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Model predictive control

* Explicit MPC
* Implementation aspects of MPC
* Robust MPC

* Reading;:
 F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Explicit MPC

* In some cases, the MPC law can be pre-computed — no need for
online optimization

* Important case: constrained LQR
N-1

J6(x) = min xLPxy + ) Xp0Xj + ujRuy
Up,..,UN-1 k=0

subjectto Xxj41=4X;p+Bu,, k=0,..,.N-—-1
XkEX, ukE U, k=0,,N—1
XNE Xf

X0= X
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Explicit MPC

* The solution to the constrained LQR problem is a control which is a
continuous piecewise affine function on polyhedral partition of the
state space X, thatis u;, = m;, (X;) where

m.(X) =F/x+ gl if Hx<K], j=1,..,N]

* Thus, online, one has to locate in which cell of the polyhedral
partition the state x lies, and then one obtains the optimal control
via a look-up table query
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Tuning and practical use

* At present there is no other technique other than MPC to design
controllers for general large linear multivariable systems with input
and output constraints with a stability guarantee

* Design approach (for squared 2-norm cost):
* Choose horizon length N and the control invariant target set X

* Controlinvariant target set X; should be as large as possible for performance

* Choose the parameters Q and R freely to affect the control performance
* Adjust P as per the stability theorem
* Useful toolbox (MATLAB): https://www.mpt3.org/

* In practice, sometimes choosing a good terminal cost is enough (i.e.,
don’t need to enforce a terminal control invariant condition), though
you may be sacrificing guarantees
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https://www.mpt3.org/

MPC for reference tracking

* Usual cost
Yr=0 X QX + upRuy
does not work, as in steady state control does not need to be zero
* 6u- formulation: reason in terms of control changes
U, = Ui+ + 5uk
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MPC for reference tracking

* The MPC problem is readily modified to

Ji(x(®) =, min > llye = rell3 + 15wl
k

uO,...,SUN_l

subjectto Xxj41=4X;p+Bu,, k=0,..,.N—-1

V= CXk, k=0,.. N—1
XkEX, ukE U, k=0,,N—1
XNEXf

uk=uk_1+5uk, k=0,,N—1
Xo=Xx(t), u_;=u(t—1)
* The controlinputisthenu(t) = duy + u(t — 1)
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Robust MPC

* We have so far not explicitly considered disturbances in constraint
satisfaction

 Consider system of the form
Xpy1 = AXy + Bug + wy,
Wi, eEW Vk

with constraints x € X,u € U, and W is bounded.
« Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem

N-1

]S(X(t)) = max min p(Xy) + C(Xp, Ug)
Wo,...WnN—-1 Ug,-.,UN—-1 k=0

subjectto Xp41=A4Xp +Bu,+wg, k=0,..,N—1
x,€X, €U, weW k=0,..,N—1
XNE Xr
Xo= X(t)
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Robust MPC

 Key idea: consider forward reachable sets at each time

S0(Xo) = {x(0)}
Sk (X0, Wo.—1 ) = ASk—1(Xg, Wg.—2 ) + Bug_; + W

All trajectories in these “tubes” must satisfy constraints.
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Robust MPC

N-1

]S(X(t)) = max min p(Xy) + C(Xp, Ug)
Wo,...WN-1 Ug,--,UN—-1 k=0

subjectto Xp41=A4Xp +Bu,+wg, k=0,..,N—1
S €EX, u,elU, woeW k=0,..,.N—1
Sy € X¢
Xo= X(¢)

Where p(Xy ) is robustly stable and X; is robust control invariant.
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Tube MPC

 Forward tubes in robust MPC can be
prohibitively large, motivating

techniques to reduce their size _, L. | o .
* Introduce nominal trajectory: o N | SR
Nominal trajectory: X, ,; = AX; + Bu, | Fe P T, P
Error: e, = X3 — X, ; | N - S S
Yields dynamics: e, ., = Ae, + wy,

* Consider feedback law: u;, = u;, + F ey,
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Tube MPC

* Adding error feedback gives dynamics

)_(k+1 — A)_(k + Bﬁk
ex+1 = (A + BF,)e, + wy

Must choose u;, to guarantee that x;, + e, satisfy state, action, and
terminal constraintsfork =1, ..., N.
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What about nonlinearity?

* Avery active field of research today!

* Control Barrier Functions (CBFs)
 Analogous to Control Lyapunov Functions (CLFs) but for constraints

 For general nonlinear dynamics x = f(x,u), if we can construct a function B(x)
satisfying
max V,BX)Tf(x,u) = —a(B(x))
u

then C := {x € R" | B(x) = 0} is control invariant.

* Combining CBFs for persistent feasibility, CLFs for stability, horizon N = 1
results in a quadratic program for control-affine systems: CLF-CBF QPs

* Ames, et al., “Control Barrier Function Based Quadratic Programs for Safety Critical
Systems,” TAC, 2017.

* In practice, guarantees of persistent feasibility or stability are often
sacrificed; heuristic choices of terminal constraint, cost are employed
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Next time

* Back to learning!
Intro to learning, sys ID,
adaptive control
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