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Stanford Spring 2025

AA 203: Optimal and Learning-based Control
Homework #1
Due April 21 by 11:59 pm

Learning goals for this problem set:

Problem 1: To gain insights into the implementation of gradient methods and review some notions
of linear algebra.

Problem 2: To familiarize with Linear Quadratic control and learn a first algorithmic approach
to this problem.

Problem 3: Become familiar with the process of solving calculus of variations problems.

Problem 4: To familiarize with the Hamiltonian equations for optimal control.

Gradient descent and line search. Let Q € R"*" be a symmetric positive-definite matrix, and
b € R™ be a given vector. Consider the quadratic optimization problem

o1
min —z' Qz — b z.
z€R™ 2

Let f(x) = %mTQx — b"z, and denote the eigenvalues of Q as Ai, ..., An.
(a) Find the unique local minimum candidate z* € R™. Prove z* is a global minimum.

Hint: Any twice-differentiable function f is strictly convex if the Hessian V2f(z) is positive-
definite for all z € R™.

(b) Show that, starting from any initial point #(®) € R”, Newton’s method with constant step size
n = 1 converges in one iteration to the optimal solution x*. Hence, performing one step of
Newton’s method is equivalent to solving the linear system of equations Qx = b. What would
be the downside of this solution method if n is large (e.g., n > 10%) and the matrix Q has no
particular structure?

(c) Let S € R™™ be a symmetric matrix. By the Spectral Theorem, there exist an orthogonal
matrix U € R™"” and a diagonal matrix ¥ = diag(p1, ..., u,) such that S = UXUT. Show
|Sz|la = [|[SUTz||2 for any 2 € R™. Then show [|Sz(l2 < max;eqy, |l llz]l2 for any z € R™.
Finally, conclude that ||Sz|l2 < maxjeqy,. ny|pall|z|2 for any z € R™.

Hint: If U € R™™ is an orthogonal matrix, then |Uyll2 = [|[Uyl||2 = ||y||2 for any y € R™.

(d) For any n > 0, show that the eigenvalues of the matrix I —nQ are exactly {1 —n\;}7 ;.
Hint: Identify an orthonormal basis of vectors {v;}? ; C R™ such that (I —nQ)v; = (1 —n\;)v;
for each .

(e) Consider the gradient descent update rule z*+1) = z(¥) — v f(2(F) at iteration k € Nq with
a constant step size 7 > 0. Define 6 == ||z*) — 2*||; and ~(n) = max;e(y,.. a3/l — nAil. Use
an inductive argument to show ) < ~(n)*8; for all k € N>o.



(f) Consider gradient descent with exact line search. At each iteration k, denote the descent

direction by d*) .= — V f(z®)) and the optimal step size by
n*) = arg min f(z® + nd®).
n=>0
Prove o
w_ o
AR TQd®

(g) For n =2 and f(z) = 1(2% + v23) with v = 10, what is the optimal solution z*? Implement
gradient descent with a constant step size and exact line search, starting from z(?) = (5,1) and
() = (1,5). What do you observe with exact line search? When does gradient descent begin
to “zig-zag”? What issue do you observe with a constant step size? Repeat both experiments
with v = 1. Submit your plots.



1.2 LQR as a QP. Consider the Linear Time-Invariant (LTI) dynamical system
T = Axy + Buy,

where A € R™" and B € R™™™ are given matrices, and x; € R™ and u; € R™ are the system state
and applied control input, respectively, at time ¢ € Nx>.

Let o € R™ be the fixed initial state and T" € N be some time horizon. Our goal is to find a
sequence of control inputs u* == (u,uj,...,uk_;) € R™T that minimizes the quadratic cost

T-1
J(w) =2 Qrar + Y (a7 Qu + ul Ruy ),
t=0

where Q7 € R™", @ € R™", and R € R™*™ are positive-definite matrices. Later, we will see
how dynamic programming can be used to derive an elegant, recursive solution to this problem.
For now, we study a convex least-squares formulation. Specifically, we reformulate the problem of
minimizing J(u) as
1o T
min —u Qu —b'u,
ueRMT 2 @

where u = (ug,u1,...,up_1) € R™ is the vector of stacked control inputs, Q € R™T*mT g

positive-definite matrix, and b € R™T.

a

(a) Write down Q and b in terms of Qr, Q, R, A, B, and x.

(b) With this reformulation, implement the gradient descent algorithm of your choice to compute
the optimal sequence of control inputs u* for

1 1 0 1
QT = 10]27 Q = I27 R = Il7 A= |:0 1:| ) B = |:1:| y Lo = |:O:| ) T = 207

where I, is the identity matrix with dimension n. What is the optimal cost J(u*)?



1.3 Extremal curves. Given the functional
L7
J(z) = / <2:i;(t)2 + 5z (t)&(t) + z(t)* + 5:17(t)>dt,
0

find an extremal curve z* : [0,1] — R that satisfies 2*(0) = 1 and z*(1) = 3.



1.4 Zermelo’s ship. Zermelo’s ship must travel through a region of strong currents. The position
of the ship is denoted by (x(t),y(t)) € R2. The ship travels at a constant speed v > 0, yet its
heading 6(t) can be controlled. The current moves in the positive z-direction with speed w(y(t)).
The equations of motion for the ship are

&(t) =vecosO(t) +w(y(t))
y(t) = vsinf(t) '

We want to control the heading 6(¢) such that the ship travels from a given initial position

(z(to), y(to)) = (x0,y0) to the origin (0,0) in minimum time.

(a) Suppose w(y(t)) = 7y(t), where h > 0 is a known constant. Show that an optimal control law
0*(t) must satisfy a linear tangent law of the form

v
tan0*(t) = o — —t
anf*(t) = « N

for some constant o« € R.

(b) Suppose w(y(t)) =  for some constant 5 > 0. Derive an expression for the optimal transfer
time ¢7 — to.



