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Optimal and Learning-based Control

Model-free Reinforcement Learning: Value-based Methods
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Course overview
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Review

4

In previous lectures, we made the distinction between prediction (given a policy , estimate ) and control (learn the 
optimal policy )

π Vπ, Qπ
π*

Motivated by Dynamic Programming, we discussed exact methods 
for solving MDPs: 
• Policy Iteration 
• Value Iteration

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model  T (xt+1 ∣ xt, ut)
We saw how to use sampling and bootstrapping to approximate the expectations in the update equations: 
• Monte Carlo (MC) Learning 
• Temporal-Difference (TD) Learning take action

observe state
observe reward

ut

rt

xt rt+1
xt+1
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Dynamic Programming backup
V̂ (xt) ← 𝔼 [Rt + γV̂ (xt+1)]

Monte Carlo backup

Temporal-Difference backup

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))
• Sampling: define the update through samples to approximate expectations 

• MC samples 
• TD samples 
• DP does not sample 

• Bootstrapping: define the update through an estimate 
• MC does not bootstrap 
• TD bootstraps 
• DP bootstraps

• For prediction:

xt

ut

xt+1
rt

ut

xt+1rt

xt
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• For control:

Policy Evaluation: Monte-Carlo policy evaluation of  

Policy Improvement: -Greedy policy improvement

Q̂(x, u) ≈ Q(x, u)

ϵ

Generalized Policy Iteration “Monte-Carlo Control”
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A taxonomy of RL
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RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL 
objective 

𝔼





 

estimate 
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via 
 or  V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)
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Outline

Tabular methods
• On-policy & Off-policy 

• SARSA 
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

Value-based Methods
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Temporal-Difference Control
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• TD learning has several advantages over MC 
• Lower variance 
• Online 
• Incomplete sequences 

• Natural idea: use TD instead of MC in our GPI scheme 
• Apply TD to estimate  
• Use -greedy policy improvement 
• Update every time-step

Q(x, u)
ϵ
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Updating action-value functions with Sarsa

9

• Uses every element of the quintuple of events, , that make up a transition from one state–action pair to 
the next through the following update rule

(xt, ut, rt, xt+1, ut+1)

• In RL literature,  is often expressed as 
 : hence the name

(xt, ut, rt, xt+1, ut+1)
(st, at, rt, st+1, at+1)

Temporal-Difference backup
̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1)−Q(xt, ut))
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Sarsa algorithm
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Initialize , arbitrarily, and  
Repeat (for each episode): 

Initialize  
Choose  from  using policy derived from Q (e.g., -greedy) 
Repeat (for each step of episode): 

Take action , observe 
Choose  from using policy derived from Q (e.g., -greedy)

 

; 
until  is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅ ) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 xt+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt
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Windy Gridworld example
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• Reward -1 until goal is reached 
•  
•  
•

ϵ = 0.1
α = 0.5
γ = 1
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Windy Gridworld example
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Question: 
Would MC methods easily apply to this 
problem? And why?
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Sarsa algorithm for ?-policy control

13

Initialize , arbitrarily, and  
Repeat (for each episode): 

Initialize  
Choose  from  using policy derived from Q (e.g., -greedy) 
Repeat (for each step of episode): 

Take action , observe 
Choose  from using policy derived from Q (e.g., -greedy)

 

; 
until  is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅ ) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 ut+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt

On-policy: evaluate or improve the policy that is used to make decisions 

Off-policy: evaluate or improve a policy different from that used to generate the data
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Off-policy learning
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• Evaluate target policy  to compute  or  while following behavior policy , i.e., 

, “the data we observe is obtained under policy ” 

Why is this important?  
• Learn from observing humans or other agents  

• Re-use experience generated from old policies  

• Learn about optimal policy while following exploratory policy

π(u |x) Vπ(x) Qπ(x, u) μ(u |x)

{x1, u1, r1, …, xT} ∼ μ μ

π1, π2, …, πt−1



AA203 | Lecture 175/28/2025

Off-policy learning of action-values
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• We consider off-policy learning of action-values  

• As in Sarsa, we use the behavior policy  to obtain , but we consider an alternative successor action 
  

• And update  towards value of alternative action 

Q(x, u)

μ (xt, ut, rt, xt+1, u′￼t+1)
u′￼t+1 ∼ π(u′￼t+1 |xt+1)

Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, u′￼t+1)−Q(t,ut))
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Q-learning
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Specifically, in Q-learning 
• The target policy  is chosen as the greedy policy w.r.t.  

 

• The behavior policy  is chosen as the -greedy policy w.r.t.  

Which leads to the following Q-learning target and update: 

π Q(x, u)

π(xt+1) = argmax
u′￼t+1

Q (xt+1, u′￼t+1)

μ ϵ Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1)−Q(t,ut))
rt+1 + γQ (xt+1, u′￼t+1)

= rt+1 + γQ (xt+1, argmax
u′￼t+1

Q (xt+1, u′￼t+1))
= rt+1 + γ max

u′￼t+1

Q (xt+1, u′￼t+1)
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Q-learning algorithm for off-policy control
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Initialize , arbitrarily, and  
Repeat (for each episode): 

Initialize  
Repeat (for each step of episode): 

Choose  from  using policy derived from Q (e.g., -greedy)
Take action , observe 

 

until  is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅ ) = 0

xt

ut xt ϵ
ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
xt
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Differences between Sarsa and Q-learning
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• Reward -1 until goal is reached, -100 if on “The Cliff” 
•  
•  
•

ϵ = 0.1
α = 0.5
γ = 1

• Sarsa converges to the optimal -greedy policy 
• Q-learning converges to the optimal policy  / value 

function 

ϵ
π*

Q*

(Policy achieved 
by Sarsa)

(Policy achieved 
by Q-learning)
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Outline

Tabular methods
• On-policy & Off-policy 

• SARSA 
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

Value-based 
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Solving large-scale problems with RL 
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• Reinforcement learning can be used to solve large problems, e.g.,  

Backgammon:  states1020 Go:  states10170 All those problems where 
we have a continuous state 
space  

How can we scale the methods for model-free RL we developed over the last lectures? 
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Value function approximation

21

• So far we used lookup tables to represent value functions:  
• One entry for every state  in  
• One entry for every state-action pair  in  

• In large MDPs, lookup table might be prohibitive. For two main reasons: 
• Memory: too many actions/states to store 
• Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long 

Solution: 
• Estimate the value function through function approximation, i.e., define a parametric function with parameters  

 

x V(x)
(x, u) Q(x, u)

θ

Q̂θ(x, u) ≈ Q(x, u)
̂Vθ(x) ≈ V(x)

 Represent the value function compactly (depends only on parameters ) 
 Generalize across states (avoid having to visit the entire state-action space by generalizing from seen 

to unseen states)

→ θ
→
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Different types of value function approximations
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θ

x

̂V(x)

θ

x

Q̂(x, u)

θ

xu

Q̂(x, u1) Q̂(x, u2) Q̂(x, um)
…

There are many possible function approximators 
• Linear regression, Neural network, Random forest, Nearest neighbor, etc.
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Approximating value fn. by (stochastic) gradient descent
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Goal: find the parameter vector  that minimizes the “error” between the estimated value  and the true value , 
e.g., MSE

θ ̂Vθ(x) Vπ(x)

J(θ) = 𝔼π [(Vπ(x) − ̂Vθ(x))
2]

Gradient descent converges to a local minimum 

 

Stochastic GD samples the gradient  

Δθ = −
1
2

α∇θJ(θ)

= α𝔼π [(Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)]

Δθ = α (Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)
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In the previous slide, we assumed to know the true value function   in RL there is no supervisor, only rewardVπ →

In practice, we use a target for  

• Monte-Carlo: the target is the return 

 
• Temporal-Difference: the target is the TD target  

Vπ

Δθ = α (Gt− ̂Vθ(xt))∇θ
̂Vθ(xt)

Δθ = α (rt + γ ̂Vθ(xt+1)− ̂Vθ(xt))∇θ
̂Vθ(xt)

Approximating value fn. by (stochastic) gradient descent

24
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Tabular ̂V(x)

Intuition

25

Fn. Approx. ̂V(x)

MC

TD

1) Compute return Gt = rt + γrt+1 + …, ∀t

2) Update estimate 

̂V(x) = [ ̂V(xt) + α(Gt − ̂V(xt))… ]

1) Compute target rt + γ ̂V(xt+1), ∀t

2) Update estimate 

̂V(x) = [ ̂V(xt) + α(rt + γ ̂V(xt+1) − ̂V(xt))… ]

1) Collect dataset 𝒟 = {(xt, Gt)}

2) Update  θ

θ = θ + α (Gt − ̂Vθ(xt))∇θ
̂Vθ(xt)

1) Collect dataset 𝒟 = {(xt, rt + γ ̂Vθ(xt))}
2) Update estimate 

θ = θ + α (rt + γ ̂Vθ(xt) − ̂Vθ(xt))∇θ
̂Vθ(xt)

…
x0

x1

x2

xT
u0, r0

u1, r1
uT−1, rT−1
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Control with function approximation

26
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Action-value function approximation
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Exactly the same intuitions apply when we try to approximate the action value function:

J(θ) = 𝔼π [Qπ(x, u) − Q̂θ(x, u)]
• Use stochastic gradient descent to find a local minimum 

Δθ = α (Qπ(x, u) − Q̂θ(x, u))∇θQ̂θ(x, u)

• Minimize the mean-squared error between the estimated value  and the true value Q̂θ(x, u) Qπ(x, u)

Fitted Q-Iteration: update  via stochastic gradient descent on TD target  θ

Δθ = α (rt + γ max
u′￼t+1

Qθ (xt+1, u′￼t+1)−Q̂θ(xt, ut))∇θQ̂θ(xt, ut)
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Review: The skeleton of an RL algorithm 

Generate samples

Fit a model / estimate 
return

Improve the policy
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The skeleton of fitted Q-learning

Generate samples

Fit a model / estimate 
return

Improve the policy  set π (xt) = arg max
u

Qθ (xt, ut)

Run the policy and observe 
(xt, ut, rt, xt+1)

Set target 
yt ← rt + γ max

u
Qθ(xt+1, u)

Update  to minimize   θ
J(θ) = 𝔼π [yt − Qθ(xt, ut)]
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Deep Q-Networks (DQN)
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One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks 

(1) Use deep neural nets to represent  in Q-
learning

Qθ (2) Uses experience replay and fixed 
Q-targets

https://www.youtube.com/watch?v=TmPfTpjtdgg
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Deep Q-Networks (DQN)

31

(2) Uses experience replay and fixed Q-targets

• These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two 
issues: 

i) Samples within a trajectory are highly correlated  makes supervised learning unstable  
ii) The target   is a moving target (i.e., as we update , the target of our regression also 

changes)

→
rt + γ max

u′￼t+1

Qθ (xt+1, u′￼t+1) θ

• Take action  according to -greedy policy 
• Store transition  in replay memory  

• Sample batch of transitions  from  (Experience replay decorrelates data) 

• Compute Q-learning targets w.r.t. old, fixed parameters  
• Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective) 

ut ϵ
(xt, ut, rt, xt+1) 𝒟

{(xt, ut, rt, xt+1)i}B
i=1 𝒟

ϕ

J(θ) = 𝔼(xt,ut,rt,xt+1)∼𝒟 [rt + γ max
u

Qϕ(xt+1, u) − Q̂θ(xt, ut)]

Intuitively:
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Next time

32

• Model-free RL: policy optimization methods


