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Dynamic Programming

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

 dynamic programming approach leads to HJB / HJI equation: non-linear partial differential
equation

* HJB application: solution to continuous LQR problem

* HJI application: reachability analysis

Readings: lecture notes and references therein, in particular:
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https://arxiv.org/abs/1709.07523
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104941

e
Continuous-time model

Last time:
° MOdel:Xk+1 =f(Xk,uk,k),
e Cost:J(Xo) = hy(xy) + X¥Z0 Xy, uy, k)

This time:
« Model:x(t) = f(x(t),u(t),t),

+ Cost:J(x(to)) = h(x(t), t7) + [,” g(x(),u(®), D) de

where t, and t; are fixed
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Two-person, zero-sum differential games

What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

Two-person differential game:
« Model: x(t) = f(x(t),u(t), d(t)) (joint system dynamics),
+ Cost:J(x(t)) = h(x(®) + [; (D), u(®), d()) dr

* Player 1, with control u(t), will attempt to maximize J, while Player 2, with control d(t), will aim
to minimize J, subject to the joint system dynamics

« x(7) isthejoint system state
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Information pattern

 To fully specify the game, we need to specify the information pattern

* “Open-loop” strategies
* Player 1, with control u(7), declares entire plan
* Player 2, with control d(7), responds optimally
« Conservative, unrealistic, but computationally cheap

* “Nonanticipative” strategies

* Other agent acts based on state and control trajectory up to current time
e Notation: d(-) = T'[u](-)
* Disturbance still has the advantage: it gets to (instantaneously) react to the control!
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e
Hamilton-Jacobi-lsaacs (HJI) equation
Key idea: apply principle of optimality

The “truncated” problemis

J(x(),6) = min max [ j g(x(@),u(@), d(1))dr + h(x(O))]

Worst-case disturbance - aims to thwart the controller
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HJI equation

* Dynamic programming principle:

t+At
J(x(t),t) = rr[?l}?) rlrll(a)x Ut g(x(r), u(7), d(r))dr + J(x(t + At), t + At)

« Approximate integral and Taylor expand J(x(t + At), t + At)
 Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)
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HJI equation

* Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) ral(a)x Ut g(x(r), u(7), d(r))dr + J(x(t + At), t + At)
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HJI equation

* Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) ral(a)x Ut g(x(r), u(7), d(r))dr + J(x(t + At), t + At)

g(x(t),u(t),d(t))At
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HJI equation

* Approximations for small At: x(t) + Atf(x,u,d)
t+At At
J(x(t),t) = Fr[rlll]ig) 13(3);( [ j g(x(r), u(7), d(r))dr + J(x(t + At), t + At)
t
g(x(t),u(t),d(t))At
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HJI equation

« Approximations for small At: x(t) + Atf(x,u,d)
t+At —
J(x(t),t) = Fr[rlll%?) ral(a)x U g(x(r), u(7), d(r))dr + J(x(t + At), t + At)
¢ \ ' J
g(x(t),u(t),d(t))At J(x(6),t) + %{ - Atf(x(8),u(D),d(t)) + % At
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HJI equation

* Approximations for small At: x(8) + Atf(x,u,d)
t+At —
J(x(t),t) = Fr[r‘ll%?) ral(a)x U g(x(r), u(7), d(r))dr + J(x(t + At), t + At)]
¢ \ ' J
g(x(t),u(t),d(t))At J(x(6),t) + %{ - Atf(x(8),u(D),d(t)) + % At

* Omitt dependence...

_ - 9 9
J(x, t) = max min [g(x, u d)At +J(x,t) + Pl Atf(x,u,d) + o At]

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

« J(x,t) does notdependonuord

aJ aJ ]
0x ot

Jx,t) =J(x,t) + ml?xmdin [g(x, u d)At +—-Atf(x,u,d) + —At
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HJI equation

* Approximations for small At: x(8) + Atf(x,u,d)
t+At —
J(x(t),t) = Fr[r‘ll%?) ral(a)x U g(x(r), u(7), d(r))dr + J(x(t + At), t + At)]
¢ \ ' J
g(x(t),u(t),d(t))At J(x(6),t) + %{ - Atf(x(8),u(D),d(t)) + % At

* Omitt dependence...

_ - 9 9
J(x, t) = max min [g(x, u d)At +J(x,t) + Pl Atf(x,u,d) + o At]

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

« J(x,t) does notdependonuord
}e&%:}%msxm(}n [g(x, u, d)At +%-Atf(x, u,d) +%At]
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HJI equation

* Approximations for small At: x(8) + Atf(x,u,d)
t+At —
J(x(t),t) = Fr[r‘ll%?) ral(a)x U g(x(r), u(7), d(r))dr + J(x(t + At), t + At)]
¢ \ ' J
g(x(t),u(t),d(t))At J(x(6),t) + %{ - Atf(x(8),u(D),d(t)) + % At

* Omitt dependence...

_ - 9 9
J(x, t) = max min [g(x, u d)At +J(x,t) + Pl Atf(x,u,d) + o At]

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)
« J(x,t) does notdependonuord

aJ . a/
0= atAf + max min [g(x, u, d)At + Fol Atf(x,u, d)]
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HJI equation

* Approximations for small At: x(8) + Atf(x,u,d)
t+At —
J(x(t),t) = Fr[r‘ll%?) ral(a)x U g(x(r), u(7), d(r))dr + J(x(t + At), t + At)]
¢ \ ' J
g(x(t),u(t),d(t))At J(x(6),t) + %{ - Atf(x(8),u(D),d(t)) + % At

* Omitt dependence...

_ - 9 9
J(x, t) = max min [g(x, u d)At +J(x,t) + Pl Atf(x,u,d) + o At]

\ * Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

« J(x,t) does notdependonuord

a] _ aJ
0= " + max min [g(x, ud) + Pl fx,u,d)
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HJI equation
The end result is the Hamilton-Jacobi-lsaacs (HJI) equation
daJ . daJ
0= En + max min gx,u,d) +&-f(x,u,d)
with boundary condition T, ,

The “Hamiltonian’

J(x,0) = h(x)

* Given the cost-to-go function, the optimal control for
Player 1is

9,
u*(x,t) = argmaxming(x,u,d) + o f(x,u,d)
u d 0x
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-
HJB equation

In case there is no disturbance, end result is the
Hamilton-Jacobi-Bellman (HJB) equation

Without a disturbance, u is usually
selected to minimize cost

O—?+m1n g(xut)+ f(xut)

with boundary condition | /(x,0) = h(x)

* Given the cost-to-go function, the optimal control s

u*(x, t)-argm1ng(xut)+ f(Xut)
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Continuous-time LQR

Continuous-time LQR: select control inputs to minimize

Txa) = 5x(tn) T Hx(ty) + 5 [ (07 Qx(0) + u) Rit)u(e)

subject to the dynamics

Assumptions:

*H=H">0 Q) =0(®)" 20,R(t) =R(t)" = 0
* to and t; specified

* X(t) and u(t) unconstrained
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e
Continuous-time LQR

: 1
* As before, value function takes the form: J(x(t),t) = 5x(t)TV(t)><:(t)
* The HJB equation reduces to an ODE (the Riccati equation):

—V(t)=Q(t) —V(#)B&)R®)'B®)TV () + V(H)Al) + ATV (t)
* Riccati equation is integrated backwards, with boundary condition V(ty) = H
* Once we find V(t), the control policy is
u*(t) = —R(t)"' B(t)" V(£)x(t)

 Analogously to the discrete case, under some additional assumptions, VV(t) —
constant in the infinite horizon setting

» See Notes §3.3 for more details
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Applications of differential games

* Pursuit-evasion games
* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)

4/30/2025 AA 203 | Lecture 10 21



Applications of differential games

* Pursuit-evasion games
* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)
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Reachability analysis: avoidance

Reachable set Unsafe region

RO

Inputs: Control policy

* System model E—

* Unsaferegion: Backward reachable set
e.g., obstacle (States leading to danger)
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Reachability analysis: goal reaching

Backward reachable set
Target set

Control policy

Inputs: e

* System model Backward reachable set
* Goal region (States leading to goal)
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Reachability analysis Ei.:’

Model of robot
Unsafe region

Model of robot
Goal region

4/30/2025

-

o A(t) = {x:3r[u](),vu(-),x = f(x,u,d),x(t) = X,x(0) € T}

Backward reachable set (states leading to danger)

Control policy

Control policy

Backward reachable set (states leading to goal)

o R(t) ={x:VvI[u](-),3Fu(),x = f(x,u,d),x(t) = X,x(0) € T}

AA 203 | Lecture 10
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Reachability analysis c-t’.
States at time t satisfying the following: _

there exists a disturbance such that for all
control, system enters target setatt = 0

Model of robot
Unsafe region

Model of robot
Goal region

4/30/2025

-

—

o A(t) ={x:3r[u](),vVul(-),x = f(x,u,d),x(t) =x,x(0) € T}

Backward reachable set (states leading to danger)

Control policy

Control policy

Backward reachable set (states leading to goal)

« R() ={x:vI[u](-),3u(-),x = f(x,u,d),x(t) =%,x(0) € T}

States at time t satisfying the following;:

for all disturbances, there exists a control such that system

enters targetsetatt =0
AA 203 | Lecture 10
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From HJI to reachability analysis

» Computation of the BRS entails solving a
differential game where the outcomeiis
Boolean (the system either reaches the
target set or not)

* One can “encode” this Boolean outcome in
the HJI PDE by (1) removing the running
cost and (2) picking the final cost to denote
set membership

e Value function at each state is the worst case
terminal value you can reach
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From HJI to reachability analysis

* Hamilton-Jacobi Equation
e 0= %+ mjlxmin [g(x,u, d) +%-f(x,u, d)], J(x,0) = h(x)

* Remove running cost

e 0= %+ mjlxmuin[%(-f(x,u,d)], J(x,0) = h(x)

e Pick final cost such that

s XET o h(x)<0 (xm%/' x:[;r]
« Example: If T = {x: Vxz+y2 < R} C R3, 5 \9 6r
wecanpick )

N

h(xr, Yy, 0;) = /X7 + 7 — R
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Pick Final Cost

* Why is this correct?
* Final state x(0) isin T if and only ifh(x(O)) <0

» To avoid T, control should maximize h(x(0))
* Worst-case disturbance would minimize

e J(x,t) = rlp[hr]l max h(x(O))

Xg(to)

xp(t) ](Xg(O), 0) >0
J(x,(0),0) <0
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Reaching vs. Avoiding

Sy
* Avoiding danger oy * Reaching a goal

* BRS definition * BRS definition
A(t) = {x:Alu] (), Vu(-),x = f(x,u,d),x(t) = X,x(0) € T} R(t) = {x:VIl'[u](-),3u("),x = f(x,u,d),x(t) = Xx,x(0) € T}

 Value function * Value function
Jx,t) = rl%r]l max h(x(O)) Jx, t) = I}‘I[Elil]x min h(x(O))
 HJI . « HJI .
a/ a/ a/ a/
at+maxm&n[< ) f(x,u, d)] =0 at+m1nm(ijlx[< f(x,u,d)[ =0
* Optimal control . * Optimal control .
u —argmaxmdln< ) fx,u,d) u* —argmlnm(i;lx< ) f(x,u,d)

4/30/2025 AA 203 | Lecture 10 30



“Sets” vs. “Tubes”

* Backward reachable set (BRS) » Backward reachable tube (BRT)

* Only final time matters » Keep track of entire time duration
* Initial states that pass * Initial states that pass through
through target are not target are in BRT
necessarily in BRS « Used to make safety guarantees

* Notideal for safety
Xg(()O)

Xb(O)
J(x4(0),0) >0 Xg(%) h(x) <0
J(x,(0),0) < 0 target seb
J(x5(0),0) >0

xp(t)
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J(x,(0),0) <0
J(x5(0),0) <0
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“Sets” vs. “Tubes”

* Backward reachable set (BRS) » Backward reachable tube (BRT)

ch()O)
X, (0)
J(x4(0),0) >0 ¥ = J(%4(0),0) >0
J(x5(0),0) <0 T J(x,(0),0) <0
J(x5(0),0) >0 J(x5(0),0) <0
X, (t)
Value function definition Value function definition
J(x,€) = min max h(x(0)) J(x ) = minmax min h(x(1))
Value function obtained from Value function obtained from
T

a] 6] ' ﬂ + min {max min [(6]) ] }

el _ f(x,u,d)

o + maxm&n l(a ) f(x,u, d)‘ 0 ot )
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Computational aspects

« Computational complexity (traditional PDE solver)
* J(x,t) iscomputed onan (n + 1)-dimensional grid
 n < 5isreasonable; larger requires some compromises

* Dimensionality reduction methods (decoupling)
sometimes help

* Alternatives/related approaches
» Sacrifice global optimality
* Give up guarantees

* NN-based PDE solvers
« Sampling-based methods
* Reinforcementlearning
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Example: pursuit/evasion with two identical vehicles

» With evader (a), pursuer (b) dynamics

Tq v cos(6,) Ty v cos(fp)
;Qa] = [vsin(@a)] : [yb] = [vsin(@b)] , Ug, Up € [~Umax, Umax)
b

ea Uq, 0[) Uu

we consider the relative system in (a)’s frame

T1
To| =
T3

Courtesy of X,
lan Mitchell, v
“ToolboxLS”, ”

Section 2.6.1 evader (player 1) pursuer (player I1)

vsin(zg) — ugx1
Up — Ugqg

—v + vcos(zxz) + uaa:2]
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https://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS-1.1.pdf
https://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS-1.1.pdf

Next time

e Model Predictive Control
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