AA203
 Optimal and Learning-based Control
 Pontryagin's Minimum Principle (PMP); computational methods

Roadmap

Outline

- Necessary conditions for optimal control with bounded controls:
- Pontryagin's Minimum Principle (PMP)
- Examples: Applications of PMP (and insights we can derive from the analysis)
- Computational methods

Necessary conditions for optimal control

 (with unbounded controls)- The problem is to find an admissible control \mathbf{u}^{*} which causes the system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

to follow an admissible trajectory \mathbf{x}^{*} that minimizes the functional

$$
J(\mathbf{u})=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

- Assumptions: $h \in C^{2}$, state and control regions are unbounded, t_{0} and $\mathbf{x}(0)$ are fixed

Necessary conditions for optimal control

 (with unbounded controls)- Define the Hamiltonian

$$
H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t), t):=g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

- The necessary conditions for optimality (proof to follow) are

$$
\begin{aligned}
\dot{\mathbf{x}}^{*}(t) & =\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t) & =-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \quad\left[\quad \text { for all } t \in\left[t_{0}, t_{f}\right]\right. \\
\mathbf{0} & =\frac{\partial H}{\partial \mathbf{u}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right)
\end{aligned} \quad \mathbf{}
$$

with boundary conditions

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

Necessary conditions for optimal control

 (with bounded controls)- So far, we have assumed that the admissible controls and states are not constrained by any boundaries
- However, in realistic systems, such constraints do commonly occur
- control constraints often occur due to actuation limits
- state constraints often occur due to safety considerations
- We will now consider the case with control constraints, which will lead to the statement of the Pontryagin's minimum principle

Why do control constraints complicate the analysis?

- By definition, the control \mathbf{u}^{*} causes the functional J to have a relative minimum if

$$
J(\mathbf{u})-J\left(\mathbf{u}^{*}\right)=\Delta J \geq 0
$$

for all admissible controls "close" to \mathbf{u}^{*}

- If we let $\mathbf{u}=\mathbf{u}^{*}+\delta \mathbf{u}$, the increment in J can be expressed as
$\Delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right)=\delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right)+$ higher order terms
- The variation $\delta \mathbf{u}$ is arbitrary only if the extremal control is strictly within the boundary for all time in the interval $\left[t_{0}, t_{f}\right]$
- In general, however, an extremal control lies on a boundary during at least one subinterval of the interval $\left[t_{0}, t_{f}\right]$

Why do control constraints complicate the analysis?

- As a consequence, admissible control variations $\delta \mathbf{u}$ exist whose negatives $(-\delta \mathbf{u})$ are not admissible
- This implies that a necessary condition for \mathbf{u}^{*} to minimize J is

$$
\delta J\left(\mathbf{u}^{*}, \delta \mathbf{u}\right) \geq 0
$$

for all admissible variations with $\|\delta \mathbf{u}\|$ small enough

Pontryagin's minimum principle

- Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are (H is the Hamiltonian)

$$
\left.\begin{array}{c}
\dot{\mathbf{x}}^{*}(t)=\frac{\partial H}{\partial \mathbf{p}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
\dot{\mathbf{p}}^{*}(t)=-\frac{\partial H}{\partial \mathbf{x}}\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \\
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t\right) \leq H\left(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t\right), \text { for all } \mathbf{u}(t) \in U
\end{array}\right] \quad \begin{gathered}
\\
\text { for all } \\
t \in\left[t_{0}, t_{f}\right]
\end{gathered}
$$

along with the boundary conditions:

$$
\left[\frac{\partial h}{\partial \mathbf{x}}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)-\mathbf{p}^{*}\left(t_{f}\right)\right]^{T} \delta \mathbf{x}_{f}+\left[H\left(\mathbf{x}^{*}\left(t_{f}\right), \mathbf{u}^{*}\left(t_{f}\right), \mathbf{p}^{*}\left(t_{f}\right), t_{f}\right)+\frac{\partial h}{\partial t}\left(\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right)\right] \delta t_{f}=0
$$

Pontryagin's minimum principle

- $\mathbf{u}^{*}(t)$ is a control that causes $H\left(\mathbf{x}^{*}(t), \mathbf{u}(t), \mathbf{p}^{*}(t), t\right)$ to assume its global minimum
- Harder condition in general to analyze
- Example: consider the system having dynamics:

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=-x_{2}(t)+u(t)
$$

it is desired to minimize the functional

$$
J=\int_{t_{0}}^{t_{f}} \frac{1}{2}\left[x_{1}^{2}(t)+u^{2}(t)\right] d t
$$

subject to the control constraint $|u(t)| \leq 1$ with t_{f} fixed and the final state free.

Pontryagin's minimum principle

Solution:

- If the control is unconstrained,

$$
u^{*}(t)=-p_{2}^{*}(t)
$$

- If the control is constrained as $|u(t)| \leq 1$, then

$$
u^{*}(t)=\left\{\begin{array}{cc}
-1 & \text { for } 1<p_{2}^{*}(t) \\
-p_{2}^{*}(t), & -1 \leq p_{2}^{*}(t) \leq 1 \\
+1 & \text { for } p_{2}^{*}(t)<-1
\end{array}\right.
$$

- To determine $u^{*}(t)$ explicitly, the state and co-state equations must still be solved

Additional necessary conditions

1. If the final time is fixed and the Hamiltonian does not depend explicitly on time, then

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=c \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

2. If the final time is free and the Hamiltonian does not depend explicitly on time, then

$$
H\left(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t)\right)=0 \quad \text { for all } t \in\left[t_{0}, t_{f}\right]
$$

Minimum time problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin, and minimizes time

$$
J=\int_{t_{0}}^{t_{f}} 1 d t
$$

Minimum time problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =1+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =1+\mathbf{p}(t)^{T}\left\{\mathbf{a}(\mathbf{x}, t)+\left[\mathbf{b}_{1}(\mathbf{x}, t) \mathbf{b}_{2}(\mathbf{x}, t) \cdots \mathbf{b}_{m}(\mathbf{x}, t)\right] \mathbf{u}(t)\right\} \\
& =1+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
\end{aligned}
$$

- By the PMP, select $u_{i}(t)$ to minimize H, which gives

$$
u_{i}^{*}(t)=\left\{\begin{array}{l}
M_{i}^{+} \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<0 \\
M_{i}^{-} \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)>0 \\
\text { "Bang-bang" control }
\end{array}\right.
$$

Minimum time problems

- Note: we showed what to do when $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) \neq 0$
- Not obvious what to do if $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)=0$
- If $\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)=0$ for some finite time interval, then the coefficient of $u_{i}(t)$ in the Hamiltonian is zero, so the PMP provides no information on how to select $u_{i}(t)$
- The treatment of such a singular condition requires a more sophisticated analysis
- The analysis in the linear case is significantly easier, see Kirk Sec. 5.4

Minimum fuel problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin in a fixed time, and minimizes

$$
J=\int_{t_{0}}^{t_{f}} \sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right| d t
$$

Minimum fuel problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t) \\
& =\sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)
\end{aligned}
$$

- By the PMP, select $u_{i}(t)$ to minimize H, that is $\sum_{i=1}^{m}\left[c_{i}\left|u_{i}^{*}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{*}(t)\right] \leq \sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]$

Minimum fuel problems

- Since the components of $\mathbf{u}(t)$ are independent, then one can just look at

$$
c_{i}\left|u_{i}^{*}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{*}(t) \leq c_{i}\left|u_{i}(t)\right|+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
$$

- The resulting control law is

$$
\begin{gathered}
u_{i}^{*}(t)=\left\{\begin{array}{cc}
M_{i}^{-} & \text {if } c_{i}<\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) \\
0 & \text { if }-c_{i}<\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<c_{i} \\
M_{i}^{+} & \text {if } \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)<-c_{i}
\end{array}\right. \\
\text { "Bang-off-bang" control }
\end{gathered}
$$

Minimum energy problems

- Find the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+} \text {for } i=1, \ldots, m
$$

that drives the control affine system

$$
\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)
$$

from an arbitrary state \mathbf{x}_{0} to the origin in a fixed time, and minimizes

$$
J=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u}(t)^{T} R \mathbf{u}(t) d t
$$

where $R>0$ and diagonal

Minimum energy problems

- Form the Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2} \mathbf{u}(t)^{T} R \mathbf{u}(t)+\mathbf{p}(t)^{T}\{\mathbf{a}(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}(t)\} \\
& =\frac{1}{2} \mathbf{u}(t)^{T} R \mathbf{u}(t)+\mathbf{p}(t)^{T} B(\mathbf{x}, t) \mathbf{u}(t)+\mathbf{p}(t)^{T} \mathbf{a}(\mathbf{x}, t)
\end{aligned}
$$

- By the PMP, we need to solve

$$
\mathbf{u}^{*}(t)=\arg \min _{\mathbf{u}(t) \in U}\left[\sum_{i=1}^{m} \frac{1}{2} R_{i i} u_{i}(t)^{2}+\mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]
$$

Minimum energy problems

- As in the first example today, in the unconstrained case, the optimal solution for each component of $\mathbf{u}(t)$ would be

$$
\widehat{u}_{i}(t)=-R_{i i}^{-1} \mathbf{p}(t)^{T} \mathbf{b}_{i}(\mathbf{x}, t)
$$

- Considering the input constraints, the resulting control law is

$$
\begin{aligned}
& u^{*}(t)=\left\{\begin{array}{cll}
M_{i}^{-} & \text {if } & \hat{u}_{i}(t)<M_{i}^{-} \\
\hat{u}_{i}(t) & \text { if } & M_{i}^{-}<\hat{u}_{i}(t)<M_{i}^{+} \\
M_{i}^{+} & \text {if } & M_{i}^{+}<\widehat{u}_{i}(t)
\end{array}\right. \\
& \text { "Saturating" control }
\end{aligned}
$$

Uniqueness and existence

- Note: uniqueness and existence are not in general guaranteed!
- Example 1 (non uniqueness): find a control sequence $u(t)$ to transfer the system $\dot{x}(t)=u(t)$ from an arbitrary initial state x_{0} to the origin, and such that the functional $J=\int_{0}^{t_{f}}|u(t)| d t$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$
- Example 2 (non existence): find a control sequence $u(t)$ to transfer the system $\dot{x}(t)=x(t)+u(t)$ from an arbitrary initial state x_{0} to the origin, and such that the functional $J=\int_{t_{0}}^{t_{f}}|u(t)| d t$ is minimized. The final time is free, and the admissible controls are $|u(t)| \leq 1$

Computational methods

- Until now, we derived necessary conditions for optimality and analytically studied a few special cases
- We now focus on numerical techniques to solve two-point boundary value problems; popular methods:
- Indirect shooting method
- Indirect collocation method

Let's revisit our example...

Find optimal control $u(t)$ to steer the system

$$
\ddot{x}(t)=u(t)
$$

from $x(0)=10, \dot{x}(0)=0$ to the origin $x\left(t_{f}\right)=0, \dot{x}\left(t_{f}\right)=0$, and to minimize

$$
J=\frac{1}{2} \alpha t_{f}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}} b u^{2}(t) d t, \quad \alpha, b>0
$$

- Solution: optimal time is

$$
t_{f}=\left(\frac{1800 b}{\alpha}\right)^{1 / 5}
$$

Indirect methods: practical aspects

To obtain solution to the necessary conditions for optimality, one needs to solve two-point boundary value problems

- In python, we'll be using scipy.integrate.solve_bvp to solve problems in "standard" form

$$
\dot{z}=g(z, t, \boldsymbol{p})
$$

$$
B C\left(z\left(t_{0}\right), z\left(t_{f}\right)\right)=0
$$

where \boldsymbol{p} are extra variables that can also be optimized

- Syntax: sol = solve_bvp(fun, bc, t, $z, p=$ None)

Example: $\quad \dot{z}_{1}=z_{2}, \quad \dot{z}_{2}=-\left|z_{1}\right|, \quad z_{1}(0)=0, \quad z_{1}(4)=-2$

[^0]
Extensions

- What about problems whose necessary conditions to not fit directly the "standard" form (e.g., free end time problems)?
- Handy tricks exist to convert problems into standard form :
- Ascher, U., \& Russell, R. D. (1981). Reformulation of boundary value problems into "standard" form. SIAM review, 23(2), 238-254.

Important case: free final time

1. Rescale time so that $\tau=t / t_{f}$, then $\tau \in[0,1]$
2. Change derivatives $\frac{d}{d \tau}:=t_{f} \frac{d}{d t}$
3. Introduce dummy state r that corresponds to t_{f} with dynamics $\dot{r}=0$
4. Replace all instances of t_{f} with r

Example

Find optimal control $u(t)$ to steer the system $\ddot{x}(t)=u(t)$
from $x(0)=10, \dot{x}(0)=0$ to the origin $x\left(t_{f}\right)=0, \dot{x}\left(t_{f}\right)=0$, and to minimize

$$
J=\frac{1}{2} \alpha t_{f}^{2}+\frac{1}{2} \int_{t_{0}}^{t_{f}} b u^{2}(t) d t, \quad \alpha, b>0
$$

Solution

1. Define state as $\mathbf{z}=[\boldsymbol{x}, \boldsymbol{p}, r]$
2. BC are: $x_{1}(0)=10, x_{2}(0)=0, x_{1}\left(t_{f}\right)=0, x_{2}\left(t_{f}\right)=0,-\frac{p_{2}\left(t_{f}\right)^{2}}{2 b}+\alpha t_{f}=0$
3. BVP becomes: $\frac{d z}{d \tau}=t_{f} \frac{d z}{d t}=z_{5}\left[\begin{array}{ccc}A & -B\left[\begin{array}{ll}0 & 1\end{array}\right] / b & 0 \\ 0 & -A^{\prime} & 0 \\ 0 & 0 & 0\end{array}\right] \mathbf{z}$
4. BC become $z_{1}(0)=10, z_{2}(0)=0, z_{1}(1)=0, z_{2}(1)=0,-\frac{z_{4}(1)^{2}}{2 b}+\alpha z_{5}(1)=0$

Next time

- Direct methods

[^0]: *solve_bvp uses a collocation formula (three-stage Lobatto)

