
AA203 | Lecture 175/28/2025 ￼1

AA203
Optimal and Learning-based Control

Model-free Reinforcement Learning: Value-based Methods

AA203 | Lecture 175/28/2025

Course overview

AA203 | Lecture 175/28/2025

Review

4

In previous lectures, we made the distinction between prediction (given a policy , estimate) and control (learn the
optimal policy)

π Vπ, Qπ
π*

Motivated by Dynamic Programming, we discussed exact methods
for solving MDPs:
• Policy Iteration
• Value Iteration

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model T (xt+1 ∣ xt, ut)
We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:
• Monte Carlo (MC) Learning
• Temporal-Difference (TD) Learning take action

observe state
observe reward

ut

rt

xt rt+1
xt+1

AA203 | Lecture 175/28/2025 5

Dynamic Programming backup
V̂ (xt) ← 𝔼 [Rt + γV̂ (xt+1)]

Monte Carlo backup

Temporal-Difference backup

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))
• Sampling: define the update through samples to approximate expectations

• MC samples
• TD samples
• DP does not sample

• Bootstrapping: define the update through an estimate
• MC does not bootstrap
• TD bootstraps
• DP bootstraps

• For prediction:

xt

ut

xt+1
rt

ut

xt+1rt

xt

AA203 | Lecture 175/28/2025 6

• For control:

Policy Evaluation: Monte-Carlo policy evaluation of

Policy Improvement: -Greedy policy improvement

Q̂(x, u) ≈ Q(x, u)

ϵ

Generalized Policy Iteration “Monte-Carlo Control”

AA203 | Lecture 175/28/2025

A taxonomy of RL

7

RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL
objective

𝔼

estimate
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via
 or V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)

AA203 | Lecture 175/28/2025

Outline

Tabular methods
• On-policy & Off-policy

• SARSA
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

Value-based Methods

AA203 | Lecture 175/28/2025

Temporal-Difference Control

8

• TD learning has several advantages over MC
• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our GPI scheme
• Apply TD to estimate
• Use -greedy policy improvement
• Update every time-step

Q(x, u)
ϵ

AA203 | Lecture 175/28/2025

Updating action-value functions with Sarsa

9

• Uses every element of the quintuple of events, , that make up a transition from one state–action pair to
the next through the following update rule

(xt, ut, rt, xt+1, ut+1)

• In RL literature, is often expressed as
 : hence the name

(xt, ut, rt, xt+1, ut+1)
(st, at, rt, st+1, at+1)

Temporal-Difference backup
̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1)−Q(xt, ut))

AA203 | Lecture 175/28/2025

Sarsa algorithm

10

Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Choose from using policy derived from Q (e.g., -greedy)
Repeat (for each step of episode):

Take action , observe
Choose from using policy derived from Q (e.g., -greedy)

;
until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 xt+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt

AA203 | Lecture 175/28/2025

Windy Gridworld example

11

• Reward -1 until goal is reached
•
•
•

ϵ = 0.1
α = 0.5
γ = 1

AA203 | Lecture 175/28/2025

Windy Gridworld example

12

Question:
Would MC methods easily apply to this
problem? And why?

AA203 | Lecture 175/28/2025

Sarsa algorithm for ?-policy control

13

Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Choose from using policy derived from Q (e.g., -greedy)
Repeat (for each step of episode):

Take action , observe
Choose from using policy derived from Q (e.g., -greedy)

;
until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 ut+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt

On-policy: evaluate or improve the policy that is used to make decisions

Off-policy: evaluate or improve a policy different from that used to generate the data

AA203 | Lecture 175/28/2025

Off-policy learning

14

• Evaluate target policy to compute or while following behavior policy , i.e.,

, “the data we observe is obtained under policy ”

Why is this important?
• Learn from observing humans or other agents

• Re-use experience generated from old policies

• Learn about optimal policy while following exploratory policy

π(u |x) Vπ(x) Qπ(x, u) μ(u |x)

{x1, u1, r1, …, xT} ∼ μ μ

π1, π2, …, πt−1

AA203 | Lecture 175/28/2025

Off-policy learning of action-values

15

• We consider off-policy learning of action-values

• As in Sarsa, we use the behavior policy to obtain , but we consider an alternative successor action

• And update towards value of alternative action

Q(x, u)

μ (xt, ut, rt, xt+1, u′￼t+1)
u′￼t+1 ∼ π(u′￼t+1 |xt+1)

Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, u′￼t+1)−Q(t,ut))

AA203 | Lecture 175/28/2025

Q-learning

16

Specifically, in Q-learning
• The target policy is chosen as the greedy policy w.r.t.

• The behavior policy is chosen as the -greedy policy w.r.t.

Which leads to the following Q-learning target and update:

π Q(x, u)

π(xt+1) = argmax
u′￼t+1

Q (xt+1, u′￼t+1)

μ ϵ Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1)−Q(t,ut))
rt+1 + γQ (xt+1, u′￼t+1)

= rt+1 + γQ (xt+1, argmax
u′￼t+1

Q (xt+1, u′￼t+1))
= rt+1 + γ max

u′￼t+1

Q (xt+1, u′￼t+1)

AA203 | Lecture 175/28/2025

Q-learning algorithm for off-policy control

17

Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Repeat (for each step of episode):

Choose from using policy derived from Q (e.g., -greedy)
Take action , observe

until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt

ut xt ϵ
ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
xt

AA203 | Lecture 175/28/2025

Differences between Sarsa and Q-learning

18

• Reward -1 until goal is reached, -100 if on “The Cliff”
•
•
•

ϵ = 0.1
α = 0.5
γ = 1

• Sarsa converges to the optimal -greedy policy
• Q-learning converges to the optimal policy / value

function

ϵ
π*

Q*

(Policy achieved
by Sarsa)

(Policy achieved
by Q-learning)

AA203 | Lecture 175/28/2025

Outline

Tabular methods
• On-policy & Off-policy

• SARSA
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

Value-based

AA203 | Lecture 175/28/2025

Solving large-scale problems with RL

20

• Reinforcement learning can be used to solve large problems, e.g.,

Backgammon: states1020 Go: states10170 All those problems where
we have a continuous state
space

How can we scale the methods for model-free RL we developed over the last lectures?

AA203 | Lecture 175/28/2025

Value function approximation

21

• So far we used lookup tables to represent value functions:
• One entry for every state in
• One entry for every state-action pair in

• In large MDPs, lookup table might be prohibitive. For two main reasons:
• Memory: too many actions/states to store
• Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

Solution:
• Estimate the value function through function approximation, i.e., define a parametric function with parameters

x V(x)
(x, u) Q(x, u)

θ

Q̂θ(x, u) ≈ Q(x, u)
̂Vθ(x) ≈ V(x)

 Represent the value function compactly (depends only on parameters)
 Generalize across states (avoid having to visit the entire state-action space by generalizing from seen

to unseen states)

→ θ
→

AA203 | Lecture 175/28/2025

Different types of value function approximations

22

θ

x

̂V(x)

θ

x

Q̂(x, u)

θ

xu

Q̂(x, u1) Q̂(x, u2) Q̂(x, um)
…

There are many possible function approximators
• Linear regression, Neural network, Random forest, Nearest neighbor, etc.

AA203 | Lecture 175/28/2025

Approximating value fn. by (stochastic) gradient descent

23

Goal: find the parameter vector that minimizes the “error” between the estimated value and the true value ,
e.g., MSE

θ ̂Vθ(x) Vπ(x)

J(θ) = 𝔼π [(Vπ(x) − ̂Vθ(x))
2]

Gradient descent converges to a local minimum

Stochastic GD samples the gradient

Δθ = −
1
2

α∇θJ(θ)

= α𝔼π [(Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)]

Δθ = α (Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)

AA203 | Lecture 175/28/2025

In the previous slide, we assumed to know the true value function in RL there is no supervisor, only rewardVπ →

In practice, we use a target for

• Monte-Carlo: the target is the return

• Temporal-Difference: the target is the TD target

Vπ

Δθ = α (Gt− ̂Vθ(xt))∇θ
̂Vθ(xt)

Δθ = α (rt + γ ̂Vθ(xt+1)− ̂Vθ(xt))∇θ
̂Vθ(xt)

Approximating value fn. by (stochastic) gradient descent

24

AA203 | Lecture 175/28/2025

Tabular ̂V(x)

Intuition

25

Fn. Approx. ̂V(x)

MC

TD

1) Compute return Gt = rt + γrt+1 + …, ∀t

2) Update estimate

̂V(x) = [̂V(xt) + α(Gt − ̂V(xt))…]

1) Compute target rt + γ ̂V(xt+1), ∀t

2) Update estimate

̂V(x) = [̂V(xt) + α(rt + γ ̂V(xt+1) − ̂V(xt))…]

1) Collect dataset 𝒟 = {(xt, Gt)}

2) Update θ

θ = θ + α (Gt − ̂Vθ(xt))∇θ
̂Vθ(xt)

1) Collect dataset 𝒟 = {(xt, rt + γ ̂Vθ(xt))}
2) Update estimate

θ = θ + α (rt + γ ̂Vθ(xt) − ̂Vθ(xt))∇θ
̂Vθ(xt)

…
x0

x1

x2

xT
u0, r0

u1, r1
uT−1, rT−1

AA203 | Lecture 175/28/2025

Control with function approximation

26

AA203 | Lecture 175/28/2025

Action-value function approximation

27

Exactly the same intuitions apply when we try to approximate the action value function:

J(θ) = 𝔼π [Qπ(x, u) − Q̂θ(x, u)]
• Use stochastic gradient descent to find a local minimum

Δθ = α (Qπ(x, u) − Q̂θ(x, u))∇θQ̂θ(x, u)

• Minimize the mean-squared error between the estimated value and the true value Q̂θ(x, u) Qπ(x, u)

Fitted Q-Iteration: update via stochastic gradient descent on TD target θ

Δθ = α (rt + γ max
u′￼t+1

Qθ (xt+1, u′￼t+1)−Q̂θ(xt, ut))∇θQ̂θ(xt, ut)

AA203 | Lecture 175/28/2025 28

Review: The skeleton of an RL algorithm

Generate samples

Fit a model / estimate
return

Improve the policy

AA203 | Lecture 175/28/2025 29

The skeleton of fitted Q-learning

Generate samples

Fit a model / estimate
return

Improve the policy set π (xt) = arg max
u

Qθ (xt, ut)

Run the policy and observe
(xt, ut, rt, xt+1)

Set target
yt ← rt + γ max

u
Qθ(xt+1, u)

Update to minimize θ
J(θ) = 𝔼π [yt − Qθ(xt, ut)]

AA203 | Lecture 175/28/2025

Deep Q-Networks (DQN)

30

One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks

(1) Use deep neural nets to represent in Q-
learning

Qθ (2) Uses experience replay and fixed
Q-targets

https://www.youtube.com/watch?v=TmPfTpjtdgg

AA203 | Lecture 175/28/2025

Deep Q-Networks (DQN)

31

(2) Uses experience replay and fixed Q-targets

• These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two
issues:

i) Samples within a trajectory are highly correlated makes supervised learning unstable
ii) The target is a moving target (i.e., as we update , the target of our regression also

changes)

→
rt + γ max

u′￼t+1

Qθ (xt+1, u′￼t+1) θ

• Take action according to -greedy policy
• Store transition in replay memory

• Sample batch of transitions from (Experience replay decorrelates data)

• Compute Q-learning targets w.r.t. old, fixed parameters
• Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

ut ϵ
(xt, ut, rt, xt+1) 𝒟

{(xt, ut, rt, xt+1)i}B
i=1 𝒟

ϕ

J(θ) = 𝔼(xt,ut,rt,xt+1)∼𝒟 [rt + γ max
u

Qϕ(xt+1, u) − Q̂θ(xt, ut)]

Intuitively:

AA203 | Lecture 175/28/2025

Next time

32

• Model-free RL: policy optimization methods

