinforcement
outputs are learning to a 6 year old.
sampled.
In Igr:rf\?r:;?lmhzm Explain rewards...
agentis...
In machine We gi.ve treats and
learning... DUf‘nltS:arzsits to
I 1
A labeler ranks the
outputs from best
to worst. 0:-60-0-0
RM
This data is used AR
.] | o
to train our \}52{/
reward model.
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A=

Write a story
about otters.

M | = s

35

Examples: Robot manipulation

. PPO

* Trained entirely in SIm

6/2/2025 AA203 | Lecture 18 36

https://www.youtube.com/watch?v=jm-ihc7CASY

Next time

 Model-based RL

