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Model predictive control

* Persistent feasibility of MPC (cont'd)
* Stability of MPC
* Explicit MPC

* Reading:
 F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

 J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Persistent feasibility theorem

* Feasibility theorem: it set X is a control invariant set for system:
x(t+1) =Ax(t) + Bu(t), x(t)eX, u@®)eU, t=0

then the MPC law is persistently feasible
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Persistent feasibility theorem

* Proof

1. Define “truncated” feasibility set at step N — 1:
Xy-1 =1{Xy_1 €X|3uy_;suchthatxy_, € X,uy_, € U,
XNE Xf where XN = AXN—l + BuN_l}

2. Dueto the terminal constraint
AXN_]_ + BuN_1 — XN - Xf
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Persistent feasibility theorem

* Proof

3. Since X is a control invariant set, there existsau € U

such that
x" = AXy + Bu € X;

The above is indeed the requirement to belong to set X _;
ThUS, AXN—l + BuN_1 — XN € XN—l
We have just proved that X, _; is control invariant

~N o 0ok

Repeating this argument, one can recursively show that
Xyn_2,Xy_3, -+, X, are control invariant, and the
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

* The terminal set X¢ is introduced artificially for the sole purpose of
leading to a sufficient condition for persistent feasibility

 We want it to be large so that it does not compromise closed-loop
performance

* Though itis simplest to choose Xy = {0}, this is generally undesirable
» We’ll discuss better choices later
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-
Stability of MPC

* Persistent feasibility does not guarantee that the closed-loop
trajectories converge towards the desired equilibrium point

* One of the most popular approaches to guarantee persistent
feasibility and stability of the MPC law makes use of a control
invariant terminal set X, for feasibility, and of a terminal function
p(-) for stability

* To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

* Lyapunov theorem: Consider the equilibrium point x = 0 for the
autonomous system {x;,; = f(x;)} (with f(0) = 0). Let Q c R" be
a closed, bounded, positively invariant set containing the origin. Let
V:R"™ — R be a function, continuous at the origin, such that

V() =0andV(x) >0 vxe Q\ {0}
V(Xp1) = V(X)) <0 Vx, € QN {0}
Then x = 0 is asymptotically stable in (.

* The idea is to show that with appropriate choices of Xy and p(-),
Jo is a Lyapunov function for the closed-loop system
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MPC stability theorem

* MPC stability theorem (for quadratic cost): Assume

AO:Q =0T >0 R=R"T>0,P>0

Al: Sets X, Xr, and U contain the origin in their interior and are closed
A2: X; € X is control invariant and bounded

. - _ <
A3: weu Argguexf( p(x) + c(x,u) + p(Ax + Bu)) <0,VX € X;

Then, the origin of the closed-loop system is asymptotically stable
with domain of attraction X,.
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MPC stability theorem

* Proof:
1. Note that, by assumption A2, persistent feasibility is guaranteed for
anyP,Q,R

2. We want to show that J; is a Lyapunov function for the closed-loop
systemx(t + 1) = f (x(t)), with respect to the equilibrium f;(0) =
0 (the origin is indeed an equilibriumas 0 € X,0 € U, and the costis
positive for any non-zero control sequence)

3. Xy is bounded and closed (follows from assumption on X;)
4, J5(0) = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

* Proof:
5. Jo(x) > O0forallx € X, \ {0}

6. Next we show the decay property. Since the setup is time-invariant,
we can study the decay property betweent =0andt =1

* Letx(0) € X, letU o= [ug ,u[lo], . ug\, .| be the optimal control sequence,
and let [x(0), x1 ) e [O]] be the corresponding trajectory

o After applying u0 ,one obtainsx(1) = Ax(O) + Bugo]

* Consider the sequence of controls [u[lo], 2] 'ﬁ' |, wherev € U, and the
[0

corresponding state trajectory is [x(1), x oy Xy ,AXN + Bv|
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MPC stability theorem

* Since x,[\(,)] € X¢(by terminal constraint), and since X¢ is control invariant,

3v € U such that Axl[\?] + BV € X

* With such a choice of v, the sequence [u[lo], u[zo], e ug\(,)]_l, v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

Js(x(D) <p (AXN + Bv xk ,uk ]) +c (x,[\?],\_/)

IIM
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MPC stability theorem

* Since x,[\(,)] € X¢(by terminal constraint), and since X¢ is control invariant,

3v € U such that AXI[\?] + BV € X

* With such a choice of v, the sequence [u[lo], u[zo], e ug\(,)]_l, v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

N-1
Jo(x(1) <p (AXN + Bv + z c + c (x,[\,],\_/)
e

+p (XN ) (x O]) +c (X(O), uOO ) —C (X(O), u%o])
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MPC stability theorem

* Equivalently

J(x(D) <p (Axl[\?] + B\_/) + J5(x(0)) — p (XI[\?]) —c (X(O), ugo]) + c(xg\(,)],\_/)

* Since x,[\?] € Xr, by assumption A3, we can select v such that

J5(x(D) < J5(x(0)) — ¢ (x(0), ul")
* Sincec (x(O), ugo]) > 0 forallx(0) € X, \ {0},
Jo(x(D) = J5(x(0)) < 0

* The last step is to prove continuity; details are omitted and can be
found in Borrelli, Bemporad, Morari, 2017

* Note: A2 is used to guarantee persistent feasibility; this assumption
can be replaced with an assumption on the horizon N

5/7/2025 AA 203 | Lecture 12 15



How to choose Xf and P?

e Case 1: assume A is asymptotically stable
» Set Xr as the maximally positive invariant set O, for system x(t + 1) =
Ax(t), x(t) e X
* X is acontrolinvariant set for system x(t + 1) = Ax(t) + Bu(t),asu =
0 is a feasible control

* As for stability, u = 0 is feasible and Ax € X, ifx € X¢, thus assumption A3
becomes

—x"Px+x"Qx+x"A"PAx < 0, forallx € X,
which is true since, due to the fact that A4 is asymptotically stable,
IJP>0| —P+Q +AT"PA =0 (Lyapunov Equation)

Cost-to-go/value function
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How to choose Xf and P?

* Case 2: general case (e.g., if A is open-loop unstable)
* Let F,, be the optimal gain for the infinite-horizon LQR controller
* Set X as the maximal positive invariant set for system

x(t+1) = (A + BE,)x(t)

(with constraints x(t) € X, and E,.x(t) € U)

* Set P as the solution P,, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q +ATPA— (ATPB)(R + BTPB) 1(BTPA) =0
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How to choose Xf and P?

* Case 2: general case (e.g., if A is open-loop unstable)
* Let F,, be the optimal gain for the infinite-horizon LQR controller
* Set X as the maximal positive invariant set for system

x(t+1) = (A + BE,)x(t)

(with constraints x(t) € X, and E,.x(t) € U)

* Set P as the solution P,, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q + ATPA— (ATPB)(R + BTPB) 1(BTPA) =0
* Note: both cases as presented are just (suboptimal) choices!
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Explicit MPC

* In some cases, the MPC law can be pre-computed — no need for
online optimization

* Important case: constrained LQR

Jo(x) = m1n XNPXN + 2 x;. 0X;, + ui.Ruy
Ug

subject to xk+1— Ax;, + Bu,, k=0,..,N—1
XREX, ukE U, k=0,,N—1
XNE Xf

X0= X
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Explicit MPC

* The solution to the constrained LQR problem is a control which is a
continuous piecewise affine function on polyhedral partition of the
state space X, thatis u;, = m (X} ) where

m(x) = Flx+ gl if HHx<K!, j=1,..,N}

* Thus, online, one has to locate in which cell of the polyhedral
partition the state x lies, and then one obtains the optimal control
via a look-up table query
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Tuning and practical use

* At present there is no other technique other than MPC to design
controllers for general large linear multivariable systems with input
and output constraints with a stability guarantee

 Design approach (for squared 2-norm cost):
* Choose horizon length N and the control invariant target set X¢
* Controlinvariant target set X should be as large as possible for performance

* Choose the parameters Q and R freely to affect the control performance
* Adjust P as per the stability theorem

 Useful toolbox (MATLAB): https://www.mpt3.org/

* In practice, sometimes choosing a good terminal cost is enough (i.e.,
don’t need to enforce a terminal control invariant condition), though
you may be sacrificing guarantees
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https://www.mpt3.org/

MPC for reference tracking

* Usual cost
Y=o Xx QX + upRuy
does not work, as in steady state control does not need to be zero
* Su- formulation: reason in terms of control changes
Uy, = Ui_q +0uy
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MPC for reference tracking

* The MPC problem is readily modified to

Jo(x(©) =, min > llye = rilly + 6wl
k

subjectto xj;,,=4X;+Bu,, k=0,..,.N—-1
Vie= CXy, k=0,..,N—1
X, € X, u, e U, k=0,..,N—1
XyE X¢

uk=uk_1+5uk, k=O,,N—1
Xo=Xx(t), u_;=u(t—-1)

 The controlinput is then u(t) = dug + u(t — 1)
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Next time

* Intro to learning
* SysID
* Adaptive control
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