AA203
Optimal and Learning-based Control

Course overview; intro to nonlinear optimization

Univer SIt)r' .



Course mechanics

Teaching team:
* Instructors: Marco Pavone (OH: Tue 1pm - 2pm) and Daniele Gammelli (OH: TBD)
e CAs: Matt Foutter, Daniel Morton, and Luis Pabon (OH: TBD)

Logistics:

 Lecture slides, homework assignments: http://asl.stanford.edu/aa203/

Lecture recordings, announcements: https://canvas.stanford.edu/courses/205228
Discussion forum: https://edstem.org/us/courses/77489

Homework submission: https://www.gradescope.com/courses/1011554
For urgent questions: 2a203-spr2425-staff@lists.stanford.edu
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Course requirements

« Homework: there will be a total of four graded problem sets
 Mixture of theory and implementation (Python)

e Final exam: scheduled for June 9th, 3:30-6:30pm

e Grading:
« Homework: 80% (20% per HW)
« Final exam: 20%
« Ed Discussion: bonus up to 5%, 0.5% per endorsed post

* Late day policy: 6 total, maximum of 3 on any given homework
assignment
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Course material

* Course notes: an evolving set of partial course notes is available at
https://github.com/StanfordASL/AA203-Notes

* Recitations: Friday recitations (weeks 1-4 on Fridays, time and
location TBD) led by the CAs covering relevant tools (computational
and mathematical)

* Textbooks that may be valuable for context or further reference are
listed in the syllabus
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Prerequisites

* Familiarity with a standard undergraduate engineering mathematics
curriculum (e.g., CME100-106; vector calculus, ordinary differential equations,
introductory probability theory)

* Strong familiarity with linear algebra (e.g., EE263 or CME200)

* Nice-to-have: a course in optimization (e.g., EE364A, CME307, CS 205L,
CS2690, AA222)

* To get the most out of this class, at least one of:
* A course in machine learning (e.g., CS229, CS230, CS231N)

or
A course in control (e.g., ENGR205, AA212)

Homework 0 (ungraded) is out now to help you gauge your preparedness
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Caveats

* Arguably, this class aims for “breadth over depth”
 Past students have found self-study of the details necessary

* This class is quite challenging/demanding
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Today’s Outline

1. Contextand course goals
2. Problem formulation for optimal control

3. Introduction to non-linear optimization
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Today’s Outline

1. Contextand course goals
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Feedback control

* Tracking a reference signal
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Feedback control

* Tracking a reference signal

Thermostat Gas flow Room
setting t\ZJ { Controller} rate { FL:.‘r(;\r?]cee/ J temperature
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temperature {Thermometer}
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Feedback control

* Reference tracking, with uncertainty Disturbance
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Feedback control desiderata

« Stability: multiple notions; loosely system output is “under control”
* Tracking: the output should track the reference “as closely as possible”

* Disturbance rejection: the output should be “as insensitive as possible”
to disturbances/noise

* Robustness: controller should still perform well up to “some degree of”
model misspecification
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S
What’s missing?

* Performance: mathematical quantification of the above desiderata,
and providing a control that best realizes the tradeoffs between them

* Planning: providing an appropriate reference trajectory for the
controller to track (particularly nontrivial, e.g., when controlling
mobile robots)

* Learning: a controller that adapts to an initially unknown, or possibly
time-varying system
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Course overview
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Course goals

To learn the theoretical and implementation aspects of main
techniques in optimal and learning-based control
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Course goals

To learn the theoretical and implementation aspects of main
techniques in optimal and learning-based control

To provide a unified framework and context for understanding and
relating these techniques to each other

3/31/2025 AA 203 | Lecture 1



Today’s Outline

2. Problem formulation for optimal control
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Problem formulation

* Mathematical description of the system to be controlled
 Statement of the constraints
 Specification of a performance criterion
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Mathematical model

« x1(t),x2(t),...,x,(t) arethe state variables
o uy(t),us(t),...,unm(t) arethe controlinputs



Mathematical model

In compact form

- a history of control input values during the interval [ ¢, t7] is called a
control history

- a history of state values during the interval [, t/] is called a state
trajectory
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

5(t) = a(t) L =8 -
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

5(t) = a(t) L =8 -
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Illustrative example: double integrator

* Double integrator: point mass under

controlled acceleration
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

S 0 1 0 =
' _O O_U 1

x(t)= A x(t)+ B u(t) LTisystem

3/31/2025 AA 203 | Lecture 1



Constraints

e initial and final conditions (boundary conditions)

x(tg) = Xo, x(tf) =%y
* constraints on state trajectories

 control authority

e and many more...
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Constraints

* A control history which satisfies the control constraints during the
entire time interval [to, t7| is called an admissible control

* A state trajectory which satisfies the state variable constraints
during the entire time interval ¢, t] is called an admissible
trajectory
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Performance measure

T =hix(tp),t)+ [ gbx(®)u(t), 0 d

to

* h (terminal cost) and g (stagewise/running cost) are scalar functions
* tr may be specified or free

3/31/2025 AA 203 | Lecture 1



Optimal control problem

Find an admissible control u™ which causes the system
x(t) = £(x(t),u(?),t)

to follow an admissible trajectory x* that minimizes the performance
measure

J = h(x(ts), 1) + / " g(x(t), u(t), ) dt

to

Very general problem formulation!
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Optimal control problem

Comments:

* minimizer (x*,u”) called optimal trajectory-control pair
* existence: in general, not guaranteed

e unigueness: optimal control may not be unique

* minimality: we are seeking a global minimum

 for maximization, we rewrite the problem as muin —]
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Forms of optimal control

1. ifu* =n(x(t),t),then mis called optimal control law or optimal
policy (closed-loop)
« important example: m(x(t),t) = F x(t)

2. ifu” = ex(ty), t), then the optimal control is open-loop
 optimal only for a particularinitial state value
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Discrete-time formulation

e System: X;..; = f(X,uy, k), k=0,...,N—1
* Control constraints: ug€ U

e Cost:
N-—1

](XO;uOJ '"iuN—l) — hN(XN) + Z gk(xk; Uy, k)
k=0
* Decision-making problem:

"(Xg) = ' Xq; Ug, -y Upy—
J"(Xo) ukEU,rI?:lg"_’N_lf( 0; Ug, - UN—1)
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Discrete-time formulation

e System: X;..; = f(X,uy, k), k=0,...,N—1
* Control constraints: ug€ U

e Cost:
N-—1

J(Xo; Uo, -, Uy—1) = hy(Xy) + ng(xk: uy, k)
k=0
* Decision-making problem:
J (Xo) = min N_lf(xoiuo;---,uN—ﬂ

ui,€eu, k=0,...,

Extension to stochastic setting will be covered later in the course
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Today’s Outline

3. Introduction to non-linear optimization
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Non-linear optimization

Unconstrained non-linear program

min f(x)

XCcR™

e f usually assumed continuously differentiable (and often twice
continuously differentiable)
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Local and global minima

 Avector x® is said an unconstrained local minimum if 3e > 0 such
that

Fx) < f(x),  x|[x—x*] <e
* Avector x™ is said an unconstrained global minimum if
f(x") < f(x), VxeR™

* X" is a strict local/global minimum if the inequality is strict
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Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors
« Assume f € C1, by using Taylor series expansion

f(x" + Ax) — f(x*) = Vf(x*) Ax
*If f € C?

f(x* + Ax) — f(x*) = Vf(x*) Ax + %AX,V2f(X*)AX
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Necessary conditions for optimality

* We expect that if X" is an unconstrained local minimum, the first
order cost variation due to a small variation Ax is nonnegative, i.e.,

Vix*)Ax = Z 8{;2*)Aa:i >0

1=1
By taking Ax to be positive and negative multiples of the unit
coordinate vectors, we obtain conditions of the type

of(x") 0f(x")

* Equivalently we have the necessary condition

>0, and <0

Vf(x*) =0 (x™ is said a stationary point)
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Necessary conditions for optimality

* Of course, also the second order cost variation due to a small
variation Ax must be non-negative

Vix*)Ax + %AX’VQf(X*)Ax > 0

e Since Vf (x*)'Ax=0, we obtain AX'V?f(x*)Ax = 0. Hence

V2 f(x*) has to be positive semidefinite
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NOC - formal

Theorem: NOC

Let x*be an unconstrained local minimum of f: R" » R and assume
that f is C! in an open set S containing x*. Then

Vfx*)=0 (first order NOC)

If in addition f € C? within S,

positive semidefinite (second order NOC)
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R EEEEEEEEE—————S——m—m—m———
SOC

« Assume that x*satisfies the first order NOC
Vix")=0
* and also assume that the second order NOC is strengthened to
V2 f(x*) positive definite

* Then, for all Ax # 0, AX'V?f(x*)Ax > 0. Hence, f tends to increase
strictly with small excursions from x*, suggesting SOC...
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R EEEEEEEEE—————S——m—m—m———
SOC

Theorem: SOC

Let f: R™ » R be C?in an open set S. Suppose that a vector x* €
S satisfies the conditions

Vfx*)=0 and  V2f(x*) positive definite

Then x™ is a strict unconstrained local minimum of f
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Special case: convex optimization

A subset C of R" is called convex if
ax+ (1—a)y e C, Vx,y € C,Va € [0, 1]

Let C be convex. Afunction f: C — Ris called convex if

flax+(1-a)y) <af(x)+(1—-a)f(y)

Let f: C = R be a convex function over a convex set C

* Alocal minimum of f over C is also a global minimum over C. If in addition
f is strictly convex, then there exists at most one global minimum of f

e If fisin C! and convex, and the set C is open, Vf(x*) = 0 is a necessary
and sufficient condition for a vector x* € C to be a global minimum over C
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Discussion

* Optimality conditions are important to filter candidates for global
minima

* They often provide the basis for the design and analysis of

optimization algorithms

* They can be used for sensitivity analysis
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Next lecture

Computational methods for non-linear optimization;
constrained optimization
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