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Model predictive control

* Introduction: basic setting and key ideas
* Persistent feasibility of MPC

* Further reading:

* F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

* J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Model predictive control

* Model predictive control (or, more broadly, receding horizon
control) entails solving finite-time optimal control problems in a
receding horizon fashion

past future

predicted outputs y(t + k|t)

reference

— L

u(t) manipulated inputs u(t + k)

t t+1 t+ Nm t+ Ny
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Model predictive control

* Model predictive control (or, more broadly, receding horizon
control) entails solving finite-time optimal control problems in a
receding horizon fashion

past future

predicted outputs y(t + 1 + k|t + 1)

—I—‘—I

manipulated inputs u(t + 1 + k)

L+ 1t + 2 t+1+ Ny t+1+N,
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Model predictive control

Key steps:
1. Ateachsamplingtime t, solve an open-loop optimal control
problem over a finite horizon

2. Apply optimal input signal during the following sampling interval
[t,t + 1)

3. Atthenexttimestept + 1, solve new optimal control problem
based on new measurements of the state over a shifted horizon
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Basic formulation

* Consider the problem of regulating to the origin the discrete-time
linear time-invariant system

x(t +1) = Ax(t) + Bu(t), x(t) € R™, u(t) eR™

subject to the constraints
x(t) € X, u(t) e U, t >0

where the sets X and U are polyhedra
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Basic formulation

* Assume that a full measurement of the state x(t) is available at the
currenttimet

* The finite-time optimal control problem solved at each stage is

]:(X(t)) = min p(xt+N|t) + z C(Xttk|tr We+k|t)

Ut|t)Ut+N—

subjectto  Xiik41;:= AXpykpe + BUiike, k=0,..,N—1

Xt+k|tE X, ut+k|tE U, k — 0, ,N — 1

5/5/2025 AA 203 | Lecture 11



Basic formulation

* Assume that a full measurement of the state x(t) is available at the
currenttimet

* The finite-time optimal control problem solved at each stage is

]:(X(t)) = min p(xt+N|t)| z C(Xetk|tr Uetk|t)

Ut|t)-»Ut+N—-1|t

subjectto  Xiik41;:= AXpykpe + BUiike, k=0,..,N—1

Xt+k|tE X, ut+k|tE U, k — 0, ,N — 1

X¢je= X(t) Key MPC design choices!
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Basic formulation

Notation:

* X¢+k|t IS the state vector at timet + k predicted at time t (via the
system’s dynamics)
* Uik iStheinputuattimet + k computed attime t

Note: X311 # X3)2
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Basic formulation

* Let Upspynie = {Wee Weiq)er - Urpn—1)¢ J D€ the optimal solution,
then
u(t) = uy(x(t))

* The optimization problem is then repeated at time t 4+ 1, based on
the new state X; q1;r41=X(t +1)

- Define m,(x(t)) = up e (x(1))
* Then the closed-loop system evolves as
x(t + 1) = Ax(t) + B, (x(t)) = fy(x(0), 1)

 Central question: characterize the behavior of closed-loop system
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Simplifying the notation

* Note that the setup is time-invariant, hence, to simplify the notation, we

can let t = 0in the finite-time optimal control problem, namely
N-1

Jo(x(t)) = min p(xy) + C(Xg, Ug)
Ug,...,UN—-1 —
subjectto x;,1=4X;+Bu, k=0,..,.N—-1

XkEX, ukE U, k:(),,N—l
XNE Xf
Xo= X(t)

* Denote U{,‘(x(t)) = {ug, ..., Uy_1}
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N
Simplifying the notation
* With new notation,
u(t) = uy(x(t)) = m(x(t))

the closed-loop system becomes
x(t +1) = Ax(t) + Bn(x(t)) = f(x(t))
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Typical cost functions

e 2-norm:

p(Xy) = Xy PXy, c(Xp,u,) =XL0X,+uLRu,, P>0,Q>0,R>0
* 1-norm or co-norm:;

p(xy) = [Pxyll, c(Xg,up) = [[@xkll,+ [|Rukll,, p=1oro
where P, Q, R are full column ranks
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Online model predictive control

repeat
measure the state x(t) attime instant t
obtain U;(x(t)) by solving finite-time optimal control problem
if Us(x(t)) = 0 then ‘problem infeasible’ stop
apply the first element u}, of Ug(x(t)) to the system
wait for the new sampling time t + 1
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Main implementation issues

1. The controller may lead us into a situation where after a few steps
the finite-time optimal control problem is infeasible — persistent
feasibility issue

2. Evenifthe feasibility problem does not occur, the generated
control inputs may not lead to trajectories that converge to the
origin (i.e., closed-loop system is unstable) — stability issue

Key question: how do we guarantee that such a “short- sighted”
strategy leads to effective long-term behavior?
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Analysis approaches

1. Analyze closed-loop behavior directly — generally very difficult

2. Derive conditions on terminal function p and terminal constraint
set Xr so that persistent feasibility and closed-loop stability are

guaranteed
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Addressing persistent feasibility

Goal: design MPC controller so that feasibility for all future times is
guaranteed

Approach: leverage tools from invariant set theory
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Set of feasible initial states

» Set of feasible initial states

Xo ={xXp€X|3(uy,..,uy_q) suchthatx, € X,u, € U,k=0,..,N—1,
Xy € Xf where Xip+1 = Axk + Buk,k = O, ,N — 1}

* A control input can be found only if X(0) € X!
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Controllable sets

* Forthe autonomous system x(t + 1) = ¢ (x(t)) with constraints
x(t) € X,u(t) € U, the one-step controllable set to set S is defined as

Pre(S) = {x e R": ¢(x) € S}

» For the system x(t + 1) = ¢(x(t), u(t)) with constraints x(t) € X,
u(t) € U, the one-step controllable set to set S is defined as

Pre(S) := {x € R™ : 3u € U such that ¢(x,u) € S}
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Control invariant sets

* Aset C C X issaid to be a controlinvariant set for the systemx(t + 1) =
¢ (x(t), u(t)) with constraints x(t) € X, u(t) € U, if;

x(t) € C = Ju € U such that ¢(x(t),u(t)) € C,forall ¢t

 Theset C,, € X issaid to be the maximal controlinvariant set for the system
x(t+1) = qb(x(t), u(t)) with constraints x(t) € X, u(t) € U, if it is control
invariant and contains all control invariant sets contained in X

* For autonomous systems: aset A € X is said to be a positive invariant set for
the system x(t + 1) = ¢(x(t)) ifx(t) € A = ¢p(x(t)) € A;the maximal
positive invariant set contains all other positive invariant sets.

* These sets can be computed by using the MPT toolbox https://www.mpt3.org/
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https://www.mpt3.org/

Persistent feasibility lemma

* Define “truncated” feasibility set:
X, =1{x;€X|3(uy,..,uy_q)suchthatx, € X,u, € U,k=1,..,N—1,
Xy € Xr where X1 = AXy + Bug,k=1,...,,N — 1}

* Feasibility lemma: if set X, is a control invariant set for system:
x(t+1) =Ax(t) + Bu(t), x(t)eX, u@®)eU, t=0

then the MPC law is persistently feasible
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Persistent feasibility lemma

* Proof:
1. Pre(X;) = {x € R"™:3u € U suchthat Ax + Bu € X}

2. Since X; is control invariant
VX € X; du € U such that Ax + Bu € X,

3. ThusX; € Pre(X;)nX
4. One can write

Xo =1{xo € X | Ju,y € U such that AXx, + Bu € X;} = Pre(X;) n X
5. Thus, X; € X,
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Persistent feasibility lemma

* Proof:

6. Picksomex, € X,. Let U, be the solution to the finite-time
optimization problem, and u, be the first control. Let

X, = AXy + Bug

7. Since Uy is clearly feasible, one has x; € X;. Since X; € X, one

has
X1 € X,

hence the next optimization problem is feasible!
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Practical significance

* For N = 1, we canset X = X;. If we choose the terminal set to be
control invariant, then MPC will be persistently feasible independent
of chosen control objectives and parameters

» Designer can choose the parameters to affect performance (e.g.,
stability)

* How to extend this resultto N > 1?7
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Next time

* Persistent feasibility of MPC (cont'd)
* Stability of MPC

* Explicit MPC

 Practical considerations
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