AA203
Optimal and Learning-based Control

Model-free Reinforcement Learning: Value-based Methods

vy
v

..\‘ b
- \‘ J -
N ,‘ ‘.. '-;;
KL 2
o - -]

\&&%/ University

.......

Autonomous Systems Lab

Imitation
Learning

Course overview

Model-free RL

Control I.\daptlve
optimal control
[| l Model-based RL
Feedback control Adaptive control
.| Optimaland
learning control
% I %
| !
Open-loop [-------mmmmmmmmmmee- MPLC e Closed-loop

|

Indirect
methods

Direct
methods

5/28/2025

AA203 | Lecture 17

|

DP

HJB / HJI

Review

In previous lectures, we made the distinction between prediction (given a policy &, estimate V_,) and control (learn the

optimal policy %)

Motivated by Dynamic Programming, we discussed exact methods
for solving MDPs:

* Policy lteration

* Value lteration

Problem Bellman Equation Algorithm
. . : lterative
Prediction | Bellman Expectation Equation . :
Policy Evaluation
Bellman Expectation Equation : :
Control pe a Policy Iteration
+ Greedy Policy Improvement
Control Bellman Optimality Equation Value lteration

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model 1° (xt +1 | X;, ut)

We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:

* Monte Carlo (MC) Learning
» Temporal-Difference (TD) Learning

5/28/2025 AA203 | Lecture 17

AGENT

?

take action U,

ENVIRONMENT

T

l
-\

observe state X;
observe reward I

Xt+1
Fi+1 4

» For prediction:

Dynamic Programming backup Monte Carlo backup
V(x) < E|R+7V (x,)] V(%) < V(%) +a (G- (x))
X &
: e
U,
e e TS e

ADLDLDLD LA ALD SRS

Terminal state

« Sampling: define the update through samples to approximate expectations Temporal-Difference backup
* MC samples V(x) < V(x) +a (R + 7V (x.)-7(x))
D samples X,
* DP does not sample O
U,

* Bootstrapping: define the update through an estimate
 MC does not bootstrap
* 1D bootstraps
* DP bootstraps

5/28/2025 AA203 | Lecture 17 5

O oo) Xl N N

 For control:

Generalized Policy lteration “Monte-Carlo Control”

starting
V «

¢ :
V Starting Q

q*a TUx
JT;*)

Policy Evaluation: Monte-Carlo policy evaluation of Q(x, u) ~ Qx, u)

Policy Improvement: e-Greedy policy improvement

5/28/2025 AA203 | Lecture 17 6

A taxonomy of RL

RL Algorithms j

e
|

[Value-based j

policy implicitly defined via

V(x) or O(x, u)

set w <Xt) = arg max (Xt, ut)

5/28/2025 AA203 | Lecture 17 7

Outline

Value-based Methods

Tabular methods
* On-policy & Off-policy
« SARSA
» Q-learning
Value function approximation

Deep (Value-based) RL Methods & Applications

5/28/2025 AA203 | Lecture 17

Temporal-Difference Control

* 1D learning has several advantages over MC
* [ower variance
* Online
* Incomplete sequences

 Natural idea: use TD instead of MC in our GPI scheme
« Apply TD to estimate Q(x, u)

« Use e-greedy policy improvement
* Update every time-step

5/28/2025 AA203 | Lecture 17 8

Updating action-value functions with Sarsa

» Uses every element of the quintuple of events, (x,, u,, 1}, X, 1, 4, 1), that make up a transition from one state—action pair to
the next through the following update rule

: Temporal-Difference backup
Q(-xta I/tt) <« Q(xta l/tt) +a <7’t + yQ (xz-|-19 ut+1) _Q(xta uz)) ‘A/ (xt) <« ‘A/ (xt) +a (Rt + }/V (xtH)—‘A/ (xt)>
_ J

» In RL literature, (X, u,, 1}, X, 1, U, 1) iS Often expressed as
(S, Qp 1y S, 15, Ary 1) - hence the name

Starting Q L
%y Uk

Every time-step:
Policy evaluation Sarsa, Q = g,

5/28/2025 Ar003 | Leoture 17 Policy improvement e-greedy policy improvement

Sarsa algorithm

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize x,
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action u,, observe r,, x,
Choose u,, | from x,, ;using policy derived from Q (e.g., e-greedy)

O, 1) < Qlx, 1) + (r ,+ 70 (Xt+1, ut+1) — Ox, ut)>

Xp = Kpg1r Up < Upy g
until x, is terminal

5/28/2025 AA203 | Lecture 17 10

Windy Gridworld example

S G v

standard
moves

0 o9 | i 1 2 2 1 0

5/28/2025 AA203 | Lecture 17

* Reward -1 until goal is reached

« ¢ =0.1
e a=0.5
o }/:1

11

Windy Gridworld example

170 -
150 - i
S G <—I—>
L X Question:
O Actions Would MC methods easily apply to this
© 100 -
O problem? And why?
D O 0 0
o
LLJ
50 -
O_

| | | | | | | I
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

5/28/2025 AA203 | Lecture 17 12

Sarsa algorithm for 7-policy control

On-policy: evaluate or improve the policy that is used to make decisions

Off-policy: evaluate or improve a policy different from that used to generate the data

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = (
Repeat (for each episode):
Initialize x,
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action u,, observe r,, x,
Choose u,, | from u,, ;using policy derived from Q (e.g., e-greedy)

O, 1) < Qlx, 1) + <”t + 70 (xt+1» ut+1) — O(x, ut)>

Xp = Xy Uy < Up g
until X, 1S terminal

5/28/2025 AA203 | Lecture 17 13

Off-policy learning

» Evaluate target policy z(u | x) to compute V_(x) or Q_(x, u) while following behavior policy u(u | x), i.e.,

X, U, 1, ..., X1 ~ M, “the data we observe is obtained under policy i’
1> 41> 71 T H H

Why is this important”?
* |earn from observing humans or other agents

« Re-use experience generated from old policies 7y, 75, ..., 7T,_1 starting

V
* Learn about optimal policy while following exploratory policy .

5/28/2025 AA203 | Lecture 17 14

Off-policy learning of action-values

« We consider off-policy learning of action-values Q(x, u)

» As in Sarsa, we use the behavior policy y to obtain (x,, u, 1}, X, 1, 1,), but we consider an alternative successor action

Uy~ (U g | X))

« And update Q(x, u) towards value of alternative action

Qx, u) < Ox, u) + <’" + 70 (xt+1’ M;+1>_Q(t’ut)>

5/28/2025 AA203 | Lecture 17

15

Q-learning

Specifically, in Q-learning
» The target policy & is chosen as the greedy policy w.r.t. O(x, 1)

m(x,,) = argmax Q (xm, ut’+1)

/
Uy

» The behavior policy u is chosen as the e-greedy policy w.r.t. O(x, u)

Which leads to the following Q-learning target and update:

Iy T 70 (xt+1’ “t,+1)

/
Ui

—_— /
= Ity Ty max Q (xt+1’ “t+1>
U1

5/28/2025 AA203 | Lecture 17

= Iy 70 <XI+19 argmax ¢ (xt+1a ’/‘t,+1)> QX 1) — Qo) + @ (rf +ymax ¢ (xt+1’ ut’+1>_Q(t’uf)

16

Q-learning algorithm for off-policy control

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize x,
Repeat (for each step of episode):
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Take action u,, observe r,, x,

Ox,u) «— Qx,u) +a (rt + y max Q (xtH, ”z/+1) — Q(x,, ut)>

/
Uiy

until X, 1S terminal

Q-learning control converges to the optimal action-value function,
Q(S7 a) o q*(57 3)

5/28/2025 AA203 | Lecture 17 17

Differences between Sarsa and Q-learning

R=-1

Safer path
(Policy achieved
by Sarsa)
Optimal path
(Policy achieved -
by Q-learning) S T h e @
Sarsa
25 -
Sumof .55
rewards Q-learning
during
epBode_JS_
-100 ! I . | |
0 100 200 300 400 500

5/28/2025

Episodes

AA203 | Lecture 17

Reward -1 until goal is reached, -100 if on “The CIiff”
e =0.1
a=0.5

y=1

Sarsa converges to the optimal e-greedy policy
Q-learning converges to the optimal policy 7* / value
function OQ*

18

Outline

Value function approximation

5/28/2025 AA203 | Lecture 17

Solving large-scale problems with RL

* Reinforcement learning can be used to solve large problems, e.g.,

13 14 15 16 17 18 19 20 21 22 23 24

3 TR TR o
N ;\)w) o
Backgammon: 10%” states Go: 10!V states

5/28/2025 AA203 | Lecture 17

ow can we scale the methods for model-free RL we developed over the last lectures?

All those problems where
we have a continuous state

space

Value function approximation

» S0 far we used lookup tables to represent value functions:
» One entry for every state x in V(x)

« One entry for every state-action pair (x, 1) in OQ(x, u)

* Inlarge MDPs, lookup table might lbe prohibitive. For two main reasons:
* Memory: too many actions/states to store

« Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

Solution:

« Estimate the value function through function approximation, i.e., define a parametric function with parameters &

O,(x, u) = Q(x, u)
V(x) = V(x)

— Represent the value function compactly (depends only on parameters 6)

— (Generalize across states (avoid having to visit the entire state-action space by generalizing from seen
to unseen states)

5/28/2025 AA203 | Lecture 17

21

Different types of value function approximations
V(x) Q(x, u) Ox, uy) Q) O(x,)

| |

|

X X U

There are many possible function approximators
* Linear regression, Neural network, Random forest, Nearest neighbor, etc.

l

AA203 | Lecture 17

Approximating value tn. by (stochastic) gradient descent

Goal: find the parameter vector @ that minimizes the “error” between the estimated value \A/H(x) and the true value V_(x),

e.q., MSE
J(0) =

Gradient descent converges to a local minimum

3 [(Vﬂ(x) _ ‘A/@(x)>2]

1
AO = — —aV,J(O)

2

Stochastic GD samples the gradient

AO = a (Vﬂ(x) _ Vg(x)) V., V,00)

5/28/2025

— o, [(Vﬂ(x) _ ‘A/@(x)) vm(x)]

AA203 | Lecture 17

23

Approximating value tn. by (stochastic) gradient descent

In the previous slide, we assumed to know the true value function V_ — in RL there is no supervisor, only reward

In practice, we use a target for V_

* Monte-Carlo: the target is the return

AO = a (Gt— Vg(xt)) v, Vx)

* Temporal-Difference: the target is the TD target

AO = o (rt + oV,)— Vg(xt)) V,V,(x)

5/28/2025 AA203 | Lecture 17 24

INturtion

U, r
X, Uy, 1y 1> 71 —@

MC

1D

5/28/2025

X1

%%)

Tabular ‘A/(x)

Fn. Approx. V(x)

1) Compute return G, = r, + yr, 1+ ..., Vi

2) Update estimate

V(x) =

V(x) + a(G, — V(x))

1) Compute target r, + y\A/(xt +1), Vi

2) Update estimate

V(x) =

Vx) + a(r, + yVix,) — V(x)

AA203 | Lecture 17

1) Collect dataset ¥ = {(x,, G,) }

2) Update 6

0=0+a (Gt - Vg(xt)> v, V)

1) Collect dataset D = {(x,, r, + yV,(x,))}
2) Update estimate

0=0+a (rt LV — Vg(xt)> v, V)

25

Control with function approximation

Starting w Ay, ~

Policy evaluation Approximate policy evaluation, §(-,-,w) = g

Policy improvement e-greedy policy improvement

5/28/2025 AA203 | Lecture 17 26

Action-value function approximation

Exactly the same intuitions apply when we try to approximate the action value function:

« Minimize the mean-squared error between the estimated value Qg(x, u) and the true value Q_(x, u)

J(0) = .| 0, 1) = Oy,)|

« Use stochastic gradient descent to find a local minimum

AO =a (Qﬂ(x, u) — Qe(x, u)) VQQQ(x, 1)

Fitted Q-lteration: update @ via stochastic gradient descent on TD target

AO =« (rt +y max Oy (xtH, ut’H) —Qg(xt, ut)) VHQQ(xt, u,)

Ui

5/28/2025 AA203 | Lecture 17

27

Review: |he skeleton of an RL algorithm

4)
Fit a model / estimate

retumn
_ Y,
~

Generate samples

W,
\ - v N
Improve the policy

\- J

-

-

The skeleton of fitted Q-learning

Run the policy and observe
(Xps Uy Ty Xy 1)

5/28/2025

-

o

Generate samples

S

\-

Fit a model / estimate
return

~

J

v

Improve the policy

AA203 | Lecture 17

Set target
y; « 1, +ymax Qy(x,, 1,)

u

Update @ to minimize

J(O) =

7 [yt — Oy(x,, ”t)]

set « (xt) = arg max (J, (xt, ut)

u

29

Deep Q-Networks (DQN)

One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks

Convolution Convolution Fully connected Fully connected
w w w w

! .
- A\] Z
- AN 2\ .
! R~
. - & ®:. Q. =
N ¥V i) !
o * .
o @ o s+o
f 1 ‘
» iS5 3 .
' -
K+0O
(1) Use deep neural nets to represent Qy in Q- (2) Uses experience replay and fixed

learning Q-targets

5/28/2025 AA203 | Lecture 17

30

https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q-Networks (DQN)

(2) Uses experience replay and fixed Q-targets

* These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two
ISSUES:

) Samples within a trajectory are highly correlated — makes supervised learning unstable

i) The target r, +y max Q, (xt +1> U, +1) is @ moving target (i.e., as we update 0, the target of our regression also
U g
changes)

Intuitively:

» [ake action u, according to e-greedy policy

» Store transition (x,, u,, 1;, X, 1) in replay memory &

» Sample batch of transitions {(x,, u,, r,, X, +1)i}f=1 from & (Experience replay decorrelates data)

» Compute Q-learning targets w.r.t. old, fixed parameters ¢
* Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

J(0) = = (Xl T3 Xy)~ D 7+ Y max qu('xt+1’ i) — Qﬁ(xt’ ut)

u

5/28/2025 AA203 | Lecture 17 31

Next time

* Model-free RL: policy optimization methods

5/28/2025 AA203 | Lecture 17 32

