# AA203 <br> Optimal and Learning-based Control <br> Optimization theory 

## Outline

1. Computational methods for unconstrained optimization
2. Optimization with equality constraints
3. Optimization with inequality constraints

## Outline

1. Computational methods for unconstrained optimization
2. Optimization with equality constraints
3. Optimization with inequality constraints

## Computational methods (unconstrained case)

Goal: find "numerical recipes" to solve optimization problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

Key idea: iterative descent. We start at some point $\mathbf{x}^{0}$ (initial guess) and successively generate vectors $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots$ such that $f$ is decreased at each iteration, i.e.,

$$
f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right), \quad k=0,1, \ldots
$$

The hope is to decrease $f$ all the way to the minimum

## Gradient methods

Given $\mathbf{x} \in \mathbb{R}^{n}$ with $\nabla f(\mathbf{x}) \neq 0$, consider the half line of vectors

$$
\mathbf{x}_{\alpha}=\mathbf{x}-\alpha \nabla f(\mathbf{x}), \quad \forall \alpha \geq 0
$$

From first order Taylor expansion ( $\alpha$ small)

$$
f\left(\mathbf{x}_{\alpha}\right) \approx f(\mathbf{x})+\nabla f(\mathbf{x})^{\prime}\left(\mathbf{x}_{\alpha}-\mathbf{x}\right)=f(\mathbf{x})-\alpha\|\nabla f(\mathbf{x})\|^{2}
$$

So for $\alpha$ small enough $f\left(\mathbf{x}_{\alpha}\right)$ is smaller than $f(\mathbf{x})$ !

## Gradient methods

Carrying this idea one step further, consider the half line of vectors

$$
\mathbf{x}_{\alpha}=\mathbf{x}+\alpha \mathbf{d}, \quad \forall \alpha \geq 0
$$

where $\nabla f(\mathbf{x})^{\prime} \mathbf{d}<\mathbf{0}$ (angle $>90^{\circ}$ )

By Taylor expansion

$$
f\left(\mathbf{x}_{\alpha}\right) \approx f(\mathbf{x})+\alpha \nabla f(\mathbf{x})^{\prime} \mathbf{d}
$$

For small enough $\alpha, f(\mathbf{x}+\alpha \mathbf{d})$ is smaller than $f(\mathbf{x})$ !

## Gradient methods

Broad and important class of algorithms: gradient methods

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha^{k} \mathbf{d}^{k}, \quad k=0,1, \ldots
$$

where if $\nabla f\left(\mathbf{x}^{\mathrm{k}}\right) \neq 0, \mathbf{d}^{\mathrm{k}}$ is chosen so that

$$
\nabla f\left(\mathbf{x}^{k}\right)^{\prime} \mathbf{d}^{k}<0
$$

and the stepsize $\alpha$ is chosen to be positive

## Gradient descent

Most often the stepsize is chosen so that

$$
f\left(\mathbf{x}^{k}+\alpha^{k} \mathbf{d}^{k}\right)<f\left(\mathbf{x}^{k}\right), \quad k=0,1, \ldots
$$

and the method is called gradient descent. "Tuning" parameters:

- selecting the descent direction
- selecting the stepsize


## Selecting the descent direction

General class

$$
\mathbf{d}^{k}=-D^{k} \nabla f\left(\mathbf{x}^{k}\right), \quad \text { where } D^{k}>0
$$

(Obviously, $\nabla f\left(\mathbf{x}^{k}\right)^{\prime} \mathbf{d}^{k}<0$ )

Popular choices:

- Steepest descent: $D^{k}=I$
- Newton's method: $D^{k}=\left(\nabla^{2} f\left(\mathbf{x}^{k}\right)\right)^{-1}$ provided $\nabla^{2} f\left(\mathbf{x}^{k}\right)>0$


## Selecting the stepsize

- Minimization rule: $\alpha^{k}$ is selected such that the cost function is minimized along the direction $\mathbf{d}^{k}$, i.e.,

$$
f\left(\mathbf{x}^{k}+\alpha^{k} \mathbf{d}^{k}\right)=\min _{\alpha \geq 0} f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)
$$

- Constant stepsize: $\alpha^{k}=s$
- the method might diverge
- convergence rate could be very slow
- Diminishing stepsize: $\alpha^{k} \rightarrow 0$ and $\sum_{k=0}^{+\infty} \alpha^{k}=\infty$
- it does not guarantee descent at each iteration


## Undiscussed in this class

Mathematical analysis:

- convergence (to stationary points)
- termination criteria
- convergence rate

Derivative-free methods, e.g.,

- coordinate descent
- Nelder-Mead


## Next: constrained optimization

- constraint set usually specified in terms of equality and inequality constraints
- sophisticated collection of optimality conditions, involving some auxiliary variables, called Lagrange multipliers


## Viewpoints:

- penalty viewpoint: we disregard the constraints and we add to the cost a high penalty for violating them
- feasibility direction viewpoint: it relies on the fact that at a local minimum there can be no cost improvement when traveling a small distance along a direction that leads to feasible points


## Outline

## 1. Computational methods for unconstrained optimization

2. Optimization with equality constraints

## 3. Optimization with inequality constraints

## Optimization with equality constraints

$$
\begin{aligned}
\min & f(\mathbf{x}) \\
\text { subject to } & h_{i}(\mathbf{x})=0, \quad i=1, \ldots, m
\end{aligned}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $C^{1}$
- notation: $\mathbf{h}:=\left(h_{1}, \ldots, h_{m}\right)$


## Lagrange multipliers

- Basic Lagrange multiplier theorem: for a given local minimum $\mathbf{x}^{*}$ there exist scalars $\lambda_{1}, \ldots, \lambda_{m}$ called Lagrange multipliers such that

$$
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0
$$

- Example

$$
\begin{aligned}
\min & x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=2
\end{aligned}
$$

## Lagrange multipliers

$\min \quad x_{1}+x_{2}$<br>subject to $x_{1}^{2}+x_{2}^{2}=2$

$$
f(\mathbf{x})=x_{1}+x_{2}
$$



$$
h(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-2
$$



## Lagrange multipliers

- Basic Lagrange multiplier theorem: for a given local minimum $\mathbf{x}^{*}$ there exist scalars $\lambda_{1}, \ldots, \lambda_{m}$ called Lagrange multipliers such that

$$
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0
$$

- Example

$$
\begin{aligned}
\min & x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}=2 \quad \text { Solution: } \mathbf{x}^{*}=(-1,-1)
\end{aligned}
$$

## Lagrange multipliers

## Interpretations:

1. The cost gradient $\nabla f\left(\mathbf{x}^{*}\right)$ belongs to the subspace spanned by the constraint gradients at $\mathbf{x}^{*}$. That is, the constrained solution will be at a point of tangency of the constrained cost curves and the constraint function
2. The cost gradient $\nabla f\left(\mathbf{x}^{*}\right)$ is orthogonal to the subspace of first order feasible variations

$$
V\left(\mathbf{x}^{*}\right)=\left\{\Delta \mathbf{x} \mid \nabla h_{i}\left(\mathbf{x}^{*}\right)^{\prime} \Delta \mathbf{x}=0, i=1, \ldots, m\right\}
$$

This is the subspace of variations $\Delta \mathbf{x}$ for which the vector $\mathbf{x}=\mathbf{x}^{*}+\Delta \mathbf{x}$ satisfies the constraint $\mathbf{h}(\mathbf{x})=0$ up to first order. Hence, at a local minimum, the first order cost variation $\nabla f\left(\mathbf{x}^{*}\right)^{\prime} \Delta \boldsymbol{x}$ is zero for all variations $\Delta \mathbf{x}$ in this subspace

## NOC

## Theorem: NOC

Let $\mathbf{x}^{*}$ be a local minimum of $f$ subject to $\mathbf{h}(\mathbf{x})=0$ and assume that the constraint gradients $\nabla h_{1}\left(\mathbf{x}^{*}\right), \ldots, \nabla h_{m}\left(\mathbf{x}^{*}\right)$ are linearly independent. Then there exists a unique vector $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, called a Lagrange multiplier vector, such that

$$
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0
$$

(2 $2^{\text {nd }}$ order NOC and SOC are provided in AA203-Notes)

## Discussion

- A feasible vector $\mathbf{x}$ for which $\left\{\nabla h_{i}(\mathbf{x})\right\}_{i}$ are linearly independent is called regular
- Proof relies on transforming the constrained problem into an unconstrained one

1. penalty approach: we disregard the constraints while adding to the cost a high penalty for violating them $\rightarrow$ extends to inequality constraints
2. elimination approach: we view the constraints as a system of $m$ equations with $n$ unknowns, and we express $m$ of the variables in terms of the remaining $n-m$, thereby reducing the problem to an unconstrained problem

- There may not exist a Lagrange multiplier for a local minimum that is not regular


## The Lagrangian function

- It is often convenient to write the necessary conditions in terms of the Lagrangian function $L: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x})
$$

- Then, if $\mathbf{x}^{*}$ is a local minimum which is regular, the NOC conditions are compactly written

$$
\begin{aligned}
\nabla_{\mathbf{x}} L\left(\mathbf{x}^{*}, \lambda^{*}\right) & =0 \\
\nabla_{\lambda} L\left(\mathbf{x}^{*}, \lambda^{*}\right) & =0
\end{aligned}
$$

System of $n+m$ equations
with $n+m$ unknowns

## Outline

## 1. Computational methods for unconstrained optimization

2. Optimization with equality constraints
3. Optimization with inequality constraints

## Optimization with inequality constraints

$$
\begin{array}{rll}
\min & f(\mathbf{x}) & \\
\text { subject to } & h_{i}(\mathbf{x})=0, & i=1, \ldots, m \\
& g_{j}(\mathbf{x}) \leq 0, & j=1, \ldots, r
\end{array}
$$

- $f, h_{i}, g_{j}$ are $C^{1}$
- In compact form (ICP problem)

$$
\begin{aligned}
\min & f(\mathbf{x}) \\
\text { subject to } & \mathbf{h}(\mathbf{x})=0 \\
& \mathbf{g}(\mathbf{x}) \leq 0
\end{aligned}
$$

## Active constraints

For any feasible point, the set of active inequality constraints is denoted

$$
A(\mathbf{x}):=\left\{j \mid g_{j}(\mathbf{x})=0\right\}
$$

If $j \notin A(\mathbf{x})$, then the constraint is inactive at $\mathbf{x}$.

Key points

- if $\mathbf{x}^{*}$ is a local minimum of the ICP, then $\mathbf{x}^{*}$ is also a local minimum for the identical ICP without the inactive constraints
- at a local minimum, active inequality constraints can be treated to a large extent as equalities


## Active constraints

- Hence, if $\mathbf{x}^{*}$ is a local minimum of ICP, then $\mathbf{x}^{*}$ is also a local minimum for the equality constrained problem

$$
\begin{aligned}
\min & f(\mathbf{x}) \\
\text { subject to } & \mathbf{h}(\mathbf{x})=0 \\
& g_{j}(\mathbf{x})=0, \quad \forall j \in A\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

## Active constraints

- Thus if $\mathbf{x}^{*}$ is regular, there exist Lagrange multipliers $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\mu_{j}^{*}, j \in A\left(\mathbf{x}^{*}\right)$, such that

$$
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{n} \lambda_{i}^{*} \nabla h_{i}\left(\mathbf{x}^{*}\right)+\sum_{j \in A\left(\mathbf{x}^{*}\right)} \mu_{j}^{*} \nabla g_{j}\left(\mathbf{x}^{*}\right)=0
$$

- or equivalently

$$
\begin{aligned}
& \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{n} \lambda_{i}^{*} \nabla h_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} \nabla g_{j}\left(\mathbf{x}^{*}\right)=0 \\
& \mu_{j}^{*}=0 \quad \forall j \notin A\left(\mathbf{x}^{*}\right) \quad\left(\text { indeed } \mu_{j}^{*} \geq 0\right)
\end{aligned}
$$

## Karush-Kuhn-Tucker NOC

Define the Lagrangian function

$$
L(\mathbf{x}, \lambda, \mu):=f(\mathbf{x})+\sum_{i=1}^{n} \lambda_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{r} \mu_{j} g_{j}(\mathbf{x})
$$

Theorem: KKT NOC
Let $\mathbf{x}^{*}$ be a local minimum for ICP where $f, h_{i}, g_{j}$ are $C^{1}$ and assume $\mathbf{x}^{*}$ is regular (equality + active inequality constraints gradients are linearly independent). Then, there exist unique Lagrange multiplier vectors $\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right),\left(\mu_{1}^{*}, \ldots, \mu_{m}^{*}\right)$ such that

$$
\begin{aligned}
& \nabla_{\mathbf{x}} L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)=0 \\
& \mu_{j}^{*} \geq 0, \quad j=1, \ldots, r \\
& \mu_{j}^{*}=0 \quad \forall j \notin A\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

## Example

$$
\begin{aligned}
\min & x^{2}+y^{2} \\
\text { s.t. } & 2 x+y \leq 2
\end{aligned}
$$

Solution: $(0,0)$

## Next time

Calculus of variations
(infinite-dimensional optimization!)

