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Optimal and Learning-based Control
Persistent feasibility of MPC (cont’d), stability of MPC, and explicit MPC
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Model predictive control

• Persistent feasibility of MPC (cont'd)

• Stability of MPC

• Explicit MPC

• Reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.

• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 
Computation, and Design, 2017.
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Persistent feasibility theorem

• Feasibility theorem: if set 𝑋𝑓  is a control invariant set for system:

𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋,  𝐮 𝑡 ∈ 𝑈,  𝑡 ≥ 0 

   then the MPC law is persistently feasible
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Persistent feasibility theorem

• Proof

1. Define “truncated” feasibility set at step 𝑁 − 1:
𝑋𝑁−1 ≔ 𝐱𝑁−1 ∈ 𝑋 ∃ 𝐮𝑁−1 such that 𝐱𝑁−1 ∈ 𝑋, 𝐮𝑁−1 ∈  𝑈, 

 𝐱𝑁∈ 𝑋𝑓 where 𝐱𝑁 = 𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1} 

2. Due to the terminal constraint
𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1 = 𝐱𝑁 ∈ 𝑋𝑓
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Persistent feasibility theorem

• Proof

3. Since 𝑋𝑓  is a control invariant set, there exists a 𝐮 ∈ 𝑈 
such that 

𝐱+ = 𝐴𝐱𝑁 + 𝐵𝐮 ∈ 𝑋𝑓

4. The above is indeed the requirement to belong to set 𝑋𝑁−1

5. Thus, 𝐴𝐱𝑁−1 + 𝐵𝐮𝑁−1 = 𝐱𝑁 ∈ 𝑋𝑁−1

6. We have just proved that 𝑋𝑁−1 is control invariant 

7. Repeating this argument, one can recursively show that 
𝑋𝑁−2, 𝑋𝑁−3, ⋯ , 𝑋1 are control  invariant, and the 
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

• The terminal set 𝑋𝑓  is introduced artificially for the sole purpose of 
leading to a sufficient condition for persistent feasibility

• We want it to be large so that it does not compromise closed-loop 
performance

• Though it is simplest to choose 𝑋𝑓  = {0}, this is generally undesirable 

• We’ll discuss better choices later
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Stability of MPC

• Persistent feasibility does not guarantee that the closed-loop 
trajectories converge towards the desired equilibrium point

• One of the most popular approaches to guarantee persistent 
feasibility and stability of the MPC law makes use of a control 
invariant terminal set 𝑋𝑓  for feasibility, and of a terminal function 
𝑝(⋅) for stability 

• To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

• Lyapunov theorem: Consider the equilibrium point 𝐱 = 0 for the 
autonomous system 𝐱𝑘+1 = 𝐟 𝐱𝑘  (with 𝐟 𝟎 = 𝟎). Let Ω ⊂ ℝ𝑛 be 
a closed, bounded, positively invariant set containing the origin. Let 
𝑉: ℝ𝑛 → ℝ be a function, continuous at the origin, such that 

𝑉 𝟎 = 0 and 𝑉 𝐱 > 0   ∀𝐱 ∈ Ω ∖ {𝟎} 

𝑉 𝐱𝑘+1 − 𝑉 𝐱𝑘 < 0 ∀𝐱𝑘 ∈ Ω ∖ {𝟎} 

   Then 𝐱 = 0 is asymptotically stable in Ω.

• The idea is to show that with appropriate choices of 𝑋𝑓  and 𝑝(⋅),
𝐽0

∗ is a Lyapunov function for the closed-loop system 
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MPC stability theorem

• MPC stability theorem (for quadratic cost): Assume

A0: 𝑄 = 𝑄𝑇 ≻ 0, 𝑅 = 𝑅𝑇 ≻ 0, 𝑃 ≻ 0

A1: Sets 𝑋, 𝑋𝑓, and 𝑈 contain the origin in their interior and are closed

A2: 𝑋𝑓 ⊆ 𝑋 is control invariant and bounded

A3: min
𝐮∈𝑈, 𝐴𝐱+𝐵𝐮 ∈ 𝑋𝑓

−𝑝 𝐱 + 𝑐 𝐱, 𝐮 + 𝑝 𝐴𝐱 + 𝐵𝐮 ≤ 0, ∀𝐱 ∈ 𝑋𝑓  

Then, the origin of the closed-loop system is asymptotically stable 
with domain of attraction 𝑋0.
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MPC stability theorem

• Proof: 

1. Note that, by assumption A2, persistent feasibility is guaranteed for 
any 𝑃, 𝑄, 𝑅

2. We want to show that 𝐽0
∗ is a Lyapunov function for the closed-loop 

system 𝐱 𝑡 + 1 =  𝐟cl(𝐱 𝑡 ), with respect to the equilibrium 𝐟cl 𝟎 =
𝟎 (the origin is indeed an equilibrium as 𝟎 ∈ 𝑋, 𝟎 ∈ 𝑈, and the cost is 
positive for any non-zero control sequence)

3. 𝑋0 is bounded and closed (follows from assumption on 𝑋𝑓)

4.  𝐽0
∗ 𝟎 = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

• Proof: 

5.  𝐽0
∗ 𝐱 > 0 for all 𝐱 ∈ 𝑋0 ∖ {𝟎} 

6. Next we show the decay property. Since the setup is time-invariant, 
we can study the decay property between 𝑡 = 0 and 𝑡 = 1

• Let 𝐱 0 ∈ 𝑋0, let 𝑈0
[0]

= [𝐮0
0

, 𝐮1
0

, … , 𝐮𝑁−1
0

] be the optimal control sequence, 

and let [𝐱(0), 𝐱1
0

, … , 𝐱𝑁
0

] be the corresponding trajectory 

• After applying 𝐮0
0

, one obtains 𝐱 1 = 𝐴𝐱 0 + 𝐵𝐮0
0

• Consider the sequence of controls [𝐮1
0

, 𝐮2
0

, … , 𝐮𝑁−1
0

, 𝐯], where 𝐯 ∈ 𝑈, and the 

corresponding state trajectory is [𝐱(1), 𝐱2
0

, … , 𝐱𝑁
0

, 𝐴𝐱𝑁
0

+ 𝐵𝐯] 
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MPC stability theorem

• Since 𝐱𝑁
0

∈ 𝑋𝑓(by terminal constraint), and since 𝑋𝑓  is control invariant, 

∃ത𝐯 ∈ 𝑈 such that 𝐴𝐱𝑁
0

+ 𝐵 ത𝐯 ∈ 𝑋𝑓

• With such a choice of ത𝐯, the sequence [𝐮1
0

, 𝐮2
0

, … , 𝐮𝑁−1
0

, ത𝐯] is feasible for the 
MPC optimization problem at time 𝑡 = 1

• Since this sequence is not necessarily optimal
 

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵 ത𝐯 + ෍

𝑘=1

𝑁−1

𝑐 𝐱𝑘
0

, 𝐮𝑘
0

+ 𝑐 𝐱𝑁
0

, ത𝐯
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MPC stability theorem

• Since 𝐱𝑁
0

∈ 𝑋𝑓(by terminal constraint), and since 𝑋𝑓  is control invariant, 

∃ത𝐯 ∈ 𝑈 such that 𝐴𝐱𝑁
0

+ 𝐵 ത𝐯 ∈ 𝑋𝑓

• With such a choice of ത𝐯, the sequence [𝐮1
0

, 𝐮2
0

, … , 𝐮𝑁−1
0

, ത𝐯] is feasible for the 
MPC optimization problem at time 𝑡 = 1

• Since this sequence is not necessarily optimal
 

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵 ത𝐯 + ෍

𝑘=1

𝑁−1

𝑐 𝐱𝑘
0

, 𝐮𝑘
0

+ 𝑐 𝐱𝑁
0

, ത𝐯

            + 𝑝 𝐱𝑁
0

− 𝑝 𝐱𝑁
0

+ 𝑐 𝐱 0 , 𝐮0
0

− 𝑐 𝐱(0), 𝐮0
0
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MPC stability theorem

• Equivalently 

𝐽0
∗ 𝐱 1 ≤ 𝑝 𝐴𝐱𝑁

0
+ 𝐵 ത𝐯 + 𝐽0

∗ 𝐱 0 − 𝑝 𝐱𝑁
0

− 𝑐 𝐱(0), 𝐮0
0

+ 𝑐(𝐱𝑁
0

, ത𝐯)

• Since 𝐱𝑁
0

∈ 𝑋𝑓, by assumption A3, we can select ത𝐯 such that 

𝐽0
∗ 𝐱 1 ≤ 𝐽0

∗ 𝐱 0 − 𝑐 𝐱(0), 𝐮0
0

• Since 𝑐 𝐱(0), 𝐮0
0

> 0 for all 𝐱 0 ∈ 𝑋0 ∖ {0},

𝐽0
∗ 𝐱 1 − 𝐽0

∗ 𝐱 0 < 0

• The last step is to prove continuity; details are omitted and can be 
found in Borrelli, Bemporad, Morari, 2017

• Note: A2 is used to guarantee persistent feasibility; this assumption 
can be replaced with an assumption on the horizon 𝑁 
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How to choose 𝑋𝑓 and 𝑃?

• Case 1: assume 𝐴 is asymptotically stable 
• Set 𝑋𝑓  as the maximally positive invariant set 𝑂∞ for system 𝐱 𝑡 + 1 =

𝐴𝐱 𝑡 ,  𝐱 𝑡 ∈ 𝑋

• 𝑋𝑓  is a control invariant set for system 𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡), as 𝐮 =
0 is a feasible control 

• As for stability, 𝐮 = 0 is feasible and 𝐴𝐱 ∈ 𝑋𝑓  if 𝐱 ∈ 𝑋𝑓, thus assumption A3 
becomes 

−𝐱𝑇𝑃𝐱 + 𝐱𝑇𝑄𝐱 + 𝐱𝑇𝐴𝑇𝑃𝐴𝐱 ≤ 0, for all 𝐱 ∈ 𝑋𝑓,

   which is true since, due to the fact that 𝐴 is asymptotically stable, 

∃𝑃 ≻ 0 |  − 𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 = 0 (Lyapunov Equation)

Cost-to-go/value function
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How to choose 𝑋𝑓 and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹∞ be the optimal gain for the infinite-horizon LQR controller

• Set 𝑋𝑓  as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹∞ 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹∞𝐱 𝑡 ∈ 𝑈)

• Set 𝑃 as the solution 𝑃∞ to the discrete-time Riccati equation, i.e., the value 
function via LQR

−𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵 −1(𝐵𝑇𝑃𝐴) = 0
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How to choose 𝑋𝑓 and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹∞ be the optimal gain for the infinite-horizon LQR controller

• Set 𝑋𝑓  as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹∞ 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹∞𝐱 𝑡 ∈ 𝑈)

• Set 𝑃 as the solution 𝑃∞ to the discrete-time Riccati equation, i.e., the value 
function via LQR

−𝑃 + 𝑄 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵 −1(𝐵𝑇𝑃𝐴) = 0

• Note: both cases as presented are just (suboptimal) choices!
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Explicit MPC

• In some cases, the MPC law can be pre-computed → no need for 
online optimization

• Important case: constrained LQR

𝐽0
∗ 𝐱 = min

𝐮0,…,𝐮𝑁−1

𝐱𝑁
𝑇 𝑃𝐱𝑁 + ෍

𝑘=0

𝑁−1

𝐱𝑘
𝑇𝑄𝐱𝑘 + 𝐮𝑘

𝑇𝑅𝐮𝑘

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 ,  𝑘 = 0, … , 𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘 ∈ 𝑈,  𝑘 = 0, … , 𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱
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Explicit MPC

• The solution to the constrained LQR problem is a control which is a 
continuous piecewise affine function on polyhedral partition of the 
state space 𝑋, that is 𝐮𝑘

∗ = 𝜋𝑘(𝐱𝑘) where 

𝜋𝑘 𝐱 = 𝐹𝑘
𝑗
𝐱 + 𝑔𝑘

𝑗
   if   𝐻𝑘

𝑗
𝐱 ≤ 𝐾𝑘

𝑗
,   𝑗 = 1, … , 𝑁𝑘

𝑟

• Thus, online, one has to locate in which cell of the polyhedral 
partition the state 𝐱 lies, and then one obtains the optimal control 
via a look-up table query 
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Tuning and practical use 

https://www.mpt3.org/

• At present there is no other technique other than MPC to design 
controllers for general large linear multivariable systems with input 
and output constraints with a stability guarantee

• Design approach (for squared 2-norm cost):
• Choose horizon length 𝑁 and the control invariant target set 𝑋𝑓

• Control invariant target set 𝑋𝑓  should be as large as possible for performance 
• Choose the parameters 𝑄 and 𝑅 freely to affect the control performance 
• Adjust 𝑃 as per the stability theorem 
• Useful toolbox (MATLAB): https://www.mpt3.org/

• In practice, sometimes choosing a good terminal cost is enough (i.e., 
don’t need to enforce a terminal control invariant condition), though 
you may be sacrificing guarantees
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MPC for reference tracking

• Usual cost 

σ𝑘=0
𝑁−1 𝐱𝑘

𝑇𝑄𝐱𝑘 + 𝐮𝑘
𝑇𝑅𝐮𝑘  

   does not work, as in steady state control does not need to be zero 

• 𝛿𝐮- formulation: reason in terms of control changes 

 𝐮𝑘 = 𝐮𝑘−1 + 𝛿𝐮𝑘
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MPC for reference tracking

• The MPC problem is readily modified to

 

• The control input is then 𝐮 𝑡 = 𝛿𝐮0
∗ + 𝐮(𝑡 − 1)

𝐽0
∗ 𝐱 𝑡 = min

𝛿𝐮0,…,𝛿𝐮𝑁−1

෍

𝑘

𝐲𝑘 − 𝐫𝑘 𝑄
2 + 𝛿𝐮𝑘 𝑅

2

subject to 𝐱𝑘+1= 𝐴𝐱𝑘 + 𝐵𝐮𝑘 ,  𝑘 = 0, … , 𝑁 − 1

𝐱𝑘∈ 𝑋, 𝐮𝑘 ∈ 𝑈,  𝑘 = 0, … , 𝑁 − 1

𝐱𝑁∈ 𝑋𝑓

𝐱0= 𝐱 𝑡 , 𝐮−1 = 𝐮(𝑡 − 1) 

𝐲𝑘= 𝐶𝐱𝑘 ,  𝑘 = 0, … , 𝑁 − 1

𝐮𝑘 = 𝐮𝑘−1 + 𝛿𝐮𝑘 ,  𝑘 = 0, … , 𝑁 − 1
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Next time

• Intro to learning

• Sys ID

• Adaptive control
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