AA203
 Optimal and Learning-based Control

Dynamic programming, discrete LQR

Roadmap

Basic problem - discrete-time setting

- System: $\mathbf{x}_{k+1}=\mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right), \quad k=0, \ldots, N-1$
- Control constraints: $\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)$
- Cost:

$$
J\left(\mathbf{x}_{0} ; \boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N-1}\right)=h_{N}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} g\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right)
$$

- Focus is now on finding optimal closed-loop policies:

$$
\mathbf{u}_{k}^{*}=\pi^{*}\left(\mathbf{x}_{k}, k\right)\left(\operatorname{or} \pi_{k}^{*}\left(\mathbf{x}_{k}\right)\right)
$$

Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality
Suppose optimal path for a multi-stage decision-making problem is

- first decision yields segment $a-b$ with cost $J_{a b}$
- remaining decisions yield segments $b-e$ with cost $J_{b e}$
- optimal cost is then $J_{a e}^{*}=J_{a b}+J_{b e}$

Principle of optimality

- Claim: If $a-b-e$ is optimal path from a to e, then $b-e$ is optimal path from b to e
- Proof: Suppose $b-c-e$ is the optimal path from b to e. Then

$$
J_{b c e}<J_{b e}
$$

and

$$
J_{a b}+J_{b c e}<J_{a b}+J_{b e}=J_{a e}^{*}
$$

Principle of optimality

Principle of optimality: Let $\left\{\mathbf{u}_{0}^{*}, \mathbf{u}_{1}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}$ be an optimal control sequence, which together with \mathbf{x}_{0}^{*} determines the corresponding state sequence $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \ldots, \mathbf{x}_{N}^{*}\right\}$. Consider the subproblem whereby we are at \mathbf{x}_{k}^{*} at time k and we wish to minimize the cost-to-go from time k to time N, i. e.,

$$
g_{k}\left(\mathbf{x}_{k}^{*}, \mathbf{u}_{k}\right)+\sum_{m=k+1}^{N-1} g_{m}\left(\mathbf{x}_{m}, \mathbf{u}_{m}\right)+h_{N}\left(\mathbf{x}_{N}\right)
$$

Then the truncated optimal sequence $\left\{\mathbf{u}_{k}^{*}, \mathbf{u}_{k+1}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}$ is optimal for the subproblem

- Tail of optimal sequences optimal for tail subproblems

Applying the principle of optimality

Principle of optimality: if $b-c$ is the initial segment of the optimal path from b to f, then $c-f$ is the terminal segment of this path

Hence, the optimal trajectory is found by comparing:

$$
\begin{aligned}
C_{b c f} & =J_{b c}+J_{c f}^{*} \\
C_{b d f} & =J_{b d}+J_{d f}^{*} \\
C_{b e f} & =J_{b e}+J_{e f}^{*}
\end{aligned}
$$

Applying the principle of optimality

- need only to compare the concatenations of immediate decisions and optimal decisions \rightarrow significant decrease in computation / possibilities
- in practice: carry out this procedure backward in time

Example

Optimal cost: 18
Optimal path: $a \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h$

DP Algorithm

- Model: $\mathbf{x}_{k+1}=f\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right), \quad \mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)$
- $\operatorname{Cost}: J\left(\mathbf{x}_{0}\right)=h_{N}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} g\left(\mathbf{x}_{k}, \pi_{k}\left(\mathbf{x}_{k}\right), k\right)$

DP Algorithm: For every initial state \mathbf{x}_{0}, the optimal $\operatorname{cost} J^{*}\left(\mathbf{x}_{0}\right)$ is equal to $J_{0}\left(\mathbf{x}_{0}\right)$, given by the last step of the following algorithm, which proceeds backward in time from stage $N-1$ to stage 0 :

$$
\begin{gathered}
J_{N}\left(\mathbf{x}_{N}\right)=h_{N}\left(\mathbf{x}_{N}\right) \\
J_{k}\left(\mathbf{x}_{k}\right)=\min _{\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)} g\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right)+J_{k+1}\left(f\left(\mathbf{x}_{k}, \mathbf{u}_{k}, k\right)\right), \quad k=0, \ldots, N-1
\end{gathered}
$$

Furthermore, if $\mathbf{u}_{k}^{*}=\pi_{k}^{*}\left(\mathbf{x}_{k}\right)$ minimizes the right-hand side of the above equation for each \mathbf{x}_{k} and k, the policy $\left\{\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ is optimal

Comments

- discretization (from differential equations to difference equations)
- quantization (from continuous to discrete state variables / controls)
- global minimum
- constraints, in general, simplify the numerical procedure
- optimal control in closed-loop form
- curse of dimensionality

Example: discrete LQR

- In most cases, DP algorithm needs to be performed numerically
- A few cases can be solved analytically

Discrete LQR: select control inputs to minimize

$$
J\left(\mathbf{x}_{0}\right)=\frac{1}{2} \mathbf{x}_{N}^{\prime} H \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left[\mathbf{x}_{k}^{\prime} Q \mathbf{x}_{k}+\mathbf{u}_{k}^{\prime} R \mathbf{u}_{k}\right]
$$

subject to the dynamics

$$
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}
$$

Assumption: $H=H^{\prime} \geq 0, Q=Q^{\prime} \geq 0, R=R^{\prime}>0$

Example: discrete LQR

First step:

$$
J_{N}^{*}\left(\mathbf{x}_{N}\right)=\frac{1}{2} \mathbf{x}_{N}^{\prime} H \mathbf{x}_{N}:=\frac{1}{2} \mathbf{x}_{N}^{\prime} P_{N} \mathbf{x}_{N}
$$

Going backward

$$
\begin{aligned}
& J_{N-1}\left(\mathbf{x}_{N-1}\right)=\min _{\mathbf{u}_{N-1}} \frac{1}{2}\left\{\mathbf{x}_{N-1}^{\prime} Q \mathbf{x}_{N-1}+\mathbf{u}_{N-1}^{\prime} R \mathbf{u}_{N-1}+\mathbf{x}_{N}^{\prime} H \mathbf{x}_{N}\right\} \\
& \min _{\mathbf{u}_{N-1}} \frac{1}{2}\left\{\mathbf{x}_{N-1}^{\prime} Q \mathbf{x}_{N-1}+\mathbf{u}_{N-1}^{\prime} R \mathbf{u}_{N-1}+\right. \\
&\left.\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)^{\prime} H\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)\right\}
\end{aligned}
$$

Example: discrete LQR

Taking derivative

$$
\frac{\partial J_{N-1}^{*}\left(\mathbf{x}_{N-1}\right)}{\partial \mathbf{u}_{N-1}}=R \mathbf{u}_{N-1}+B_{N-1}^{\prime} H\left(A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right)=0
$$

and

$$
\frac{\partial^{2} J_{N-1}^{*}\left(\mathbf{x}_{N-1}\right)}{\partial \mathbf{u}_{N-1}^{2}}=R+B_{N-1}^{\prime} H B_{N-1}>0
$$

DP for discrete LQR

Hence, the optimizer satisfies

$$
\left(R+B_{N-1}^{\prime} H B_{N-1}\right) \mathbf{u}_{N-1}^{*}+B_{N-1}^{\prime} H A_{N-1} \mathbf{x}_{N-1}=0
$$

SO

$$
\mathbf{u}_{N-1}^{*}=-\left(R+B_{N-1}^{\prime} H B_{N-1}\right)^{-1} B_{N-1}^{\prime} H A_{N-1} \mathbf{x}_{N-1}:=F_{N-1} \mathbf{x}_{N-1}
$$

DP for discrete LQR

Plugging in

$$
\begin{aligned}
J_{N-1}\left(\mathbf{x}_{N-1}\right)= & \frac{1}{2} \mathbf{x}_{N-1}^{\prime}\left\{Q+F_{N-1}^{\prime} R F_{N-1}+\right. \\
& \left.\left(A_{N-1}+B_{N-1} F_{N-1}\right)^{\prime} H\left(A_{N-1}+B_{N-1} F_{N-1}\right)\right\} \mathbf{x}_{N-1} \\
:= & \mathbf{x}_{N-1}^{\prime} P_{N-1} \mathbf{x}_{N-1} \\
F_{N-1}= & -\left(R+B_{N-1}^{\prime} P_{N} B_{N-1}\right)^{-1} B_{N-1}^{\prime} P_{N} A_{N-1}
\end{aligned}
$$

DP for discrete LQR

Proceeding by induction, the solution is given by

1. $J_{N}\left(\mathbf{x}_{N}\right)=\frac{1}{2} \mathbf{x}_{N}^{\prime} P_{N} \mathbf{x}_{N}$, where $P_{N}=H$
2. $\mathbf{u}_{k}^{*}=F_{k} \mathbf{x}_{k}$, where $F_{k}=-\left(R+B_{k}^{\prime} P_{k+1} B_{k}\right)^{-1} B_{k}^{\prime} P_{k+1} A_{k}$
3. $J_{k}\left(\mathbf{x}_{k}\right)=\frac{1}{2} \mathbf{x}_{k}^{\prime} P_{k} \mathbf{x}_{k}$, where

$$
P_{k}=Q+F_{k}^{\prime} R F_{k}+\left(A_{k}+B_{k} F_{k}\right)^{\prime} P_{k+1}\left(A_{k}+B_{k} F_{k}\right)
$$

At the end, $J_{0}\left(\mathbf{x}_{0}\right)=\frac{1}{2} \mathbf{x}_{0}^{\prime} P_{0} \mathbf{x}_{0}$

Next time

- Nonlinear LQR for tracking and trajectory generation

