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Optimal control problem

i + Indirect Methods:
min j Gx(0), u(t),t) dt ndirect Methods:
0 1. Apply necessary conditions for optimality to (OCP)
2. Solve a two-point boundary value problem

x(t) = f(x(¢),u(t),t), t €0, tf]

(OCP)
x(0) = x, * Direct Methods:
X(tf) € My ={xeR":F(x) =0} 1. Transcribe (OCP) into a nonlinear, constrained
c mm optimization problem
u(t) eUSR™, telo, ty] 2. Solve the optimization problem via nonlinear
For simplicity: programming
* We assume the terminal cost h is

equalto0
e Weassumet, =0



Direct methods

Resources:

* Notes Chapter 5 and references therein, and also:
 RaoA.V., “Asurvey of numerical methods for optimal control,” 2009.
e Kelly, M., “An Introduction to Trajectory Optimization,” 2017.
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://epubs.siam.org/doi/10.1137/16M1062569

Transcription methods

Optimization: what are the decision variables?

1. State and control parameterization methods
* “Collocation”/“simultaneous”

2. Control parameterization methods
* “Shooting”
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Transcription into nonlinear programming

(state and control parametrization method)

t
min j ' x(®),u0), 1) dt N-1
° miny, y, hig(X;, w, t;)
%(t) = fx(0), u(®), 1), t € [0, t7] ( >ZO
(OCP) mm—)  (NLOP)

X(O) = Xp Xit1 = Xj + hif(xiiuii ti), [ = 0; ;N -1

x(tr) € My = {x € R™: F(x) = 0} weU,i=0,..,N—-1, F(xy)=0
u(t) eU S R™, t €0, tf]

Forward Euler time discretization:

1. Selectadiscretization0 =ty < t; < -+ < ty = trfortheinterval [0, tf] and, for everyi =
0,..,N — 1, define x; ~x(t), u; ~u(t), t € [t;, t;+1) and xy ~ x(0)

2. Bydenoting h; = t;,1 — t;, (OCP) is transcribed into the following nonlinear, constrained
optimization problem

4/17/2024 AA 203 | Lecture 6 6



llustrative example: Zermelo’s Problem

(OCP)

Ly
minJ u(t)? dt
0

Current
flow

x(t) =v Cos(u(t)) + flow(y(t)), t €0, tf]
y(t) =v sin(u(t)), t €0, tf]

(x,¥)(0) =0, (x,¥)(tr) = (M, )
[u(®)| < umax, tE€IO, tfl
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Example: Zermelo’s Problem

(state and control parametrization method)

* Transcribe optimal control problem into a non-linear program, and solve it via fmincon
(MATLAB), scipy.optimize.minimize (python), etc.

Ly N-1
(OCP) min jo u(t)? dt (NLOP) Mifge, ) z h?
x(t) =v Cos(u(t)) + ﬂow(y(t)), t € [0, tf] » i=0
y(©) = vsin(u(t)), t€[0, t] Xiy1 = X; + h(v cos(w;) + flow(y,))

(x,¥)(0) =0, (x,y)(tr) = (M, ?) Yi+1 =Y + hvsin(w), [u;] < umax
lu(®)| < umax, tEIO, tf] (x0,¥0) =0, (xy, yn) = (M, £)
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Results

a) Optimal Trajectory

y (m)

a) Optimal Trajectory

y (m)

4/17/2024

b) Optimal Control

-0.25 .
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b) Optimal Control
0.95 ! ‘ ‘ ‘ ‘ ‘ ‘
0.85

lu(t)| <1
(effectively, no control constraint)

lu(t)] < 0.75
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Transcription into nonlinear programming

(control parametrization method)

tf N-1
min J() g(x(t), ll(t), t) dt (NLOP-C) minul. z hig(X(ti), u;, ti)
i=0
(t) = £(x(t),u(t),t), t [0, ¢t o B
ocP) x(t) = f(x(0),u(t),0), t €0, ty] —) weU,i=0,.,N—1, Fx(ty) =0

x(0) = X
x(tr) € My = {x € R™: F(x) = 0} where each x(t;) is recursively computed via
U(t) e U C Rm, t € [O, tf] X(ti+1) = X(ti) + hl'f(X(tl'), u;, ti),i = O, ,N -1

Time and control discretization:

1. Selectadiscretization0 =ty < t; < -+ < ty = trfortheinterval [0, tf] and, for everyi =
0,..,N—1,define u; ~u(t), t € [t;, tiyq)

2. Bydenoting h; = t; .4 — t;, (OCP) is transcribed into the following nonlinear, constrained
optimization problem

4/17/2024 AA 203 | Lecture 6 10



Example: Zermelo’s Problem

(control parametrization method)

* Transcribe optimal control problem into a non-linear program, and solve it via fmincon
(MATLAB), scipy.optimize.minimize (python), etc.

N-1

: 2
o) - jtfu(t)z " (NLOP-C) min,,, ; h u;
x(t) =v COos(u(t)) + flow(y(¢)), t € [0, tf] () (tn) = (M, ), il < Umax
y(®) = vsin(u(t)), t €0, t] » where, recursively:
(6, ¥)(0) =0, (x,¥)(tr) = (M, ?) N-1
WO < tmaz, €10, &] XN = Xo th Z (v cos(w;) + flow(y;)),
i=0

i
Vi = Yo + hz: v sin(u;)
j=0
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Results

a) Optimal Trajectory

b) Optimal Control
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lu(®)| <1

| (effectively, no control constraint)

lu(t)] < 0.75
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Example: Zermelo’s Problem

t N-1
min f u(t)? dt min .. .. Z h u?
0 (i, ui) L
x(t) =v cos(u(t)) + ﬂow(y(t)), t € [0, tf] (NLOP) i=0
(OcP) y(@®) =v sin(u(t)), t €0, tf] o | |
@)(©0) = 0, (6, y)(t,) = (M, £) Xi+1 = Xi T h(v cos(u;) + ﬂOW(YL))

Yir1 = Yi t hvsin(w;), [u;] < Upmgy
(x0,¥0) =0, (xy,yn) = (M, £)

‘ Direct Transcription

N-1
miny, ) huf (NLOP-C)
=0

(X, Y)(tN) = (M' f), |ull < Umax

where, recursively:
N-1

Xy = Xo +h z (v cos(w;) + flow(y;))

i=0

l
Vi = Yo + hz v sin(u;)
j=0

lu(®)| < Umax, tEIO, tf]

Direct Shooting
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Transcription methods: extensions

* Multiple shooting
* Hybrid of simultaneous / (single) shooting methods

 Alternative trajectory parameterizations
» Eulerintegration (above): piecewise linear effective state trajectory (C°), zero-order hold control trajectory

* Hermite-Simpson collocation (see Notes §5.2.1): piecewise cubic effective state trajectory (C1), first-order
hold control trajectory

* Dynamics constraint is enforced at “collocation points,” exact form is derived by implicit integration
» Pseudospectral methods: global polynomial basis functions (instead of piecewise polynomials)
* Shooting methods: higher-order integration schemes (e.g., RK4)

« Dynamics constraint is enforced by explicit integration
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Sequential Convex Programming

ty
min] gx(t),u(t),t) dt
0

x(t) = f;,(x(t),u(t), t), t € [0, tf]
(LOCP), x(0) = x,, x(tf) = Xr
u(t) eU € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them
around nominal trajectories!

1. Assume that g is convex. Let (XO(-), uo(-)) be a nominal tuple of trajectory and control. (XO(-), uo(-)) does
not need to be feasible!

2. Linearize f around (x4 (), ug(+)):

of of
fi(x,u,t) = f(x(£),uo(t),t) + = (Xo(t),up(t), t)(x —xo(t)) + 7u (Xo(t),up(t), t)(u —up(t))

3. Solve the new problem (LOCP), for (xl(-), ul(-))
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Sequential Convex Programming

ty
minf gx(t),u(t),t) dt
0

%(t) = fip1(X(0), u(0), ), t € [0, t]
(LOCP) 14 x(0) = xo,  x(tf) = x;
u(t) eU € R™, t €0, tf]

The sources of nonconvexities are the dynamics and (possibly) the cost. Idea: linearize (and convexify) them
around nominal trajectories!

4, Iterate this procedure until convergence is achieved: linearize f around the solution (xk(-), uk(-)) at
iteration k:

of of
Fiera (%0, 8) = (x5 (), W (), 8) + o= (X3 (8), e (), ) (X = X5 (6)) + 7 (x5 (6), W (8), £) (0 — w (1))

and solve the problem (LOCP); 1 for (xj41(-), ugs1(*))
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Sequential Convex Programming

tr
min j Gx(D), u(b), £) dt
0

X(t) = frp1 (x(0),u(t), ), t €0, tf]
(LOCP)i+1 x(0) = x,, x(t) = Xy
u(t) e U € R™, t €0, tf]

Discretize and solve a convex problem at each iteration
1. Selectadiscretization 0 = t, < t; < -+ <ty = tr fortheinterval [0, tf] and, foreveryi =0, ...,N — 1,
define x;,,~x(t), u; ~u(t), t € (t;, ti+1] and xo~x(0)

2. Bydenoting h; = t;;1 — t;, (LOCP), 4 is transcribed into the following convex optimization problem

N-1
min(xi,ui) Z hig(Xi: u;, tl)
(DLOCP),, ; =

Xit1 = X + hifk+1(xitui; ti), [ = 0; ;N -1
w;, €el’,i=0,.. N—1, Xy = X
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Sequential Convex Programming

tr N-1
min JO gx(t),u(t),t) dt —— Z heg (o Us )
X(t) = 4 (X(0),u(6), 1), t € [0, tf] (DLOCP)j; 11 =
(LOCP)k+1 X(O) = X, X(tf) = Xy Xi+1 = X; + hifk+1(Xi,Ui, ti); i=0,..,N—1
ll(t)EUng, tE[O,tf] lliEU,iZO,...,N—l, XN=Xf

SCP Methodology: at each iteration k,

Linearize f around the Define the continuous
solution (xk(-), uk(-)) - time problem (LOCP) ¢

\ 4

) (
Solve (DLOCP); 4 via Discretize (LOCP) 41 in
convex programming for — time and define the
a discretized version of convex optimization
% (K1 () e 1 (D) y | problem (DLOCP),,
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Sequential Convex Programming

Algorithm
Start
® Convex
Optimizer

Initiaﬂ @

Trajectory Linearize Handle Artificial
Guess J Infeasibility and

Y

Solve
Temporally
Subproblem

Update |_ Fail
Trust Region| Test @

Unboundedness

\ 4

Starting

lteration Stopping Pass

Algorithm X
Stop (Converged) @
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Direct Methods in Practice

“As you begin to play with these algorithms on your own problems, you might feel like you're on
an emotional roller-coaster.” - Russ Tedrake

 Better initial guess trajectories (“warm-starting” the optimization, as seen in
zermelo simultaneous)

* Cost function/constraint tuning (as seenin zermelo scp)
* Penalty methods; augmented Lagrangian-based solvers
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http://underactuated.mit.edu/trajopt.html

Next time

* Dynamic programming
* Discrete LQR
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