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The basics of Imitation Learning

 Assume access to a dataset D = {(x,,u,)})_, of state-control pairs
collected by an expert

* At a high-level, approaches to IL belong to two main categories:
* Behavior Cloning “learn the policy used by expert”

* Inverse Reinforcement Learning “learn the objective optimized by the expert”
(a.k.a. Inverse Optimal Control)

Behavior Cloning Inverse Reinforcement Learning
mo(u|x) R:XxU—R
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Outline

* Imitation Learning:

* Behavior Cloning (BC)
e Common pitfalls
 Design strategies for effective IL
* Other paradigms (RvS, Inverse RL)

* Inverse Reinforcement Learning (IRL)
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Recap: BC as “supervised learning of behavior”

1. SL:learn a (parametric) mapping from inputs x to
outputs y by minimizing a measure of prediction error

...,C}

D = {(%n,¥,) }n 1 e.g., mean squared error (MSE) Is this it?
. _ , , 1 X A Today:
0" = argmin L(0;D) L= — —9/2, wh = y:
5 (6:D) D| (x;:epuy Iz, wherey = Jolx) « What could go wrong?
_ N ° 1
2. Skeleton of a BC algorithm: D = 1(xa, tn) by Strategies to address
these challenges

* Collect a dataset of “expert” demonstrations ===

(©

«  Train policyms(u|x)to mimic expert:

1
L=— Z |lu—1l3, where @t = my(x)
| |(x,u)ED

e D
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Common Pitfalls: 1) Compounding Errors

In statistical learning theory, data is assumed to be independent and
identically distributed (i.i.d)

Px) /%, )
3

When learning behavior policies however: X3

Predicted controls influence future states
Even small errors can lead to drift away from the data distribution
Errors compound

This leads to the state distributions under
xs  the expert and the learner to diverge

X3 U3

X U X X
2 A Pexpert(X) 7 Pr, (X) Probability of making mistakes grows
X1 ulﬁl i 1) us3 “covariate s h Ift % quadraticaég/(wfiltjh;)he length of the trajectory
€

[Ross & Bagsnell ’10]
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Common Pitfalls: 2) Multimodal behavior

®

In many tasks, there exist multiple (equivalent) solutions

In IL, this becomes relevant the moment the dataset
Is characterized by multimodal demonstrations

-l

W/

e.g., fitting multimodal behavior |

This is extremely common in practice, e.g., data / <
collected by multiple experts distribution M
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A useful mental model

We can address these challenges in a few different ways:

Targeted algorithms
Smart data collection (and augmentation)

Use expressive models (e.g., that are able to capture the multi-
modality of behavior data)

Instruction Action

ip ounver ‘ RT." | Mode Arm Base XS u3
I es ' 3Hz

eeeeeeeeeeeeeeeeeeeee
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A useful mental model

We can address these challenges in a few different ways:

- Targeted algorithms

5/19/2025

; EfficientNet TokenLearner Transformer

RT-1
3Hz

FiLM
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The value of data

- Alot of the methods that make naive BC work try to leverage the fact

that, during deployment, we can recover from mistakes
« Modify the learning problem to allow BC to learn how to correct from mistakes

- Paradox:

« Learning from a broader set of trajectories that make some mistakes (and

recoveries) is likely to work better than learning from a narrow set of perfect
demonstration data

X4
X3 U3

1§15 3
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Learning from interventions: DAgger

DAgger is a well-known method for addressing the covariate shift
problem through data aggregation techniques

DAgger seeks to reduce the covariate shift by explicitly gathering expert
demonstrations under the state distribution induced by the learner.

Pexpert (X) 7 Pry(X)

“covariate shift” .. Atits core, DAgger defines an iterative procedure:
X3 Us ! Algorithm 22.3: DAGGER Algorithm
X9 U2 Data: Initial dataset of expert demonstrations, D, initial policy, 71:‘13,
number of iterations, N
X1 ! 1§ 5} U3 Result: Trained policy, 7))
ﬁl fori=1,2,..., N do

Collect trajectories, T = {(x¢, uj¥™°T)}, using the policy 77},
Gather dataset of states visited by the learner and actions given by the
expert, D' = {(x;, uy P},
Aggregate the dataset, D «+ DU D'.
| Train the policy ni,"'l on the updated dataset, D.

return Trained policy, 7))
5/19/2025 16




Learning from interventions: DAgger

Essentially, DAgger operates as a form of  uy
iterative supervised learning;: x; W2
Reduces the amount of expert data required = iy iy
(i.e., the alternative would be collecting an SRR

extremely broad dataset of demonstrations)

+ data-efficient way of querying the expert
- querying the expert can be expensive

Many algorithms have been developed that follow a similar scheme:

Confidence-based methods: “query the expert when the agent is
uncertain about its decisions”

Human-gated DAgger: “query the expert when the policy makes a
mistake”
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A useful mental model

We can address these challenges in a few different ways:

- Smart data collection (and augmentation)

X4

RT-‘l | Mode Arm Base XS U3
3H. b x 2 u 2
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Case Study 1

End to End Learning for Self-Driving Cars

Mariusz Bojarski
NVIDIA Corporation
Holmdel, NJ 07735

Beat Flepp
NVIDIA Corporation
Holmdel, NJ 07735

Urs Muller
NVIDIA Corporation
Holmdel, NJ 07735

5/19/2025

Davide Del Testa
NVIDIA Corporation
Holmdel, NJ 07735

Prasoon Goyal
NVIDIA Corporation
Holmdel, NI 07735

Jiakai Zhang
NVIDIA Corporation
Holmdel, NI 07735

Daniel Dworakowski
NVIDIA Corporation
Holmdel, NJ 07735

Lawrence D. Jackel
NVIDIA Corporation
Holmdel, NJ 07735

Xin Zhang
NVIDIA Corporation
Holmdel, NJT 07735

Karol Zieba
NVIDIA Corporation
Holmdel, NJ 07735

Bernhard Firner
NVIDIA Corporation
Holmdel, NJ 07735

Mathew Monfort
NVIDIA Corporation
Holmdel, NJ 07735

Jake Zhao
NVIDIA Corporation
Holmdel, NJ 07735
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Case Study 1

Bojarski et al. ‘16, NVIDIA
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An important detail

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation
MNetwork
Left camera computed
’ ol steering
" \ ; command
Center camera ————= el s_hn‘t - CNN
] and rotation
.
Right camera A
Back propagation
weight adjustment
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Case Study 2

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti', Jérdme Guzzi', Dan C. Ciresan', Fang-Lin He', Juan P. Rodriguez'
Flavio Fontana®, Matthias Faessler?, Christian Forster”
Jiirgen Schmidhuber!, Gianni Di Caro', Davide Scaramuzza®, Luca M. Gambardella®

Quadrot
194 _-, /

5 B S A
b

Deep Network Outputs
Neural
Network

TR
Turm Go Turn

Left Straight Right
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k3 : - ~ P a—
Deep Neural Network Control Signal

Case Study 2 e

Tum Go Tumn
Left Straight Right

Training the classifier o

Control Signal

—ull

Tun  Go Tun
Left Straight Right
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Key idea: Being intentional with data

collection
x) Intentionally add mistakes and corrections to
PR Ix X3 your data:

. Augment your collection pipeline with “fake”
demonstrations of corrections (e.g., side
cameras)

Use algorithms that automate the collection of
Pexpert (X) 7 Pry (%) x correction data where it matters more (e.g.,
xy W DAgger)
w1 1 D) a3

15§}
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A useful mental model

We can address these challenges in a few different ways:

- Use expressive models (e.g., that are able to capture the multi-
modality of behavior data)

5/19/2025 AA 203 | Lecture 15
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Improving the expert’s predictions

At a

ﬂmlude history of observations\

7T(ut|Xt)
|

W(Ut\xu Xt—1y--- axt—H)

Action
Arm

RT-1
3Hz

nigh level, two main classes of methods:

/ Expressive function class \

VANVAN

p(u|x)

-~
NV

E.g., mixture of Gaussians, conditional VAEs, diffusion

models, etc.




Non-Markovian behavior

Often, the behavior observed in demonstration data does not depend
only on the current observation

(g |x¢) (W | Xy Xt 1500 Xt H)

Idea: represent the policy via any sequence model (e.g., Transformers,

LSTM/GRU cells, etc.) "
t

Sequence model

5/19/2025 Xt_H e xt—l Xt
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Capturing the data distribution

/\A

mo(u|x)

n of the
ata

QZA/
D
Q

dtbutn

-~
NV

Minimizing average prediction error is inherently limited in presence

of more complex data distributions
Goal: represent the entire distribution (as opposed to e.g., only the

mean)
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Parametrizing distributions

. Use a parametric function (e.g., a neural network) to output the

parameters of a distribution

1D discrete distribution

- p(up)
‘\‘1?0.'%‘:«- p(left) i1
:WQ p(down) i

© p(right) 4 € ¥ P

+ handles multimodality
- scaling to high-dim action spaces

5/19/2025
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Continuous distribution

O
O Zo5m U
KO0
Ng S

steering angle

+ captures the continuous nature of actions
- not very expressive (e.g., unimodal)
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Expressive policy architectures

Gaussian Mixture Model Discretize + Autoregressive Diffusion

D

m(ug|x) = H P(Ut,z‘

U <iy Xt)

Sample data p(x,) =

p(X turn to noise
P & B Exe tie
Po(Xo) L
Clean Xo X4

Xt Xt U< ™

5/1 9/2025 AA 203 | Lecture 15 Sample noise pr(x7) = turn into data

Pure
noise

X7_1 X

® Reverse [ denoising process



Diffusion Policy

ay OLUMBIA / ) TOYO I I I W B Massachusetts

Institute of
= ENGINEERING RESEARCH INSTITUTE Yechnology

Diffusion Policy

Visuomotor Policy Learning via Action Diffusion

-~ " adion ! I Energ Gradient Fleld
\ Representation ! q 1.0 yyy
By "l i T
: oy, : Diffusion Policy 0.5 An : ;
| Scalar (Regression) : Implicit Policy ¢ v " t B ';
Explicit Policy : = N 1 arg min(E) ! Fvrf vvvvvvv vy
. ! AeX 1 L ¥ - + :K Ao.oFF= 'AAAAAAAAAA
o : i i A\ =
00) |\ meon. | | | (Bilora) B R
@ |+ | SC — il
‘ ! ikt
! eg ICi -
P . @ @ 90 05 00 05 1.0
o ; o 5 o s i . (0]
(a) Explicit Policy (b) Implicit Policy (c) Diffusion Policy
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Robotics Transformer

RT-1: Robotics Transformer

for Real-World Control at Scale

Anthony Brohan Noah Brown Justice Carbajal Yevgen Chebotar Joseph Dabis Chelsea Finn Keerthana Gopalakrishnan

Karol Hausman AlexHerzog ~ Jasmine Hsu Julian Ibarz Brian Ichter ~ Alex Irpan To
Sally Jesmonth Nikhil Joshi Ryan Julian Dmitry Kalashnikov Yuheng Kuang Isabel Leal

mas Jackson
Kuang-Huei Lee

Sergey Levine  Yao Lu Utsav Malla Deeksha Manjunath Igor Mordatch ~ Ofir Nachum  Carolina Parada

Jodilyn Peralta Emily Perez Karl Pertsch Jornell Quiambao Kanishka Rao Michael Ryoo
Pannag Sanketi Kevin Sayed Jaspiar Singh Sumedh Sontakke Austin Stone Clayton Tan

Grecia Salazar
Huong Tran

Vincent Vanhoucke Steve Vega Quan Vuong Fei Xia Ted Xiao Peng Xu Sichun Xu Tianhe Yu Brianna Zitkovich

Authors listed in alphabetical order (see paper appendix for contribution statement).

@ Robotics at Google = Everyday Robots (Google Research

Instruction

Pick appie from top drawer and place on counter
>

Images

FiLM
. EfficientNet

5/19/2025

-4

/RT-1

3Hz

TokenlLearner
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4x speed, unse\“li‘tchen“& = RT-1 Controlling the robot

4] Ad |
» i’ L Wit 2
' :VE ‘v 5
o i B <

Instruction: Bring me the rice chips from the drawer.
Current step: go to the drawers

Action
Mode Arm Base

Transformer
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A useful mental model

We can address these challenges in a few different ways:

Targeted algorithms
Smart data collection (and augmentation)

Use expressive models (e.g., that are able to capture the multi-
modality of behavior data)

Instruction Action

ip ounver ‘ RT." | Mode Arm Base XS u3
I es ' 3Hz

eeeeeeeeeeeeeeeeeeeee
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Pros and Cons

Until now, we discussed IL (namely, Behavior Cloning) as the problem of
learning to “mimic” the behavior of an expert from demonstrations

essentially, SL; easy to implement and monitor
no need for trial-and-error learning (as in RL)

bypasses the task of designing
a reward function; only demonstrations are needed

Ccons:

Dependence on demonstration quality: poor demos lead to
suboptimal policies

Generalization and compounding errors: struggles with covariate shift

No exploration: does not explore the space of solutions for better
policies
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Outline

* Imitation Learning:

* Behavior Cloning (BC)
e Common pitfalls
 Design strategies for effective IL
* Other paradigms (RvS, Inverse RL)

* Inverse Reinforcement Learning (IRL)
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Reinforcement Learning via Supervised Learning (RvS)

Recent work has explored the idea of converting the reinforcement
learning problem (more in the next lecture) into a conditional, filtered, or
weighted imitation learning problem.

Key idea: rather than relying solely on “optimal” demonstrations,
leverage a broader set of demonstrations from, e.g., suboptimal policies,
related tasks, etc.

Two main classes of methods:
1. Filtering or Weighting Demonstrations
2. Goal or Reward Conditioning
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Filtering or Weighting Demonstrations

One common approach to RvS is to filter or weight the expert demonstrations
based on their quality

Filtering: A simple approach could entail ranking the expert demonstrations based
on their return: T—1
r(7) = Z 7' R(x¢, uy)
t=0

Then, we filter the dataset to include only the top-k% of trajectories:
D={reD|r(r) >T}.

Weighting: A different approach might involve weighting each individual transition
of a trajectory based on its reward, rather than filtering entire trajectories.

1 & ;
D = {(%n, W) }n1 NLIL(6) = - N ) logmg(ux)R(x,u)  Bmic = argmin NLL()
n=1 o
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Goal or Reward Conditioning

Conditioning on outcomes is particularly useful in settings where the expert
demonstrations are suboptimal or collected from a different task.

Each trajectory might be described using different outcomes, such as the final
state of the trajectory, the total reward obtained, or a specific state that was
visited during the trajectory

Goal-conditioning: w=x¢€ X

NLL(#) = —— ) logms(u|x,w) -1
Z Reward-conditioning: w =Y R(x:,u)
t=0
- Easily derivable from demonstration data x; uz
» Allows to extract useful behavior from x, W
suboptimal data u r(ulx,w = x4)
- Improved generalization; decouples the X1

process of achieving desired outcomes from
the reward structure
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Outline

* Imitation Learning:

* Behavior Cloning (BC)
e Common pitfalls
 Design strategies for effective IL
* Other paradigms (RvS, Inverse RL)

* Inverse Reinforcement Learning (IRL)
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Inverse Reinforcement Learning (IRL)

IRL takes an orthogonal approach to IL, by attempting to recover a reward
function from a policy, or from demonstrations of a policy

Example: (BCvs IRL)
A warehouse robot must navigate from a starting point to a goal while avoiding
obstacles.

Behavior Cloning:
Collect demonstration data, train a policy that imitates the demonstrations

Effective in familiar scenarios, however, it may struggle if the layout changes

substantially

Inverse RL:
Collect the same demonstration data, infer the reward function (e.g., positive

for moving closer to the goal, negative for moving close to obstacles)
The reward function encapsulates the underlying principles of the task
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Inverse Reinforcement Learning (IRL)

- Formally, the goal of IRL is to recover areward functionR: X x4 — R
from a dataset of demonstrations D = {(x,, u, )}

n=1

- In practice, the reward is parametrized by some parameters w. Therefore, the
goal is to find the value of W that better explains the expert demonstrations

- Most IRL algorithms follow an iterative learning process:

Algorithm 22.4: High-level IRL Algorithm Key challenge: reward ambiguity (i.e.,
Data: Expert demonstrations, D, initialized reward function parameters, d f t l . th
w, initialized policy parameters, 0 ma ny rewar unctions eXp aln €
Result: Learned reward function parameters, w, learned policy same d at a)
parameters, 0
hile not erged d 1 .

Y b‘;}ﬁztgot?;lz :}gfvarg function parameters, w. Popu "ar a lgorlth ms' .

\; Update the policy parameters, 8, to maximize the current estimate of ° Ap p Fen Tl CeSh | p lea rnin g

the reward function. . . H

return Optimized reward and policy parameters: w, 6. » Maximum Ma rgl npP la nnin g

« Maximum entropy IRL
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Recap

1) Collect adataset of “expert” demonstrations
2) Train policy mp(u|x) to mimic expert:

Main Challenges:
« Compounding errors
- Multimodal behavior

X4

l
X3 U /\| A
X9 uz l
f mo(ulx
up ﬁz ﬁ3 Data '\v 6( I )
X1 A distribution Mean of the
up data

Leverage broader set of demonstrations
under the same “BC” paradigm

5/19/2025 AA 203 | Lecture 15
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(gi

Smart data collection
- Targeted algorithms
Use expressive models

Learn the reward function from

demonstrations
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Next class

* Reinforcement Learning

Additional References:
- Stanford CS 224R
- Berkeley C5285
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