
AA203
Optimal and Learning-based Control

Course overview; intro to nonlinear optimization



Course mechanics

Teaching team:

• Instructors: Marco Pavone (OH: Tue 1pm - 2pm) and Daniele Gammelli (OH: TBD)

• CAs: Matt Foutter, Daniel Morton, and Luis Pabon (OH: TBD)

Logistics:

• Lecture slides, homework assignments: http://asl.stanford.edu/aa203/

• Lecture recordings, announcements: https://canvas.stanford.edu/courses/205228

• Discussion forum: https://edstem.org/us/courses/77489

• Homework submission: https://www.gradescope.com/courses/1011554

• For urgent questions: aa203-spr2425-staff@lists.stanford.edu
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Course requirements 

• Homework: there will be a total of four graded problem sets
• Mixture of theory and implementation (Python)

• Final exam: scheduled for June 9th, 3:30-6:30pm

• Grading:
• Homework: 80% (20% per HW)

• Final exam: 20%

• Ed Discussion: bonus up to 5%, 0.5% per endorsed post

• Late day policy: 6 total, maximum of 3 on any given homework 
assignment
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Course material

• Course notes: an evolving set of partial course notes is available at 
https://github.com/StanfordASL/AA203-Notes 

• Recitations: Friday recitations (weeks 1-4 on Fridays, time and 
location TBD) led by the CAs covering relevant tools (computational 
and mathematical)

• Textbooks that may be valuable for context or further reference are 
listed in the syllabus
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Prerequisites 

• Familiarity with a standard undergraduate engineering mathematics 
curriculum (e.g., CME100-106; vector calculus, ordinary differential equations, 
introductory probability theory)

• Strong familiarity with linear algebra (e.g., EE263 or CME200)

• Nice-to-have: a course in optimization (e.g., EE364A, CME307, CS 205L, 
CS269O, AA222)

• To get the most out of this class, at least one of:
• A course in machine learning (e.g., CS229, CS230, CS231N)

 or
• A course in control (e.g., ENGR205, AA212)

Homework 0 (ungraded) is out now to help you gauge your preparedness
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Caveats

• Arguably, this class aims for “breadth over depth”
• Past students have found self-study of the details necessary

• This class is quite challenging/demanding
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Today’s Outline

1. Context and course goals

2. Problem formulation for optimal control 

3. Introduction to non-linear optimization
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Feedback control
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Feedback control
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Feedback control

3/31/2025 AA 203 | Lecture 1

System

• Reference tracking, with uncertainty

Controller

Sensor

Σ
Reference Control Output

–

Measurement

+

Disturbance

Sensor noise



Feedback control desiderata
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• Stability: multiple notions; loosely system output is “under control”

• Tracking: the output should track the reference “as closely as possible”

• Disturbance rejection: the output should be “as insensitive as possible” 
to disturbances/noise

• Robustness: controller should still perform well up to “some degree of” 
model misspecification



What’s missing?
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• Performance: mathematical quantification of the above desiderata, 
and providing a control that best realizes the tradeoffs between them

• Planning: providing an appropriate reference trajectory for the 
controller to track (particularly nontrivial, e.g., when controlling 
mobile robots)

• Learning: a controller that adapts to an initially unknown, or possibly 
time-varying system



Course overview
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Course goals

To learn the theoretical and implementation aspects of main 
techniques in optimal and learning-based control
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Course goals

To learn the theoretical and implementation aspects of main 
techniques in optimal and learning-based control

To provide a unified framework and context for understanding and
relating these techniques to each other
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Today’s Outline

1. Context and course goals

2. Problem formulation for optimal control 

3. Introduction to non-linear optimization
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Problem formulation
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• Mathematical description of the system to be controlled

• Statement of the constraints

• Specification of a performance criterion



Mathematical model

Where

•                                                      are the state variables

•                                                      are the control inputs
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Mathematical model

• a history of control input values during the interval 𝑡0, 𝑡𝑓  is called a 
control history

• a history of state values during the interval 𝑡0, 𝑡𝑓  is called a state 
trajectory
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In compact form 



Illustrative example: double integrator
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• Double integrator: point mass under 
controlled acceleration
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Illustrative example: double integrator
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• Double integrator: point mass under 
controlled acceleration

LTI system



Constraints

• initial and final conditions (boundary conditions)

• constraints on state trajectories

• control authority

• and many more...
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Constraints

• A control history which satisfies the control constraints during the 
entire time interval 𝑡0, 𝑡𝑓  is called an admissible control 

• A state trajectory which satisfies the state variable constraints 
during the entire time interval 𝑡0, 𝑡𝑓  is called an admissible 
trajectory 
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Performance measure

• ℎ (terminal cost) and 𝑔 (stagewise/running cost) are scalar functions

• 𝑡𝑓  may be specified or free
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Optimal control problem

Find an admissible control u∗ which causes the system

to follow an admissible trajectory x∗ that minimizes the performance 
measure 
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Optimal control problem

Comments:

• minimizer (𝐱∗, 𝐮∗) called optimal trajectory-control pair

• existence: in general, not guaranteed

• uniqueness: optimal control may not be unique

• minimality: we are seeking a global minimum

• for maximization, we rewrite the problem as min
u

−𝐽
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Forms of optimal control

1. if u∗ = 𝜋(𝐱 𝑡 , 𝑡), then 𝜋 is called optimal control law or optimal 
policy (closed-loop)
• important example: 𝜋 𝐱 𝑡 , 𝑡 = 𝐹 𝐱 𝑡

2. if u∗ = 𝑒(𝐱 𝑡0 , 𝑡), then the optimal control is open-loop
• optimal only for a particular initial state value
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Discrete-time formulation

• System: 𝐱𝑘+1  = 𝐟 𝐱𝑘 , 𝐮𝑘 , 𝑘 ,  𝑘 = 0, … , 𝑁 − 1

• Control constraints: 𝐮𝑘∈ 𝑈

• Cost: 

𝐽(𝐱0; 𝒖0, … , 𝒖𝑁−1 ) = ℎ𝑁 𝐱𝑁 + 

𝑘=0

𝑁−1

𝑔𝑘 𝐱𝑘, 𝐮𝑘, 𝑘

• Decision-making problem:

𝐽∗(𝐱0)  = min
 𝐮𝑘∈𝑈, 𝑘=0,…,𝑁−1

 𝐽(𝐱0; 𝒖0, … , 𝒖𝑁−1 ) 
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Discrete-time formulation
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 𝐽(𝐱0; 𝒖0, … , 𝒖𝑁−1 ) 

Extension to stochastic setting will be covered later in the course
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Today’s Outline

1. Context and course goals

2. Problem formulation for optimal control 

3. Introduction to non-linear optimization
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Non-linear optimization

Unconstrained non-linear program

• 𝑓 usually assumed continuously differentiable (and often twice 
continuously differentiable)

3/31/2025 AA 203 | Lecture 1



Local and global minima

• A vector 𝐱∗ is said an unconstrained local minimum if ∃𝜖 > 0 such 
that

• A vector 𝐱∗ is said an unconstrained global minimum if

• 𝐱∗ is a strict local/global minimum if the inequality is strict
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Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors

• Assume 𝑓 ∈ 𝐶1, by using Taylor series expansion

• If 𝑓 ∈ 𝐶2
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Necessary conditions for optimality

• We expect that if 𝐱∗ is an unconstrained local minimum, the first 
order cost variation due to a small variation Δ𝐱 is nonnegative, i.e., 

• By taking Δ𝐱 to be positive and negative multiples of the unit 
coordinate vectors, we obtain conditions of the type

• Equivalently we have the necessary condition 
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Necessary conditions for optimality

• Of course, also the second order cost variation due to a small 
variation Δ𝐱 must be non-negative

• Since ∇𝑓(x∗)′∆x=0, we obtain ∆x′∇2𝑓(x∗)∆x ≥ 0. Hence
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NOC – formal

Theorem: NOC 

Let 𝐱∗be an unconstrained local minimum of 𝑓: ℝ𝑛 ↦ ℝ and assume 
that 𝑓 is 𝐶1 in an open set 𝑆 containing 𝐱∗. Then 

If in addition 𝑓 ∈ 𝐶2 within 𝑆,

3/31/2025 AA 203 | Lecture 1

(first order NOC)

positive semidefinite (second order NOC)



SOC

• Assume that 𝐱∗satisfies the first order NOC

• and also assume that the second order NOC is strengthened to

• Then, for all Δ𝐱 ≠ 0, ∆x′∇2𝑓(𝐱∗)∆x > 0. Hence, 𝑓 tends to increase 
strictly with small excursions from 𝐱∗, suggesting SOC…
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SOC
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Theorem: SOC 

Let 𝑓: ℝ𝑛 ↦ ℝ be 𝐶2 in an open set 𝑆. Suppose that a vector 𝐱∗ ∈
𝑆 satisfies the conditions

Then 𝐱∗ is a strict unconstrained local minimum of 𝑓

and positive definite



Special case: convex optimization

A subset 𝐶 of ℝ𝑛 is called convex if

Let 𝐶 be convex. A function 𝑓: 𝐶 → ℝ is called convex if

Let 𝑓: 𝐶 → ℝ be a convex function over a convex set 𝐶

• A local minimum of 𝑓 over 𝐶 is also a global minimum over 𝐶. If in addition 
𝑓 is strictly convex, then there exists at most one global minimum of 𝑓

• If 𝑓 is in 𝐶1 and convex, and the set 𝐶 is open, ∇𝑓(x∗)  = 0 is a necessary 
and sufficient condition for a vector x∗ ∈ 𝐶 to be a global minimum over 𝐶 
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Discussion

• Optimality conditions are important to filter candidates for global 
minima 

• They often provide the basis for the design and analysis of 
optimization algorithms

• They can be used for sensitivity analysis
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Next lecture
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Computational methods for non-linear optimization;

constrained optimization
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