
AA203
Optimal and Learning-based Control

Dynamic programming, discrete LQR



Roadmap

4/22/24

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and 
learning control

Adaptive controlFeedback control

LQR iLQR DDP
2

Reachability 
analysis

LQR

Unconstrained Constrained

AA 203 | Lecture 7



Basic problem – discrete-time setting

• System: 𝐱!"# 	= 𝐟 𝐱! , 𝐮! , 𝑘 , 	𝑘 = 0,… ,𝑁 − 1
• Control constraints: 𝐮!∈ 𝑈(𝐱!)
• Cost: 

𝐽(𝐱$; 𝒖$, … , 𝒖%&#	) 	= 	ℎ% 𝐱% +	6
!($

%&#

𝑔 𝐱! , 𝐮! , 𝑘

• Focus is now on finding optimal closed-loop policies: 
𝐮!∗ = 𝜋∗(𝐱! , 𝑘) (or 𝜋!∗(𝐱!)) 
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Principle of optimality

The key concept behind the dynamic programming approach is the 
principle of optimality
Suppose optimal path for a multi-stage decision-making problem is
 
 

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽*+
• remaining decisions yield segments 𝑏 − 𝑒	with cost 𝐽+, 	
• optimal cost is then 𝐽*,∗ 	= 	 𝐽*+ 	+ 	𝐽+,
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 𝑒, then 𝑏 − 𝑒 is optimal 
path from 𝑏 to 𝑒
• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path from 𝑏 to 𝑒. Then

𝐽+-, < 𝐽+,
   and

𝐽*+ 	+ 	𝐽+-, < 𝐽*+ 	+ 	𝐽+, 	= 	 𝐽*,∗ 	
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Contradiction!



Principle of optimality

Principle of optimality: Let	{𝐮!∗ , 𝐮#∗ , … , 𝐮$%#∗ } be an optimal control 
sequence, which together with 𝐱!∗  determines the corresponding state 
sequence {𝐱!∗ , 𝐱#∗ , … , 𝐱$∗ } . Consider the subproblem whereby we are at 𝐱&∗  
at time 𝑘 and we wish to minimize the cost-to-go from time 𝑘 to time 
𝑁, i. e.,	

𝑔& 𝐱&∗ , 𝐮& 	+ 	∑'(&)#$%# 𝑔' 𝐱', 𝐮' + ℎ$ 𝐱$

Then the truncated optimal sequence {𝐮&∗ , 𝐮&)#∗ , … , 𝐮$%#∗ } is optimal for 
the subproblem

• Tail of optimal sequences optimal for tail subproblems
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Applying the principle of optimality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path from 
𝑏 to 𝑓, then 𝑐 − 𝑓	is the terminal 
segment of this path

Hence, the optimal trajectory is found 
by comparing:

	𝐶+-. 	 = 	 𝐽+- 	+ 	𝐽-.∗ 	
	𝐶+/. 	 = 	 𝐽+/ 	+ 	𝐽/.∗ 	
𝐶+,. =	 𝐽+, 	+ 	𝐽,.∗



Applying the principle of optimality

• need only to compare the concatenations of immediate decisions 
and optimal decisions → significant decrease in computation  / 
possibilities 
• in practice: carry out this procedure backward in time
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Example
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Optimal cost: 18 
Optimal path: 𝑎 → 	𝑑 → 	𝑒 → 	𝑓 → 	𝑔 → 	ℎ 



DP Algorithm
• Model: 𝐱&)# 	= 𝑓 𝐱& , 𝐮& , 𝑘 , 	 𝐮&∈ 𝑈(𝐱&)
• Cost: 𝐽(𝐱!) 	= 	 ℎ$ 𝐱$ +	∑&(!$%#𝑔 𝐱& , 𝜋&(𝐱&), 𝑘

DP Algorithm: For every initial state 𝐱!, the optimal cost 𝐽∗(𝐱!) is equal to 
𝐽!(𝐱!), given by the last step of the following algorithm, which proceeds 
backward in time from stage 𝑁 − 1 to stage 0:

𝐽$(𝐱$) 	= 	 ℎ$(𝐱$)
𝐽& 𝐱& = min

𝐮!∈,(𝐱!)
	𝑔 𝐱& , 𝐮& , 𝑘 +	𝐽&)# 𝑓 𝐱& , 𝐮& , 𝑘 , 	𝑘 = 0,… , 𝑁 − 1

Furthermore, if 𝐮&∗ = 𝜋&∗(𝐱&) minimizes the right-hand side of the above 
equation for each 𝐱&  and 𝑘, the policy {𝜋!∗, 𝜋#∗, … , 𝜋$%#∗ } is optimal 
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Comments

• discretization (from differential equations to difference equations)
• quantization (from continuous to discrete state variables / controls)
• global minimum
• constraints, in general, simplify the numerical procedure 
• optimal control in closed-loop form 
• curse of dimensionality
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Example: discrete LQR

• In most cases, DP algorithm needs to be performed numerically
• A few cases can be solved analytically

Discrete LQR: select control inputs to minimize

𝐽 𝐱$ =
1
2
𝐱%0 	𝐻	𝐱% 	+

1
2
6
!($

%&#

[𝐱!0 	𝑄	𝐱! 	+ 	𝐮!0 	𝑅	𝐮!] 

subject to the dynamics
𝐱!"# =	𝐴!𝐱! 	+ 	𝐵! 	𝐮!

Assumption: 𝐻 = 𝐻0 ≥ 0, 𝑄 = 𝑄0 ≥ 0, 𝑅 = 𝑅0 > 0
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Example: discrete LQR

First step:

Going backward 
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Example: discrete LQR

Taking derivative

and
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DP for discrete LQR

Hence, the optimizer satisfies

so
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DP for discrete LQR

Plugging in
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DP for discrete LQR

Proceeding by induction, the solution is given by 

1. 𝐽% 𝐱% = #
1
𝐱%0 	𝑃%𝐱%, where 𝑃% = 𝐻

2. 𝐮!∗ 	= 	𝐹!𝐱! ,	where 𝐹! 	= 	 − 𝑅 + 𝐵!0 	𝑃!"#𝐵! &#𝐵!0 	𝑃!"#	𝐴!
3. 𝐽!(𝐱!) 	=

#
1
𝐱!0 	𝑃!𝐱! ,	where

𝑃! 	= 	 𝑄	 +	𝐹!0 	𝑅	𝐹! 	 + 𝐴! +	𝐵!𝐹! 0	𝑃!"#	(𝐴! +	𝐵!𝐹!)

At the end, 𝐽$ 𝐱$ = #
1
𝐱$0 𝑃$𝐱$
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Next time

• Nonlinear LQR for tracking and trajectory generation
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