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Dynamic Programming

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

• dynamic programming approach leads to HJB / HJI equation: non-linear partial differential 
equation

• HJB application: solution to continuous LQR problem

• HJI application: reachability analysis

Readings: lecture notes and references therein, in particular:
• Bansal S., Chen M., Herbert S., Tomlin C. J., “Hamilton-Jacobi reachability: A brief overview and recent advances,”  2017.

• Chen M., Tomlin C. J., “Hamilton–Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management,” 2018.

4/30/2025 AA 203 | Lecture 10 3

https://arxiv.org/abs/1709.07523
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104941


Continuous-time model

Last time:

• Model: 𝐱𝑘+1  = 𝑓 𝐱𝑘 , 𝐮𝑘 , 𝑘 ,

• Cost: 𝐽(𝐱0)  =  ℎ𝑁 𝐱𝑁 + σ𝑘=0
𝑁−1 𝑔 𝐱𝑘 , 𝐮𝑘 , 𝑘

This time:

• Model: ሶ𝐱 𝑡 = 𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 , 

• Cost: 𝐽 𝐱 𝑡0 = ℎ 𝐱 𝑡𝑓 , 𝑡𝑓 ׬ +
𝑡0

𝑡𝑓 𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝜏  𝑑𝜏

where 𝑡0 and 𝑡𝑓  are fixed 
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Two-person, zero-sum differential games

What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

Two-person differential game:

• Model: ሶ𝐱 𝑡 = 𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝(𝑡)  (joint system dynamics),

• Cost: 𝐽 𝐱 𝑡0 = ℎ 𝐱 0 ׬ +
𝑡0

0
𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝(𝜏)  𝑑𝜏

• Player 1, with control 𝐮 𝜏 , will attempt to maximize 𝐽, while Player 2, with control 𝐝(𝑡), will aim 
to minimize 𝐽, subject to the joint system dynamics 

• 𝐱 𝜏  is the joint system state
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Information pattern

• To fully specify the game, we need to specify the information pattern

• “Open-loop” strategies
• Player 1, with control 𝐮 𝜏 , declares entire plan

• Player 2, with control 𝐝 𝜏 , responds optimally

• Conservative, unrealistic, but computationally cheap

• “Nonanticipative” strategies
• Other agent acts based on state and control trajectory up to current time

• Notation: 𝐝 ⋅ = Γ 𝐮 ⋅

• Disturbance still has the advantage: it gets to (instantaneously) react to the control!
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Hamilton-Jacobi-Isaacs (HJI) equation

Key idea: apply principle of optimality

The “truncated” problem is

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

0

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + ℎ 𝐱 0

Worst-case disturbance – aims to thwart the controller
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HJI equation

• Dynamic programming principle:

• Approximate integral and Taylor expand 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

• Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱(𝜏), 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑎

𝑏1

𝑏2

𝑏3

𝑑

ሚ𝐽𝑎𝑏1 ሚ𝐽𝑎𝑏2

ሚ𝐽𝑎𝑏3

𝐽𝑏3𝑑
∗

𝐽𝑏2𝑑
∗

𝐽𝑏1𝑑
∗
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HJI equation

• Approximations for small Δ𝑡:

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡
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HJI equation

• Approximations for small Δ𝑡:

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡
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HJI equation

• Approximations for small Δ𝑡:

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝
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HJI equation

• Approximations for small Δ𝑡:

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝

𝐽 𝐱(𝑡), 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 +

𝜕𝐽

𝜕𝑡
Δ𝑡
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HJI equation

• Approximations for small Δ𝑡:

• Omit 𝑡 dependence…

• 𝐽 𝐱, 𝑡  does not depend on 𝐮 or 𝐝

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡 𝐽 𝐱(𝑡), 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 +

𝜕𝐽

𝜕𝑡
Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝

𝐽 𝐱, 𝑡 = max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 + 𝐽 𝐱, 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

𝐽 𝐱, 𝑡 = 𝐽 𝐱, 𝑡 + max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

• Assume (instantaneously) constant 𝐮 and 𝐝 → optimization over vectors, not functions!
• Order of max and min reverse (proof given in references)
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HJI equation

• Approximations for small Δ𝑡:

• Omit 𝑡 dependence…

• 𝐽 𝐱, 𝑡  does not depend on 𝐮 or 𝐝

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡 𝐽 𝐱(𝑡), 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 +

𝜕𝐽

𝜕𝑡
Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝

𝐽 𝐱, 𝑡 = max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 + 𝐽 𝐱, 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

𝐽 𝐱, 𝑡 = 𝐽 𝐱, 𝑡 + max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

• Assume (instantaneously) constant 𝐮 and 𝐝 → optimization over vectors, not functions!
• Order of max and min reverse (proof given in references)
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HJI equation

• Approximations for small Δ𝑡:

• Omit 𝑡 dependence…

• 𝐽 𝐱, 𝑡  does not depend on 𝐮 or 𝐝

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡 𝐽 𝐱(𝑡), 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 +

𝜕𝐽

𝜕𝑡
Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝

𝐽 𝐱, 𝑡 = max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 + 𝐽 𝐱, 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

0 =
𝜕𝐽

𝜕𝑡
Δ𝑡 + max

𝐮
min

𝐝
𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 +

𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝

• Assume (instantaneously) constant 𝐮 and 𝐝 → optimization over vectors, not functions!
• Order of max and min reverse (proof given in references)
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HJI equation

• Approximations for small Δ𝑡:

• Omit 𝑡 dependence…

• 𝐽 𝐱, 𝑡  does not depend on 𝐮 or 𝐝

𝐽 𝐱 𝑡 , 𝑡 = min
Γ 𝐮 ⋅

max
𝐮 ⋅

න
𝑡

𝑡+Δ𝑡

𝑔 𝐱 𝜏 , 𝐮 𝜏 , 𝐝 𝜏 𝑑𝜏 + 𝐽 𝐱 𝑡 + Δ𝑡 , 𝑡 + Δ𝑡

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 Δ𝑡 𝐽 𝐱(𝑡), 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱 𝑡 , 𝐮 𝑡 , 𝐝 𝑡 +

𝜕𝐽

𝜕𝑡
Δ𝑡

𝐱 𝑡 + Δ𝑡𝑓 𝐱, 𝐮, 𝐝

𝐽 𝐱, 𝑡 = max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 Δ𝑡 + 𝐽 𝐱, 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ Δ𝑡𝑓 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝑡
Δ𝑡 

0 =
𝜕𝐽

𝜕𝑡
+ max

𝐮
min

𝐝
𝑔 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝐝

• Assume (instantaneously) constant 𝐮 and 𝐝 → optimization over vectors, not functions!
• Order of max and min reverse (proof given in references)
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HJI equation

The end result is the Hamilton-Jacobi-Isaacs (HJI) equation

with boundary condition 

• Given the cost-to-go function, the optimal control for 
Player 1 is

0 =
𝜕𝐽

𝜕𝑡
+ max

𝐮
min

𝐝
𝑔 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝐝

𝐽(𝐱, 0) = ℎ(𝐱)

𝐮∗(𝐱, 𝑡) = arg max
𝐮

min
𝐝

𝑔 𝐱, 𝐮, 𝐝 +
𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝐝

The “Hamiltonian”
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HJB equation

In case there is no disturbance, end result is the 
Hamilton-Jacobi-Bellman (HJB) equation

with boundary condition 

• Given the cost-to-go function, the optimal control is

0 =
𝜕𝐽

𝜕𝑡
+ min

𝐮
𝑔 𝐱, 𝐮, 𝑡 +

𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝑡

𝐽(𝐱, 0) = ℎ(𝐱)

𝐮∗(𝐱, 𝑡) = arg min
𝐮

𝑔 𝐱, 𝐮, 𝑡 +
𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝑡

Without a disturbance, 𝐮 is usually 
selected to minimize cost 
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Continuous-time LQR

Continuous-time LQR: select control inputs to minimize

subject to the dynamics

Assumptions: 

• 𝐻 = 𝐻𝑇 ≽  0, 𝑄 𝑡 = 𝑄 𝑡 𝑇 ≽ 0, 𝑅 𝑡 = 𝑅 𝑡 𝑇 ≻  0

• 𝑡0 and 𝑡𝑓  specified 

• 𝐱(𝑡) and 𝐮(𝑡) unconstrained
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Continuous-time LQR

Notes §3.3

• As before, value function takes the form:

• The HJB equation reduces to an ODE (the Riccati equation):

• Riccati equation is integrated backwards, with boundary condition

• Once we find 𝑉(𝑡), the control policy is

• Analogously to the discrete case, under some additional assumptions, 𝑉 𝑡 → 
constant in the infinite horizon setting

• See Notes §3.3 for more details
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Applications of differential games

• Pursuit-evasion games
• homicidal chauffeur problem

• the lady in the lake

• Reachability analysis

• And many more (e.g., in economics)
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Applications of differential games

• Pursuit-evasion games
• homicidal chauffeur problem

• the lady in the lake

• Reachability analysis

• And many more (e.g., in economics)
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Reachability analysis: avoidance

Inputs: 
• System model
• Unsafe region: 

e.g., obstacle

Unsafe region

Backward reachable set 
(States leading to danger)

Reachable set

Control policy
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Reachability analysis: goal reaching

Backward reachable set
Target set

Inputs:
• System model
• Goal region

Backward reachable set 
(States leading to goal)

Control policy
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Reachability analysis

• Model of robot
• Unsafe region

Backward reachable set (states leading to danger)

Control policy

• Model of robot
• Goal region

Backward reachable set (states leading to goal)

Control policy

• 𝒜 𝑡 = ത𝐱: ∃Γ 𝐮 ⋅ , ∀𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯

• ℛ 𝑡 = ത𝐱: ∀Γ 𝐮 ⋅ , ∃𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯
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• ℛ 𝑡 = ത𝐱: ∀Γ 𝐮 ⋅ , ∃𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯

• 𝒜 𝑡 = ത𝐱: ∃Γ 𝐮 ⋅ , ∀𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯

Reachability analysis

• Model of robot
• Unsafe region

Backward reachable set (states leading to danger)

Control policy

• Model of robot
• Goal region

Backward reachable set (states leading to goal)

Control policy

States at time 𝑡 satisfying the following:
there exists a disturbance such that for all 
control, system enters target set at 𝑡 = 0

26

States at time 𝑡 satisfying the following:
for all disturbances, there exists a control such that system 
enters target set at 𝑡 = 0
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From HJI to reachability analysis 

• Computation of the BRS entails solving a 
differential game where the outcome is 
Boolean (the system either reaches the 
target set or not)

• One can “encode” this Boolean outcome in 
the HJI PDE by (1) removing the running 
cost and (2) picking the final cost to denote 
set membership
• Value function at each state is the worst case 

terminal value you can reach
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From HJI to reachability analysis 
• Hamilton-Jacobi Equation

• 0 =
𝜕𝐽

𝜕𝑡
+ max

𝐝
min

𝐮
𝑔 𝐱, 𝐮, 𝐝 +

𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝐝 , 𝐽 𝐱, 0 = ℎ 𝐱

• Remove running cost

• 0 =
𝜕𝐽

𝜕𝑡
+ max

𝐝
min

𝐮

𝜕𝐽

𝜕𝐱
⋅ 𝑓 𝐱, 𝐮, 𝐝 , 𝐽 𝐱, 0 = ℎ 𝐱

• Pick final cost such that
• 𝐱 ∈ 𝒯 ⇔ ℎ 𝐱 ≤ 0

• Example: If 𝒯 = 𝐱: 𝑥𝑟
2 + 𝑦𝑟

2 ≤ 𝑅 ⊆ ℝ3, 
we can pick

 ℎ 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 = 𝑥𝑟
2 + 𝑦𝑟

2 − 𝑅

𝜃𝑟

𝑥𝑟, 𝑦𝑟 𝑥 =

𝑥𝑟

𝑦𝑟

𝜃𝑟

R
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Pick Final Cost

• Why is this correct?
• Final state 𝐱 0  is in 𝒯 if and only if ℎ 𝐱 0 ≤ 0

• To avoid 𝒯, control should maximize ℎ 𝐱 0
• Worst-case disturbance would minimize

• 𝐽(𝐱, 𝑡) = min
Γ 𝐮

max
𝐮

ℎ 𝐱 0 𝐱𝑔 0

𝐱𝑏 0

ℎ 𝐱 ≤ 0, 
target set

𝐽 𝐱𝐠 0 , 0 > 0

𝐽 𝐱𝑏 0 , 0 ≤ 0
𝐱𝑏 𝑡

𝐱𝑔 𝑡
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Reaching vs. Avoiding

• Avoiding danger

• BRS definition
𝒜 𝑡 = ത𝐱: ∃Γ 𝐮 ⋅ , ∀𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯

• Value function
𝐽 𝐱, 𝑡 = min

Γ 𝐮
max

𝐮
ℎ 𝐱 0

• HJI
𝜕𝐽

𝜕𝑡
+ max

𝐮
min

𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝 = 0

• Optimal control

𝐮∗ = arg max
𝐮

min
𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝

• Reaching a goal

• BRS definition
ℛ 𝑡 = ത𝐱: ∀Γ 𝐮 ⋅ , ∃𝐮 ⋅ , ሶ𝐱 = 𝑓 𝐱, 𝐮, 𝐝 , 𝐱 𝑡 = ത𝐱, 𝐱 0 ∈ 𝒯

• Value function
𝐽 𝐱, 𝑡 = max

Γ 𝐮
min

𝐮
ℎ 𝐱 0

• HJI
𝜕𝐽

𝜕𝑡
+ min

𝐮
max

𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝 = 0

• Optimal control

𝐮∗ = arg min
𝐮

max
𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝
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“Sets” vs. “Tubes”
• Backward reachable set (BRS)

• Only final time matters

• Initial states that pass 
through target are not 
necessarily in BRS

• Not ideal for safety

• Backward reachable tube (BRT)
• Keep track of entire time duration

• Initial states that pass through 
target are in BRT

• Used to make safety guarantees

𝐱𝑔 0

𝐱𝑏 0

ℎ 𝐱 ≤ 0, 
target set

𝐽 𝐱𝑔 0 , 0 > 0

𝐽 𝐱𝑏 0 , 0 ≤ 0
𝐽 𝐱𝐵 0 , 0 > 0

𝐱𝑏 𝑡

𝐱𝑔 𝑡

𝐱𝐵 0

𝑥𝐵 𝑡

𝐽 𝐱𝑔 0 , 0 > 0

𝐽 𝐱𝑏 0 , 0 ≤ 0
𝐽 𝐱𝐵 0 , 0 ≤ 0
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“Sets” vs. “Tubes”
• Backward reachable set (BRS) • Backward reachable tube (BRT)

𝐱𝑔 0

𝐱𝑏 0

ℎ 𝐱 ≤ 0, 
target set

𝐽 𝐱𝑔 0 , 0 > 0

𝐽 𝐱𝑏 0 , 0 ≤ 0
𝐽 𝐱𝐵 0 , 0 > 0

𝐱𝑏 𝑡

𝐱𝑔 𝑡

𝐱𝐵 0

𝑥𝐵 𝑡

𝐽 𝐱𝑔 0 , 0 > 0

𝐽 𝐱𝑏 0 , 0 ≤ 0
𝐽 𝐱𝐵 0 , 0 ≤ 0

Value function definition

𝐽 𝐱, 𝑡 = min
Γ 𝐮

max
𝐮

ℎ 𝐱 0

Value function obtained from

𝜕𝐽

𝜕𝑡
+ max

𝐮
min

𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝 = 0

Value function definition
𝐽 𝐱, 𝑡 = min

Γ 𝐮
max

𝐮
min

𝜏∈ 𝑡,0
ℎ 𝐱 𝜏

Value function obtained from
𝜕𝐽

𝜕𝑡
+ min max

𝐮
min

𝐝

𝜕𝐽

𝜕𝐱

𝑇

𝑓 𝐱, 𝐮, 𝐝 , 0 = 0
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Computational aspects

• Computational complexity (traditional PDE solver)
• 𝐽 𝐱, 𝑡  is computed on an 𝑛 + 1 -dimensional grid
• 𝑛 ≤ 5 is reasonable; larger requires some compromises
• Dimensionality reduction methods (decoupling) 

sometimes help

• Alternatives/related approaches
• Sacrifice global optimality
• Give up guarantees

• NN-based PDE solvers
• Sampling-based methods
• Reinforcement learning
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Example: pursuit/evasion with two identical vehicles

• With evader (a), pursuer (b) dynamics

we consider the relative system in (a)’s frame

Courtesy of 
Ian Mitchell, 
“ToolboxLS”,
Section 2.6.1
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Next time

• Model Predictive Control
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