
AA203
Optimal and Learning-based Control
Direct methods for optimal control, sequential convex programming (SCP)



Roadmap

4/17/2024 AA 203 | Lecture 6 2

Open-loop

Indirect 
methods

Direct 
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and 
learning control

Adaptive controlFeedback control



• Direct Methods:

1. Transcribe (OCP) into a nonlinear, constrained 
optimization problem

2. Solve the optimization problem via nonlinear 
programming

Optimal control problem

For simplicity:
• We assume the terminal cost ℎ is 

equal to 0
• We assume 𝑡! = 0

• Indirect Methods:
1. Apply necessary conditions for optimality to (OCP)
2. Solve a two-point boundary value problem

min	 %
!

"!
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡#]

𝐱 0 = 	𝐱!	
𝐱 𝑡# ∈ 𝑀# = {𝐱 ∈ ℝ$: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ%,   𝑡 ∈ [0, 𝑡#]



Direct methods

4/17/2024 AA 203 | Lecture 6 4

Resources:

• Notes Chapter 5 and references therein, and also:
• Rao A. V., “A survey of numerical methods for optimal control,” 2009.
• Kelly, M., “An Introduction to Trajectory Optimization,” 2017.

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://epubs.siam.org/doi/10.1137/16M1062569


Transcription methods

4/17/2024 AA 203 | Lecture 6 5

Optimization: what are the decision variables?

1. State and control parameterization methods
• “Collocation”/“simultaneous”

2. Control parameterization methods
• “Shooting”



4/17/2024 AA 203 | Lecture 6 6

Forward Euler time discretization:

1. Select a discretization 0 = 𝑡! < 𝑡& < ⋯ < 𝑡' = 𝑡# for the interval [0, 𝑡#] and, for every 𝑖 =
0,… , 𝑁 − 1, define  𝐱(	~	𝐱 𝑡 	, 𝐮(	~	𝐮 𝑡 	, 𝑡 ∈ [𝑡(, 𝑡()&) and 𝐱!	~	𝐱 0

2. By denoting ℎ( = 𝑡()& − 𝑡(, (OCP) is transcribed into the following nonlinear, constrained 
optimization problem

min(𝐱!,𝐮𝐢) (
'(!

)*+

ℎ'𝑔(𝐱' , 𝐮' , 𝑡')

𝐱',+ = 𝐱' + ℎ'𝐟 𝐱' , 𝐮' , 𝑡' , 𝑖 = 0, … , 𝑁 − 1
(NLOP)

𝐮' ∈ 𝑈	, 𝑖 = 0, … , 𝑁 − 1	 , 𝐹 𝐱) = 0

min	 :
!

-#
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡.]

𝐱 0 = 	𝐱!	
𝐱 𝑡. ∈ 𝑀. = {𝐱 ∈ ℝ/: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡.]

Transcription into nonlinear programming
(state and control parametrization method) 



Illustrative example: Zermelo’s Problem

4/17/2024 AA 203 | Lecture 6 7

Current 
flow

𝑢(𝑡)

𝑣

min	 %
!

"!
𝑢 𝑡 *	𝑑𝑡

�̇� 𝑡 = 𝑣	cos 𝑢 𝑡 + 1low 𝑦 𝑡 ,	t ∈ [0, 𝑡#]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡#) = (𝑀, ℓ)
𝑢 𝑡 ≤ 𝑢%+,,  t ∈ [0, 𝑡#] 

�̇� 𝑡 = 𝑣	sin 𝑢 𝑡 ,  t ∈ [0, 𝑡#]  

(OCP)



Example: Zermelo’s Problem
(state and control parametrization method)
• Transcribe optimal control problem into a non-linear program, and solve it via fmincon 

(MATLAB), scipy.optimize.minimize (python), etc.

4/17/2024 AA 203 | Lecture 6 8

min(,",/") =
(1!

'2&

ℎ	𝑢(*

𝑥()& = 𝑥( + ℎ 𝑣	cos 𝑢( + 1low 𝑦(
	 𝑦()& = 𝑦( + ℎ	𝑣	sin(𝑢() , 𝑢( ≤ 𝑢%+,
     𝑥!, 𝑦! = 0 , 𝑥', 𝑦' = (𝑀, ℓ) 

(NLOP)min	 %
!

"!
𝑢 𝑡 *	𝑑𝑡

�̇� 𝑡 = 𝑣	cos 𝑢 𝑡 + 1low 𝑦 𝑡 ,	t ∈ [0, 𝑡#]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡#) = (𝑀, ℓ)
𝑢 𝑡 ≤ 𝑢%+,,  t ∈ [0, 𝑡#] 

�̇� 𝑡 = 𝑣	sin 𝑢 𝑡 ,  t ∈ [0, 𝑡#]  

(OCP)



Results

4/17/2024 AA 203 | Lecture 6 9

𝑢 𝑡 ≤ 1	
(effectively, no control constraint)

𝑢 𝑡 ≤ 0.75



4/17/2024 AA 203 | Lecture 6 10

Time and control discretization:

min	 :
!

-#
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡.]

𝐱 0 = 	𝐱!	
𝐱 𝑡. ∈ 𝑀. = {𝐱 ∈ ℝ/: 𝐹 𝐱 = 0}

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡.]

Transcription into nonlinear programming
(control parametrization method) 

min𝐮! (
'(!

)*+

ℎ'𝑔(𝐱(𝑡'), 𝐮' , 𝑡')

𝐱(𝑡',+) = 𝐱(𝑡') + ℎ'𝐟 𝐱 𝑡' , 𝐮' , 𝑡' , 𝑖 = 0, … , 𝑁 − 1

(NLOP-C)

𝐮' ∈ 𝑈	, 𝑖 = 0, … , 𝑁 − 1	 , 𝐹(𝐱(𝑡))) = 0

where each 𝐱(𝑡') is recursively computed via

1. Select a discretization 0 = 𝑡! < 𝑡& < ⋯ < 𝑡' = 𝑡# for the interval [0, 𝑡#] and, for every 𝑖 =
0,… , 𝑁 − 1, define  𝐮(	~	𝐮 𝑡 	, 𝑡 ∈ [𝑡(, 𝑡()&)

2. By denoting ℎ( = 𝑡()& − 𝑡(, (OCP) is transcribed into the following nonlinear, constrained 
optimization problem



Example: Zermelo’s Problem
(control parametrization method)

• Transcribe optimal control problem into a non-linear program, and solve it via fmincon 
(MATLAB), scipy.optimize.minimize (python), etc.

4/17/2024 AA 203 | Lecture 6 11

min	 %
!

"!
𝑢 𝑡 *	𝑑𝑡

�̇� 𝑡 = 𝑣	cos 𝑢 𝑡 + 1low 𝑦 𝑡 ,	t ∈ [0, 𝑡#]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡#) = (𝑀, ℓ)
𝑢 𝑡 ≤ 𝑢%+,,  t ∈ [0, 𝑡#] 

�̇� 𝑡 = 𝑣	sin 𝑢 𝑡 ,  t ∈ [0, 𝑡#]  

(OCP)
min/" =

(1!

'2&

ℎ	𝑢(*

𝑥, 𝑦 (𝑡') = (𝑀, ℓ),      𝑢( ≤ 𝑢%+,

(NLOP-C)

𝑥' = 𝑥! + ℎ=
(1!

'2&

𝑣	cos 𝑢( + 1low 𝑦( ,

where, recursively:

𝑦( = 𝑦! + ℎ=
31!

(

𝑣	sin(𝑢3)



Results

4/17/2024 AA 203 | Lecture 6 12

𝑢 𝑡 ≤ 1
(effectively, no control constraint)

𝑢 𝑡 ≤ 0.75



Example: Zermelo’s Problem

4/17/2024 AA 203 | Lecture 6 13

min($!,&!) $
()*

+,-

ℎ	𝑢(.

𝑥(/- = 𝑥( + ℎ 𝑣	cos 𝑢( + /low 𝑦(
	 𝑦(/- = 𝑦( + ℎ	𝑣	sin(𝑢() , 𝑢( ≤ 𝑢01$

𝑥*, 𝑦* = 0 , 𝑥+, 𝑦+ = (𝑀, ℓ) 

(NLOP)

min	 %
"

#!
𝑢 𝑡 $	𝑑𝑡

�̇� 𝑡 = 𝑣	cos 𝑢 𝑡 + 1low 𝑦 𝑡 ,	t ∈ [0, 𝑡%]  

(𝑥, 𝑦) 0 = 0,  (𝑥, 𝑦)(𝑡%) = (𝑀, ℓ)
𝑢 𝑡 ≤ 𝑢&'(,  t ∈ [0, 𝑡%] 

�̇� 𝑡 = 𝑣	sin 𝑢 𝑡 ,  t ∈ [0, 𝑡%]  (OCP)

min)" =
*+"

,-.

ℎ	𝑢*$

𝑥, 𝑦 (𝑡+) = (𝑀, ℓ),      𝑢( ≤ 𝑢01$

(NLOP-C)

𝑥, = 𝑥" + ℎ=
*+"

,-.

𝑣	cos 𝑢* + 1low 𝑦*

where, recursively:

𝑦* = 𝑦" + ℎ=
/+"

*

𝑣	sin(𝑢/)

Direct Transcription

Direct Shooting



Transcription methods: extensions

4/17/2024 AA 203 | Lecture 6 14

• Multiple shooting
• Hybrid of simultaneous / (single) shooting methods

• Alternative trajectory parameterizations
• Euler integration (above): piecewise linear effective state trajectory (C0), zero-order hold control trajectory
• Hermite-Simpson collocation (see Notes §5.2.1): piecewise cubic effective state trajectory (C1), first-order 

hold control trajectory
• Dynamics constraint is enforced at “collocation points,” exact form is derived by implicit integration

• Pseudospectral methods: global polynomial basis functions (instead of piecewise polynomials)
• Shooting methods: higher-order integration schemes (e.g., RK4)

• Dynamics constraint is enforced by explicit integration

https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods


Sequential Convex Programming

4/17/2024 15AA 203 | Lecture 6

min	 ;
*

20
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟- 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡3]
𝐱 0 = 	𝐱*,         𝐱 𝑡3 = 𝐱3

(LOCP)+

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡3]

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them 
around nominal trajectories!

1. Assume that 𝑔 is convex. Let 𝐱! ⋅ , 𝐮! ⋅  be a nominal tuple of trajectory and control. 𝐱! ⋅ , 𝐮! ⋅  does 
not need to be feasible!

2. Linearize 𝐟 around 𝐱! ⋅ , 𝐮! ⋅ :

𝐟- 𝐱, 𝐮, 𝑡 = 𝐟 𝐱* 𝑡 , 𝐮* 𝑡 , 𝑡 +
𝜕𝐟
𝜕𝐱 𝐱* 𝑡 , 𝐮* 𝑡 , 𝑡 (𝐱 − 𝐱*(𝑡)) +

𝜕𝐟
𝜕𝐮 𝐱* 𝑡 , 𝐮* 𝑡 , 𝑡 (𝐮 − 𝐮*(𝑡))

3. Solve the new problem (LOCP)+ for 𝐱+ ⋅ , 𝐮+ ⋅



Sequential Convex Programming

4/17/2024 16AA 203 | Lecture 6

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them 
around nominal trajectories!

min	 ;
*

20
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟4/- 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡3]
𝐱 0 = 	𝐱*,         𝐱 𝑡3 = 𝐱3(LOCP)1,+
𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡3]

4. Iterate this procedure until convergence is achieved: linearize 𝐟 around the solution 𝐱1 ⋅ , 𝐮1 ⋅  at 
iteration 𝑘:

𝐟4/- 𝐱, 𝐮, 𝑡 = 𝐟 𝐱4 𝑡 , 𝐮4 𝑡 , 𝑡 +
𝜕𝐟
𝜕𝐱 𝐱4 𝑡 , 𝐮4 𝑡 , 𝑡 (𝐱 − 𝐱4(𝑡)) +

𝜕𝐟
𝜕𝐮 𝐱4 𝑡 , 𝐮4 𝑡 , 𝑡 (𝐮 − 𝐮4(𝑡))

and solve the problem (LOCP)1,+ for 𝐱1,+ ⋅ , 𝐮1,+ ⋅



Sequential Convex Programming

4/17/2024 17AA 203 | Lecture 6

min	 ;
*

20
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟4/- 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡3]
𝐱 0 = 	𝐱*,         𝐱 𝑡3 = 𝐱3(LOCP)1,+
𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡3]

Discretize and solve a convex problem at each iteration

1. Select a discretization 0 = 𝑡! < 𝑡+ < ⋯ < 𝑡) = 𝑡.  for the interval [0, 𝑡.] and, for every 𝑖 = 0, … , 𝑁 − 1, 
define 𝐱',+~𝐱 𝑡 , 𝐮' 	~	𝐮 𝑡 , 𝑡 ∈ (𝑡' , 𝑡',+] and 𝐱!~𝐱 0

2. By denoting ℎ' = 𝑡',+ − 𝑡', (LOCP)1,+	is transcribed into the following convex optimization problem

min(𝐱!,𝐮!) $
()*

+,-

ℎ(𝑔(𝐱(, 𝐮(, 𝑡()

𝐱(/- = 𝐱( + ℎ(𝐟4/- 𝐱(, 𝐮(, 𝑡( , 𝑖 = 0,… ,𝑁 − 1
𝐮( ∈ 𝑈	, 𝑖 = 0,… ,𝑁 − 1, 𝐱+ = 𝐱3

(DLOCP)1,+



Sequential Convex Programming

4/17/2024 18AA 203 | Lecture 6

min	 ;
*

20
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	 𝑑𝑡

�̇�(𝑡) = 𝐟4/- 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [0, 𝑡3]
𝐱 0 = 	𝐱*,         𝐱 𝑡3 = 𝐱3(LOCP)1,+
𝐮 𝑡 ∈ 𝑈 ⊆ ℝ0,   𝑡 ∈ [0, 𝑡3]

Linearize 𝐟 around the 
solution 𝐱4 ⋅ , 𝐮4 ⋅  

Define the continuous 
time problem (LOCP)4/-

Discretize (LOCP)4/- in 
time and define the 
convex optimization 
problem (DLOCP)4/- 

SCP Methodology: at each iteration 𝑘,

Solve (DLOCP)4/- via 
convex programming for 
a discretized version of 

𝐱4/- ⋅ , 𝐮4/- ⋅    

min(𝐱!,𝐮!) $
()*

+,-

ℎ(𝑔(𝐱(, 𝐮(, 𝑡()

𝐱(/- = 𝐱( + ℎ(𝐟4/- 𝐱(, 𝐮(, 𝑡( , 𝑖 = 0,… ,𝑁 − 1
𝐮( ∈ 𝑈	, 𝑖 = 0,… ,𝑁 − 1, 𝐱+ = 𝐱3

(DLOCP)1,+



Sequential Convex Programming

4/17/2024 19AA 203 | Lecture 6



Direct Methods in Practice

“As you begin to play with these algorithms on your own problems, you might feel like you're on 
an emotional roller-coaster.” – Russ Tedrake

• Better initial guess trajectories (“warm-starting” the optimization, as seen in 
zermelo_simultaneous)

• Cost function/constraint tuning (as seen in zermelo_scp)
• Penalty methods; augmented Lagrangian-based solvers

4/17/2024 AA 203 | Lecture 6 20

http://underactuated.mit.edu/trajopt.html


Next time

• Dynamic programming
• Discrete LQR

AA 203 | Lecture 64/17/2024 21


