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Course overview
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A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL 
objective 

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate 
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via 
 or  V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)
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Intro to policy gradients
• REINFORCE algorithm 
• Reducing variance of policy gradient 

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage 
• Architecture design
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The goal of reinforcement learning
take action

observe state
observe reward

ut

rt

xt rt+1
xt+1

• The agent interacts with the environment to generate trajectories  
• We define the trajectory distribution 

 

• We can express the RL objective as an expectation under the trajectory distribution 

 

τ = (x0, u0, x1, u1, …xT)

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

π(ut |xt)p(xt+1 |xt, ut)

π* = arg max
π

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)
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Policy Optimization
• In policy optimization, we care about learning an (explicit) parametric policy , with parameters  
• In light of this, we can re-write the Eqs from the previous slide w.r.t. : 

 

 

To simplify the notation, we’ll ignore discounting for now  and consider 

πθ θ
θ

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

πθ(ut |xt)p(xt+1 |xt, ut)

θ* = arg max
θ

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)

J(θ)

(γ = 1)

θ* = arg max
θ

𝔼τ∼p(τ) ∑
t≥0

R (xt, ut)

J(θ)
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Evaluating the objective
• Opposed to value-based methods, policy optimization attempts to learn the policy directly (i.e., optimize  w.r.t. ) 

 

How can we evaluate the expectation in the objective? As usual in RL, through samples 

J(θ) θ

J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut)

J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut) ≈
1
N ∑

i
∑

t

R(xi,t, ui,t)

One of the most direct ways to optimize this objective is to: 

(1) estimate its gradient  
(2) cast the learning process as approximate gradient ascent on           

∇θJ(θ)
J(θ) θ ← θ + α∇θJ(θ)

…

τ = (x0, u0, x1, u1, …xT)
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Direct policy gradient
• In order to solve the problem through gradient-based optimization we need to compute  

• Let us define the compact notation   

• By definition of expectation  

• We can then write the gradient  

∇θJ(θ)

r(τ) =
T

∑
t=1

R(xt, ut)

J(θ) = 𝔼τ∼p(τ) [r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ(θ) = ∫ ∇θ pθ(τ)r(τ)dτ

∇θJ(θ) = ∫ ∇θ pθ(τ)r(τ)dτ = ∫ pθ(τ)∇θlog pθ(τ)r(τ)dτ = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)]

Problem: gradient depends on unknown 
dynamics and initial state distribution 
through pθ(τ)

Useful identity:  
pθ(τ)∇θlog pθ(τ) = pθ(τ)

∇θ pθ(τ)
pθ(τ)

= ∇θ pθ(τ)

On the right track since we can evaluate 
expectations through samples… but we still 
have  in the equation∇θlog pθ(τ)
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Direct policy gradient

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)] = 𝔼τ∼pθ(τ) ∇θ[log p(x0) +
T

∑
t=1

log πθ(ut |xt) + log p(xt+1 |xt, ut)] r(τ)

∇θJ(θ) = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut))

• When taking the gradient w.r.t. ,  do not depend on  
• While we can evaluate the log probability under our parametric policy  
• This enable us to re-write the gradient  as:

θ log p(x0), log p(xt+1 |xt, ut) θ
πθ

∇θJ(θ)

Everything inside this 
expectation is known

Let us recall the trajectory distribution 

 

 

p(x0, u0, …, xT) = p(τ) = p(x0)
T

∏
t=1

π(ut |xt)p(xt+1 |xt, ut)

log p(τ) = log p(x0) +
T

∑
t=1

log πθ(ut |xt) + log p(xt+1 |xt, ut)
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Direct policy gradient
∇θJ(θ) = 𝔼τ∼pθ(τ) (

T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut)) Everything inside this 
expectation is known

• Recall how we use samples to evaluate the objective: J(θ) = 𝔼τ∼p(τ) ∑
t≥0

R (xt, ut) ≈
1
N ∑

i
∑

t

R(xi,t, ui,t)

• We can use the same idea to evaluate the gradient:

∇θJ(θ) = 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ (ut ∣ xt)) (
T

∑
t=1

R (xt, ut))] ≈
1
N

N

∑
i=1 [(

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))]
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REINFORCE algorithm
The procedure described so far gives us the basic policy gradient algorithms, a.k.a. REINFORCE: 

1. Sample trajectories  from , i.e. run the policy in the environment 

2. Evaluate the policy gradient  

3. Take a gradient step to update the policy  

{τi}N
i=1 πθ(ut |xt)

∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))
θ ← θ + α∇θJ(θ)

Generate samples

Fit a model / estimate 
return

Improve the policy

{τi}N
i=1

Estimate the return (via MC)
T

∑
t=1

R (xi,t, ui,t)

θ ← θ + α∇θJ(θ)

Run the policy and observe
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Intuition: “what is PG doing?”
Consider the expression we derived for the policy gradient  ∇θJ(θ) ≈

1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

Acceleration

Discrete action space Continuous action space 

Let’s compare it with the expression of the gradient when performing maximum likelihood (e.g., supervised learning): 

∇θJMLE(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t))
xt ut

The policy gradient is a weighted version of the MLE gradient
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Intuition: “what is PG doing?”

Policy gradient: ∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

…

“Change parameters  s.t. trajectories with 
higher reward have higher probability”

θ

Maximum Likelihood: ∇θJMLE(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t))

PG formalizes the idea of learning by “trial and error”

Taking a step in the direction the policy gradient essentially means:
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Intro to policy gradients
• REINFORCE algorithm 
• Reducing variance of policy gradient 

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage 
• Architecture design
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Policy gradient: ∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))
Let’s consider the following example:

T

∑
t=1

R (xi,t, ui,t)

τ
• Depending on the sample, the policy gradient can vary wildly: PG estimator has high variance 
• This negatively affects learning: worse performance, slower convergence

A lot of research in the domain of Policy Optimization revolves around finding ways to lower the variance of the policy gradient

Problem: high variance of the PG
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Reducing the variance

A first simple approach to reduce the variance entails using causality: “policy at time  cannot affect reward at time  ”t′￼ t < t′￼

∇θJ(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (
T

∑
t′￼=t

R (xi,t′￼, ui,t′￼))

Consider this equivalent expression:
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Baseline
A second (and extremely important) approach to reduce variance of PG estimators relates with the concept of baseline 

Let’s reconsider our intuition on PG, i.e., “making good behavior more likely”
T

∑
t=1

R (xi,t, ui,t)

τ

T

∑
t=1

R (xi,t, ui,t)

τ

However, PG will only do this if the returns are centered (e.g., consider the counter-example on the right)

Intuitively, we want to “center” our returns, such that: 
• The probability of behavior that is better than average gets increased 
• The probability of behavior that is worse than average gets decreased

∇θJ(θ) ≈
1
N

N

∑
i=1

∇θlog πθ (τ) [r (τ) − b]We are going to subtract a baseline  from the expression of the PGb
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A closer look at the baseline

Claim: adding the baseline does not change the value of the expected gradient

𝔼 [∇θlog pθ (τ) b] = ∫ pθ(τ)∇θlog pθ(τ)b dτ = ∫ ∇θ pθ(τ)b dτ = b∇θ ∫ pθ(τ) dτ = b∇θ1 = 0

• To prove that, let’s consider the following expectation:

which makes our estimate of the gradient (with baseline) unbiased in expectation

Useful identity:  
pθ(τ)∇θlog pθ(τ) = pθ(τ)

∇θ pθ(τ)
pθ(τ)

= ∇θ pθ(τ)

• An extremely effective choice of the baseline is the average return, b =
1
N

N

∑
i=1

r(τi)

(We’ll see how this motivates many popular RL algorithms…)

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)] → ∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)(r(τ) − b)]
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Example
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Properties of policy gradient
At a high-level, we’ve been defining a scheme where: 

• Given the RL objective 

• We maximize the objective w.r.t.  by: 
• Computing the gradient 

• Taking a gradient step to update the policy  

θ

θ ← θ + α∇θJ(θ)

J(θ) = 𝔼τ∼p(τ) [r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)r(τ)]

Question: 
Is this on- or off-policy? And why?
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Intro to policy gradients
• REINFORCE algorithm 
• Reducing variance of policy gradient 

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage 
• Architecture design
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From PG to Actor-Critic methods

Once again, let’s consider the policy gradient ∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (
T

∑
t′￼=t

R (xi,t′￼
, ui,t′￼))

“reward-to-go”

p(xt+1 |xt, ut)

𝔼τ∼p(τ) [
T

∑
t′￼=t

R (xi,t′￼, ui,t′￼)]The idea of actor-critic methods is to define: 
• An “actor", i.e., a policy  
• A “critic” to better estimate the “reward-to-go”,  

e.g., estimate Q-values through function approximation 

πθ(ut |xt)

Qϕ(xt, ut)
Qπ(xt, ut)

By using this better estimate of the reward-to-go we can get a lower variance policy gradient:

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Qϕ(xt, ut)

This one-sample estimate of the reward-to-go contributes to the high variance of the PG

=
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What about the baseline?
Can we use a baseline when using the approximate reward-to-go and reduce the variance even further? 

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (Qϕ(xi,t, ui,t) − b)

• An effective choice for  is a state-dependent baseline  
• We can thus rewrite: 

b b(xt) = 𝔼ut∼π(ut|xt) [Q(xt, ut)] = V(xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) (Qϕ(xi,t, ui,t) − V(xi,t))
“How much  is 
better than the 
average action 
in ”

ut

xt

Following this gradient: 
• increases the probability of actions that have 

returns better than average 
• decreases the probability of actions that have 

returns worse than average 

• The function  is usually referred to as advantage functionA(xt, ut) = Qϕ(xt, ut) − V(xt)



Set target 
yt ← rt + γ max

u
Qϕ(xt+1, u)

Update  to minimize   ϕ
min

ϕ
𝔼π [yt − Qϕ(xt, ut)]Generate 

samples

Fit a model / 
estimate return

Improve the 
policy

Run policy 
and observe 
trajectories

Generate 
samples

Fit a model / 
estimate return

Improve the 
policy

Estimate the return (via MC)
T

∑
t=1

R (xi,t, ui,t)

θ ← θ + α∇θJ(θ)

∇θ J(θ) ≈
1
N

N

∑
i=1 (

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))

Generate samples

Fit a model / 
estimate return

Improve the policy

Run policy and 
observe trajectories

Run policy 
and observe 
trajectories

Fitted Q-learning: REINFORCE:

Actor-Critic:

θ ← θ + α∇θJ(θ)

Fit  or Vπ, Qπ Aπ

 set π (xt) = arg max
u

Qθ (xt, ut)
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Generate samples

Fit a model / 
estimate return

Improve the policy

Run policy and 
observe trajectories

θ ← θ + α∇θJ(θ)

Fit  or Vπ, Qπ Aπ

Qπ(xt, ut) = 𝔼τ∼p(τ) [
T

∑
t′￼=t

R (xi,t′￼
, ui,t′￼)] = r (xt, ut) + 𝔼xt+1∼p(xt+1 ∣ xt, ut) [Vπ (xt+1)] ≈ r (xt, ut) + Vπ (xt+1)

Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) ≈ r (xt, ut) + Vπ (xt+1)−Vπ (xt)

This enables us to “only” fit Vπ

What quantity should we estimate? What are the trade-offs between estimating  or ? No wrong/right, 
answer, it depends. For now, let’s consider the complexity of the estimation problem (i.e., fitting  is easier: only  as input)

Vπ(xt), Qπ(xt, ut) Aπ
Vπ xt

Actor-Critic:
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Generate samples

Fit a model / 
estimate return

Improve the policy

Run policy and 
observe trajectories

Advantage Actor-Critic (A2C):

θ ← θ + α∇θJ(θ)

Fit  

Compute 

Vπ

This enables us to “only” fit Vπ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

What quantity should we estimate? What are the trade-offs between estimating  or ? No wrong/right, 
answer, it depends. For now, let’s consider the complexity of the estimation problem (i.e., fitting  is easier: only  as input)

Vπ(xt), Qπ(xt, ut) Aπ
Vπ xt

Qπ(xt, ut) = 𝔼τ∼p(τ) [
T

∑
t′￼=t

R (xi,t′￼
, ui,t′￼)] = r (xt, ut) + 𝔼xt+1∼p(xt+1 ∣ xt, ut) [Vπ (xt+1)] ≈ r (xt, ut) + Vπ (xt+1)

Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) ≈ r (xt, ut) + Vπ (xt+1)−Vπ (xt)
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Generate samples

Fit a model / 
estimate return

Improve the policy

Run policy and 
observe trajectories

θ ← θ + α∇θJ(θ)

Fit  

Compute 

Vπ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

When fitting , we can use different targets to define the supervised learning labelsVπ

Question: 
How to fit with MC target? 1. Collect dataset 𝒟 = {(xt, Gt)}, Gt =

T

∑
t′￼=t

R(xt, ut) 2. Supervised regression on 𝒟

How to fit with TD target? 1. Collect dataset 𝒟 = {(xt, rt + γ ̂Vθ(xt))} 2. Supervised regression on 𝒟

Advantage Actor-Critic (A2C):
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Architecture design

Generate samples

Fit a model / 
estimate return

Improve the policy

Run policy and 
observe trajectories

θ ← θ + α∇θJ(θ)

Fit  

Compute 

Vπ

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Aϕ(xi,t, ui,t)

In practice, one could opt for different designs of this same algorithms, e.g.,: 

• Two network vs shared network 
• Parallel processing: synchronized vs asynchronous

Vπ(x)

π(u |x)x

x

Simple, typically more stable
Does not share features

Get (xt, ut, xt+1, rt)
Update θ
Get (xt, ut, xt+1, rt)
Update θ

Aπ(xt, ut) = r (xt, ut) + Vπ (xt+1) − Vπ (xt)
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Intro to policy gradients
• REINFORCE algorithm 
• Reducing variance of policy gradient 

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage 
• Architecture design
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Reducing RL to optimization
• Much of modern ML entails reducing learning to a numerical optimization problem 

• Supervised learning as training error minimization 

• This is different from what we have seen so far in RL: 
• Q-learning: fixed-point iteration  can (in principle) include all transitions seen so far, however, it optimizes for the 

wrong objective 
• Policy gradient: yes, stochastic gradients of the RL objective, but no optimization problem 

• We’ll discuss approaches that define an optimization problem that allows us to do a small update to policy , based on 
data sampled from 

→

π
π
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• We discussed how, in PO, we want to compute the following gradient

• But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy 
estimate 

• Equivalently differentiate

LIS(θ) = 𝔼τ∼pθ(τ) [ πθ(ut |xt)
πθold

(ut |xt)
A(τ)]

• If we take the derivative of  and evaluate at , we get the same gradient LIS θ = θold

∇θlog f(θ)
θold 

=
∇θ f(θ)

θold 
f (θold )

= ∇θ( f(θ)
f (θold ) )

θold 

∇θJ(θ) = 𝔼 [∇θlog πθ(ut ∣ xt) A(xt, ut)]

LPG(θ) = 𝔼 [log πθ(ut ∣ xt) A(xt, ut)]

Defining the objective

• To implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following 
loss function:
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Trust Region Policy Optimization (TRPO)

maximize
θ

𝔼̂t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At]

 subject to 𝔼̂t [KL[πθold ( ⋅ ∣ xt), πθ ( ⋅ ∣ xt)] ≤ δ

• Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

• Hard to use with architectures with multiple outputs, e.g., policy and value function 
• Empirically performs poorly on tasks requiring deep nets, e.g., deep CNNs, RNNs 
• Conjugate gradient makes implementation more complicated
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Proximal Policy Optimization (PPO)
• Can we solve the problem defined in TRPO without second-order optimization?

maximize
θ

𝔼̂t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At] + β (𝔼̂t [KL[πθold ( ⋅ ∣ xt), πθ ( ⋅ ∣ xt)] − δ)

PPO v1 - Surrogate loss with Lagrange multipliers 

• Run SGD on the above objective 
• Do dual descent update for β

maximize
θ

𝔼̂t [min(r(θ)A(τ), clip(r(θ),1 − ϵ,1 + ϵ)A(τ)]
• Heuristically replicates constraint in the objective 
• One of the (if not the) most popular PO algorithm 

PPO v2 - Clipped surrogate loss r(θ) =
πθ (ut ∣ xt)

πθold (ut ∣ xt)
, r(θold) = 1
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Examples: Maze Navigation
• Mnih et al. 2016 “Asynchronous 

Methods for Deep Reinforcement 
Learning" 

• Advantage Actor-Critic 

• Asynchronous parallel workers 

• Policy and Value networks: CNNs & 
RNNs

https://www.youtube.com/watch?v=nMR5mjCFZCw
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783


AA203 | Lecture 186/2/2025 35

Examples: Alignment of ChatGPT
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Examples: Robot manipulation
• PPO 

• Trained entirely in Sim 

https://www.youtube.com/watch?v=jm-ihc7CASY
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Next time

• Model-based RL


