
Stanford Spring 2025

AA 203: Optimal and Learning-based Control
Homework #4

Due June 4 by 11:59 pm

Problem 1: Apply SCP to MPC for nonlinear systems with non-convex constraints.

Problem 2: Gain experience with data-driven learning in a “real world” setting.

Problem 3: Implement reinforcement learning agents in a familiar setting.

Problem 4: Analyze the strengths and weaknesses of some fundamental reinforcement learning
algorithms.

Problem 5: Reason through some concepts involved in implementing a neural-network-based
actor-critic algorithm, and gain insight into modern deep reinforcement learning practice.

4.1 Obstacle avoidance. In this problem, you will implement a nonlinear MPC controller to steer
towards a goal position while avoiding obstacles. Consider the discrete-time nonlinear system

s(t+ 1) = f(s(t), u(t)) = s(t) + ∆t


ẋ(t)
ẏ(t)

u1(t)− βẋ(t)|ẋ(t)|
u2(t)− βẏ(t)|ẏ(t)|

 ,

where s(t) = (x(t), y(t), ẋ(t), ẏ(t)) ∈ R4 is the state of the system with position (x(t), y(t)) ∈ R2 and
velocity (ẋ(t), ẏ(t)) ∈ R2, u(t) = (u1(t), u2(t)) ∈ R2 is the control input, ∆t > 0 is a discretization
constant, and β > 0 is a drag coefficient. Overall, this nonlinear system represents an Euler-
discretized, two-dimensional double-integrator system subject to drag forces.

Let s·|t := {sk|t}Nk=0 and u·|t := {uk|t}N−1k=0 denote N -step state and control trajectories planned
from some initial state s(t) with s0|t = s(t). We want to design a closed-loop MPC controller that
optimizes such trajectories using the quadratic cost function

J(s·|t, u·|t) = (sN |t − sgoal)TP (sN |t − sgoal) +

N−1∑
k=0

(
(sk|t − sgoal)TQ(sk|t − sgoal) + uTk|tRuk|t

)
,

with cost matrices P � 0, Q � 0, and R � 0 and goal state sgoal ∈ R4. We generally choose P to
have much larger entries than those in Q and R, such that system state is driven towards sgoal.

While steering towards the goal state, we want to avoid Nobs obstacles. In this problem, the jth

obstacle is represented as a circle with center (xj , yj) ∈ R2 and radius rj > 0. We define the
function d : Rn → RNobs such that the jth entry is given by the signed distance function

dj(s) = ‖(x, y)− (xj , yj)‖2 − rj =
√

(x− xj)2 + (y − yj)2 − rj ,

which is differentiable away from (x, y) = (xj , yj). Enforcing d(s) � 0 would ensure the system
does not collide1 with any of the obstacles.

1We assume that rj is at least slightly larger than the actual obstacle radius to avoid brushing against it.

1



Overall, the MPC problem we would like to solve at each time t in closed-loop is

minimize
s·|t,u·|t

(sN |t − sgoal)TP (sN |t − sgoal) +
N−1∑
k=0

(
(sk|t − sgoal)TQ(sk|t − sgoal) + uTk|tRuk|t

)
subject to s0|t = s(t)

sk+1|t = f(sk|t, uk|t), ∀k ∈ {0, 1, . . . , N − 1}
d(sk|t) � 0, ∀k ∈ {0, 1, . . . , N}

There are two sources of non-convexity in this problem.

• The dynamics are nonlinear, so the equality constraint sk+1|t = f(sk|t, uk|t) is non-convex.

• Each entry of the signed distance function d is convex, i.e., −d is concave. Thus, d(sk|t) � 0
or equivalently −d(sk|t) � 0 is a non-convex inequality constraint.

To solve this problem, you will use sequential convex programming (SCP), where for the ith sub-
problem you will affinize the dynamics and the signed distance function around the current esti-

mated solution (s
(i)
·|t , u

(i)
·|t ). For simplicity, we will not include trust region constraints in this problem

since the dynamics are close to being linear, but in practice you should always consider using them.

You will work with the starter code in obstacle avoidance.py. Carefully review all of the code
in this file before you continue. Only submit code you add to this starter file and any associated
plots that are generated by the file.

(a) Use JAX and array broadcasting2 to complete the function signed distances with a single
line of code that computes d(s).

(b) Use JAX to complete the function affinize with two lines of code that produce an affine
estimate f(s, u) ≈ As+Bu+c from the Taylor expansion of any given differentiable function f .

(c) State the convex approximation of the MPC problem around an iterate (s
(i)
·|t , u

(i)
·|t ). In particular,

write the constraints in terms of the affine approximations

f(sk|t, uk|t) ≈ A
(i)
f,k|tsk|t +B

(i)
f,k|tuk|t + c

(i)
f,k|t

d(sk|t) ≈ A
(i)
d,k|tsk|t + c

(i)
d,k|t

,

and express A
(i)
f,k|t, B

(i)
f,k|t, c

(i)
f,k|t, A

(i)
d,k|t, and c

(i)
d,k|t in terms of (s

(i)
·|t , u

(i)
·|t ), the functions f and d,

and appropriate Jacobians.

(d) The fact that we are approximating obstacle avoidance constraints may be concerning at first

from a safety perspective. Describe why A
(i)
d,k|tsk|t + c

(i)
d,k|t � 0 ensures d(sk|t) � 0.

Hint: For any x̄ ∈ Rn, a convex function g : Rn → R lies above any line `(x) = aTx + β ∈ R
through x̄ that is tangent to the function g at x̄. As an example for n = 1, the quadratic
function g(x) = 1

2x
2 lies entirely above the line `(x) = x− 1

2 , which is tangent to g at x̄ = 1.

(e) Complete the function scp iteration. Specifically, given the current iterate (s
(i)
·|t , u

(i)
·|t ), use

CVXPY to specify and solve the convex optimization problem you derived previously to obtain

an updated solution (s
(i+1)
·|t , u

(i+1)
·|t ).

2See the NumPy documention (https://numpy.org/doc/stable/user/basics.broadcasting.html) for details
on array broadcasting. However, make sure to use jax.numpy functions!
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(f) Complete the simulation towards the end of obstacle avoidance.py to use the MPC solution
from solve obstacle avoidance scp at each time t in a closed-loop fashion.

(g) The variables N and N scp set the MPC horizon N and the maximum number of SCP iterations
NSCP used to solve the MPC problem at each time, respectively. Run your completed version
of obstacle avoidance.py for

• N = 5 and NSCP = 5,

• N = 2 and NSCP = 5,

• N = 5 and NSCP = 2, and

• N = 15 and NSCP = 2.

The system should get closer to the goal while avoiding the obstacles. For each case, sub-
mit the generated state and control trajectory plots, and report the total computation time
(total time) and the total control effort (total control cost) to two decimal places. Discuss
what you observe for each case.
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4.2 Widget sales. You have just purchased Widget Co., a small shop selling widgets. Congratulations!
Widget Co. is in the business of buying widgets wholesale, and selling them to consumers at a
markup. While the previous owners were losing money, you suspect that you can apply your
knowledge of optimal control and reinforcement learning to turn the business around.

The shop is able to store between 0 and 5 widgets at a time. We write the number of widgets held in
the shop on day t as st. Every day, you choose how many widgets to order from your supplier. You
can order either zero widgets, a “half order” of 2 widgets, or a “full order” of 4 widgets. We write
the number of widgets ordered to arrive on day t as at. A random number of customers (following
an unknown distribution, though this distribution may be assumed to be consistent across all days)
come to Widget Co. every day; each customer buys a widget if there are any available. We write
the demand on day t as dt, and assume dt ≤ 5. At the end of each day, you record a net profit rt
for that day.

(a) The previous owners were nice enough to give you the details of their last three years of
operation. In particular, they have provided a dataset D = {(st, at, rt)}Tt=1 containing records
for each day t of the last three years. In widget sales.py, implement a Q-learning algorithm
to learn tabulated Q-values from this dataset. Provide only the code you add to the provided
starter file.

While you were busy with your model-free learning, your modeling-inclined intern noticed that the
dynamics of the number of widgets in the shop each day are described by

st+1 = f(st, at, dt) :=


0, st + at − dt < 0

5, st + at − dt > 5

st + at − dt, otherwise

,

and the daily net profit is

r(st, at, dt) = csell min(st + at, dt)− crent − cstoragest − gorder(at),

where csell = 1.2 is the price you set for each widget, crent = 1 is the fixed rent on your shop,
cstorage = 0.05 is the cost for storing each widget overnight, and gorder(at) =

√
at is the cost of

ordering widgets from your supplier. The quantity min(st + at, dt) is the “satisfied demand” on
day t.

Moreover, after a few weeks of sales, your intern determined that the daily demand distribution
for your widgets seems to be

dt =



0, with probability 0.1

1, with probability 0.3

2, with probability 0.3

3, with probability 0.2

4, with probability 0.1

.

(b) In widget sales.py, implement value iteration to learn tabulated Q-values from the model
your intern has provided. Submit only the code you add to the provided starter file. Also submit
the plot generated by widget sales.py of Q-values from Q-learning compared to those from
value iteration. What do you notice about the learned Q-values compared to those from value
iteration? Why do you think this occurs?
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(c) In widget sales.py, compute an optimal policy π∗QL(st) based on your Q-learning work, and
another optimal policy π∗VI(st) based on your value iteration work. Report each optimal policy,
simulate each one over five years, and compute the cumulative profit

∑t
k=0 rk for each day t

and for each optimal policy. Submit only the code you add to the provided starter file. Also
submit the plot generated by widget sales.py comparing the cumulative profits over time.
What do you notice about the difference between the two cumulative profit trends? Why do
you think this occurs?
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4.3 Cart-pole balance via Reinforcement Learning. In this problem, we will return to the classic
“cart-pole” benchmark in which we aim to design a controller to balance an inverted pendulum
upright on a cart. Previously, in the second problem set i.e., Problem 2.3, we explored theory from
optimal control to balance the pendulum, which relied on explicitly modeling the system’s dynamics
and the derivation of a closed-form control policy (e.g., through Riccati recusion). Alternatively,
in this problem we will explore an approach to solving the cart-pole balancing problem using
reinforcement learning (RL) through a model-free framework: rather than directly deriving a control
law, we will instantiate an RL agent that learns an optimal policy through interaction with the
environment, receiving feedback in the form of rewards.

The agent observes the state of the environment as s := (x, ẋ, θ, θ̇) ∈ R4, where x ∈ R denotes
the horizontal position of the cart and θ ∈ R denotes the angle of the pendulum from the upright
position. At each instant, the agent simply chooses an action at ∈ {0, 1} indicating whether to
push the cart to the left at = 0 or to the right at = 1. For complete details on the “CartPole-v1”
environment we will use in OpenAI’s Gymnasium package, please see the online documentation.

Unlike the previous problem, this episodic RL formulation does not rely on an explicit model of
the system’s dynamics. Instead, the agent learns by trial and error, with the goal of choosing
actions so as to maximize the expected cumulative reward it observes. Once you are ready to train
your policy, you are welcome to experiment with your own hyperparameters, if you’d like, but we
provide hyperparameters by default, too, which you are welcome to use. Explicitly, we will grade
this portion of the assignment based on the trends that emerge from your comparisons and training,
rather than exact e.g., average reward observed by the policy.

(a) In this sub-part, you will implement a deep Q-learning algorithm with experience replay, origi-
nally introduced in “Playing Atari with Deep Reinforcement Learning” (MKS+13). The neces-
sary starting code for this problem is provided in agents/qlearning.py and main.py: please
carefully review the code already provided for you before proceeding.

i. Please follow the directions in agents/qlearning.py to implement the build network

function in the QLearning class. As a deliverable for this question, please attach a copy of
your code to your pdf submission.

ii. Please follow the directions in agents/qlearning.py to implement the policy function
in the QLearning class. As a deliverable for this question, please attach a copy of your
code to your pdf submission.

iii. Please use the functions you’ve crafted to complete the train function in the QLearning

class according to the algorithm described in “Algorithm 1” of (MKS+13). As a deliverable
for this question, please attach a copy of your code to your pdf submission.

iv. Now, you are ready to train! Launch the training with your choice of hyperparameters
and a visualization, if you’d like. Please use the policy rollout function in utils.py to
score reward statistics on the randomly initialized Q network for your policy i.e., evaluate
the policy’s performance before training and report the statistics here. After training, also
score the same reward statistics for your new (and hopefully improved) policy.

(b) In this sub-part, you will be implementing the REINFORCE algorithm: a policy optimization
algorithm originally introduced in “Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning” (Wil92). Similarly to part (a), the necessary starter code is
provided in agents/ReinforceAgent.py and main.py: please carefully review the code already
provided for you before proceeding. In this sub-part you will be implementing three variations
of the REINFORCE algorithm, where each variation corresponds to a different definition of
the policy gradient.
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Specifically, we consider the case of a stochastic, parametrized policy, πθ, where parameters
θ represent, e.g., the weights of a neural network. Recall that policy optimization methods
aim to find the parameters θ that directly optimize the RL objective: J(πθ) = Eτ∼p(τ) [R(τ)],
where τ = (x0, u0, . . . , xT ) represents a trajectory obtained by interacting with an episodic
environment, p(τ) = p(x0)

∏T
t=0 p(xt+1|xt, uu)πθ(ut|xt) is the trajectory distribution (i.e., the

probability of observing a specific trajectory), and R(τ) =
∑T

t=0 γ
trt denotes the finite-horizon

discounted return. In policy optimization, we would like to optimize the policy by gradient
ascent, i.e., by defining the following iterative update rule for the policy parameters:

θk+1 = θk + α∇θJ(πθ)|θk ,

where the gradient ∇θJ(πθ) is referred to as policy gradient. The exact definition and compu-
tation of the policy gradient play a crucial role and represent the main element of distinction
among policy optimization methods.

Concretely, deriving an actionable expression for the policy gradient involves two steps: 1)
deriving the analytical gradient of policy performance, which turns out to have the form of
an expected value, and then 2) forming a sample estimate of that expected value, which can
be computed with data from a finite number of agent-environment interaction steps. For the
purpose of this problem, you will be provided with (1), i.e., the analytical expression, and will
have to implement (2), i.e., a tractable computation of the policy gradient based on observed
quantities through interaction with the environment.

Please follow the directions in agents/ReinforceAgent.py to implement the learn function
in the ReinforceAgent class. As a deliverable for this question, please attach a copy of your
code to your pdf submission.

i. Naive Policy Gradient.

∇θJ (πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ (xt | ut)R(τ)

]
.

This is an expectation, which means that we can estimate it with a sample mean. If we
collect a set of trajectories D = {τi}i=1,...,N where each trajectory is obtained by letting
the agent act in the environment using the policy πθ, the policy gradient can be estimated
with

ĝ =
1

|D|
∑
τ∈D

T∑
t=0

∇θ log πθ(ut|ut)R(τ),

where |D| is the number of trajectories in D (here, N).

ii. Naive Policy Gradient with “causality trick”. Taking a step with the previous gradient
pushes up the log-probabilities of each action in proportion to R(τ), the sum of all rewards
ever obtained. Intuitively, this does not seem like a meaningful thing to do, as agents
should really only reinforce actions on the basis of their consequences. Rewards obtained
before taking an action have no bearing on how good that action was: only rewards that
come after. Please redefine the policy gradients by introducing an element of causality:

∇θJ(πθ) = Eτ∼πθ
T∑
t=0

∇θ log πθ(ut|xt)
T∑
t′=t

R(xt′ , ut′ , xt′+1).
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iii. Baselines in policy gradients. Baselines allow us to reduce the variance of policy gradients
“centering” the returns. Given the general expression of the policy gradient with a baseline:

∇θJ(πθ) = Eτ∼πθ
T∑
t=0

∇θ log πθ(ut|xt)

(
T∑
t′=t

R(xt′ , ut′ , xt′+1)− b(xt)

)
.

implement the policy gradient using the average discounted return as a baseline, i.e., b(xt) =
b = 1

|D|
1
T

∑
τ∈D

∑T
t′=0 γ

t′rt′ . Please use γ as defined in the abstract agent class.

iv. Now, you are ready to train! Launch the training with your choice of hyperparameters
and a visualization, if you’d like. Use the plot rewards function to visualize the history
of rewards throughout training for each policy gradient variant. Comment about the
difference you observe between the REINFORCE agent and the DQN agent from part
(a), both in terms of performance during (e.g., sample efficiency) and after training. Also,
comment on any noticeable differences between the different versions of the policy gradient.
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4.4 Learning LQR. In this problem, you will study methods for learning an optimal policy for an
unknown discrete-time dynamical system with an unknown cost function. All of the methods will
use some form of episodic online reinforcement learning. That is, each method requires us to interact
with the system, observe state transitions and incurred costs, and update a parametric policy with
each observation. Specifically, at each time step t of episode i, we use the current policy to apply a

control input u
(i)
t that transitions the state from x

(i)
t to x

(i)
t+1, and we incur an observed cost of c

(i)
t .

Depending on the method, the policy is updated at each time step with the data (x
(i)
t , u

(i)
t , c

(i)
t , x

(i)
t+1),

or at the end of the episode with all of the associated data {(x(i)t , u
(i)
t , c

(i)
t , x

(i)
t+1)}

T−1
t=0 , where T is

the number of time steps in each episode.

Our goal is to learn a policy that minimizes the expected cost E[
∑T−1

t=0 γ
tct] with discount factor

γ ∈ [0, 1), where the expectation is taken over the initial system state, policy, and state transitions.

For this particular problem, the true underlying dynamics are linear time-invariant with the form

xt+1 = Axt +But,

with state xt ∈ Rn and control input ut ∈ Rm. Moreover, E[x0] = 0 and Var[x0] = Σx. The true
underlying stage cost function is

c(x, u) = xTQx+ uTRu,

with cost matrices Q � 0 and R � 0. To the learning agent, the matrices A, B, Q, and R are all a
priori unknown.

We will investigate three approaches to learning an optimal policy: a model-based method, a model-
free value-based method, and a model-free policy-based method. We provide high-level descriptions
for each method, some references, and results below.

Model-based recursive least-squares: The first approach is a natural formulation of model
identification adaptive control (MIAC). It consists of three steps performed at each time step
to iteratively update estimates (Â, B̂, Q̂, R̂) and compute a corresponding linear policy u = Kx

with parameter K ∈ Rm×n. Given the current state x
(i)
t , we:

1. Apply the control input u
(i)
t = Kx

(i)
t and observe the incurred cost c

(i)
t and next state x

(i)
t+1.

2. Fit (Â, B̂) using recursive least-squares such that

(Â, B̂)← arg min
A,B

i−1∑
j=1

T−1∑
τ=0

‖Ax(j)τ +Bu(j)τ −x
(j)
τ+1‖

2
2+

t∑
τ=0

‖Ax(i)τ +Bu(i)τ −x
(i)
τ+1‖

2
2+η(‖A‖2F+‖B‖2F),

where η > 0 is a regularization constant and ‖·‖F denotes the Frobenius norm.

3. Fit (Q̂, R̂) using recursive least-squares such that

(Q̂, R̂)← arg min
Q,R

(
i−1∑
j=1

T−1∑
τ=0

‖(x(j)τ )TQx(j)τ + (u(j)τ )TRu(j)τ − c(j)τ ‖22

+
t∑

τ=0

‖(x(i)τ )TQx(i)τ + (u(i)τ )TRu(i)τ − c(i)τ ‖22 + η(‖Q‖2F + ‖R‖2F)

).
4. Solve the discounted discrete algebraic Ricatti equation

P = Q̂+ γÂTPÂ− γ2ÂTPB̂(R̂+ γB̂TPB̂)−1B̂TPÂ

for P , and update the policy K ← −γ(R̂+ γB̂TPB̂)−1B̂TPÂ.
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Model-free policy iteration (BYB94): The second approach relies on the fact that for a linear
time-invariant system with a quadratic cost function, we can write the Q function for a given
policy u = Kx in the form

QK(x, u) =

(
x
u

)T

HK

(
x
u

)
=

(
x
u

)T [
HK,11 HK,12

HT
K,12 HK,22

](
x
u

)
,

where the Hessian HK � 0 is an implicit function of the current gain K. This approach
proceeds by alternating two steps of generalized policy iteration:

1. Policy evaluation: During episode i, apply the policy u
(i)
t = Kx

(i)
t + ε

(i)
t , where ε

(i)
t is some

zero-mean i.i.d. noise meant to excite the system, and observe (c
(i)
t , x

(i)
t+1). At the end of

each time step t, fit ĤK for the current policy K using recursive least-squares to minimize
the temporal difference error such that

ĤK ← arg min
HK

t∑
τ=0

‖QK(x(i)τ , u
(i)
τ )− c(i)τ − γQK(x

(i)
τ+1,Kx

(i)
τ+1)‖

2
2 + η‖HK‖2F

2. Policy improvement: At the end of episode i, improve the policy via the update

K ← arg min
K

QK(x,Kx) = −H−1K,22H
T
K,12.

Model-free policy gradient (SB18, §13.3): The third approach uses Monte Carlo policy gra-
dients via the REINFORCE algorithm to train a Gaussian policy distribution πK(u | x) :=
N (Kx,Σ), where K ∈ Rm×n is the gain parameter and Σ � 0 is fixed. This approach proceeds
in two steps:

1. Policy rollout: During episode i, apply the stochastic policy πK(u | x) and observe the

data {(x(i)t , u
(i)
t , c

(i)
t , x

(i)
t+1)}

T−1
t=0 .

2. Policy gradient update: At the end of episode i, compute the empirical mean and standard
deviation of all of the costs observed so far, i.e.,

µ(i) :=
1

iT

i∑
j=1

T−1∑
τ=0

c(j)τ , σ(i) :=
1

iT

i∑
j=1

T−1∑
τ=0

(
c(j)τ − µ(i)

)
.

Then compute the policy update

K ← K − α
T−1∑
t=0

γtv
(i)
t ∇K πK(u

(i)
t | x

(i)
t ).

where α > 0 is the learning rate, and the observed costs in computing the tail returns

v
(i)
t :=

T−1∑
τ=t

γτ−t

(
c
(i)
τ − µ(i)

σ(i)

)

are standardized using µ(i) and σ(i).

We have implemented all three algorithms and presented some results in Figure 1. It shows the
difference ‖K(i) −K∗‖F between the learned policy parameter K(i) and the optimal policy K∗ at
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the end of each episode i. Figure 1 also displays the discounted cost
∑T−1

t=0 γ
tc

(i)
t at the end of each

episode i alongside the expected optimal cost-to-go Ex0 [V ∗(x0)] for the true dynamics and cost
function. Figure 2 shows a zoomed-in version of these plots.

Figure 1: Gain errors and discounted cost sums for learning LQR.

Figure 2: Gain errors and discounted cost sums for learning LQR (zoomed).

With these results in mind, your task is to answer the following conceptual questions:

(a) Each of the three described learning-based methods required access to some amount of problem-
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specific information. For each of these methods, describe the problem information that was
used in the design of the algorithm. How does the amount of assumptions for each of the
methods compare to the performance of the methods?

(b) Suppose we had available additional information/assumptions about the problem, e.g., prior
belief distributions for A, B, Q, or R. To what degree could these beliefs be incorporated into
each of these learning methodologies?
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4.5 Lunar lander. As we have observed in the context of learning LQR, a näıve Monte Carlo policy
gradient method (i.e., REINFORCE) can be quite unstable/slowly converging due to high estimator
variance. As discussed in lecture, a popular variance reduction technique is to implement an actor-
critic method, in which a value function is used as a baseline (referred to as the critic, which predicts
the expected return associated with actions), with the policy referred to as the actor (which selects
the actions). In particular, in this problem we will consider an advantage actor-critic algorithm
which, with some details omitted, is constructed as follows:

• To improve the parameters θ of the actor πθ, we combine the Q-function policy gradient with
the value function baseline and obtain the following formulation for our policy gradient:

∇θJ(θ) = E [δπ∇θ log πθ(ut | xt)] , (1)

with δπ an estimate of the advantage Aπ(x,u) = Qπ(x,u)− V π(x).

• To improve the parameters w of the critic V π
w (which aims to estimate V π) we take gradient

descent steps to minimize (δπ)2 (note that V π
w is used in the computation of the advantage

estimate δπ).

As RL algorithm implementations can be quite time-consuming to run/debug, in this example3 we
have provided an already complete, albeit somewhat barebones4, implementation of an advantage
actor-critic algorithm. Your task in this problem is to review the code (a task you will undoubtedly
become familiar with in your professional careers, even if it seems a bit unusual for a homework
assignment) and answer the following conceptual questions:

(a) What estimator δπ of the advantage is this code using? Recalling our discussion in lecture,
where does this choice fall on the spectrum of the bias-variance tradeoff?

Note: In reviewing the code, you may observe the distinction between standardized returns

and returns (the former being what’s passed into train step for episode as “returns”).
For the purposes of this question, you may disregard this transformation, i.e., consider the
standardized returns = returns.

(b) Now considering the note from part (a), why might we wish to standardize the returns before
learning?

Hint: “Learning values across many orders of magnitude” by (vHGH+16) may provide some
insight.

3View the notebook through Google Colab to see example output even without waiting to run the code.
4Many improvements over the method implemented are possible and can improve performance. A non-exhaustive

list is given below, feel free to experiment with these (you can also try them out on more complicated environments
such as BipedalWalker-v3):

• Experience replay: store transitions (xt, ut, rt, xt+1) in a buffer. Old examples are deleted as we store new
transitions. To update the parameters of our network, we sample a (mini-)batch from the buffer and perform
the stochastic gradient update on this batch.

• Try out different advantage estimators, e.g., the TD advantage estimate or n-step advantage estimate that
bootstrap learning with the value function.

• Play with the structure of generalized policy iteration, i.e., the current implementation does one step each
(synchronously) of policy improvement and policy evaluation; this ratio could be adjusted.

• Using decoupled policy or value networks (currently they are different heads on the same trunk network).

• Implement a more recent method (e.g., Proximal Policy Optimization (PPO), Soft Actor Critic (SAC), Deep
Deterministic Policy Gradient (DDPG), and many more variants/alternatives) from the deep RL literature!
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https://github.com/StanfordASL/AA203-Examples/blob/master/Advantage%20Actor%20Critic%20(A2C)%20--%20Lunar%20Lander.ipynb
https://colab.research.google.com/github/StanfordASL/AA203-Examples/blob/master/Advantage%20Actor%20Critic%20%28A2C%29%20--%20Lunar%20Lander.ipynb


(c) jax.lax.stop gradient is a function that acts like the identity function (i.e., leaves its input
argument unchanged) but prevents the backpropagation of gradients through itself. That is,
stop gradient makes its input argument appear like a constant, as far as autodifferentiation
is concerned. What is the significance of using this function in computing the actor loss in
train loss for episode?

(d) Considering now the broader landscape of optimal and learning control, how else might you ap-
proach this lunar lander problem? In a short paragraph (maximum 4-5 sentences), sketch out an
alternative approach for solving the lunar lander problem and discuss the strengths/weaknesses
you imagine it having vs. the model-free RL approach here. Feel free to make whatever mod-
eling assumptions you’d like (i.e., known vs. unknown dynamics, deterministic vs. stochastic
dynamics, known vs. unknown reward, etc.).
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