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Model predictive control

• Explicit MPC
• Implementation aspects of MPC
• Robust MPC

• Reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.
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Explicit MPC

• In some cases, the MPC law can be pre-computed → no need for 
online optimization
• Important case: constrained LQR

𝐽!∗ 𝐱 = min
𝐮!,…,𝐮"#$

𝐱&'𝑃𝐱& +)
()!

&*+

𝐱('𝑄𝐱( + 𝐮('𝑅𝐮(

subject to	 𝐱(,+= 𝐴𝐱( + 𝐵𝐮(, 	 𝑘 = 0,… ,𝑁 − 1

𝐱(∈ 𝑋,	 𝐮(∈ 𝑈, 	 𝑘 = 0,… ,𝑁 − 1

𝐱&∈ 𝑋-
𝐱!= 𝐱
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Explicit MPC

• The solution to the constrained LQR problem is a control which is a 
continuous piecewise affine function on polyhedral partition of the 
state space 𝑋, that is 𝐮!∗ = 𝜋!(𝐱!) where 

𝜋! 𝐱 = 𝐹!
#𝐱 + 𝑔!

#    if   𝐻!
#𝐱 ≤ 𝐾!

# ,   𝑗 = 1,… ,𝑁!$

• Thus, online, one has to locate in which cell of the polyhedral 
partition the state	𝐱 lies, and then one obtains the optimal control 
via a look-up table query 
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Tuning and practical use 

• At present there is no other technique other than MPC to design 
controllers for general large linear multivariable systems with input 
and output constraints with a stability guarantee
• Design approach (for squared 2-norm cost):
• Choose horizon length 𝑁 and the control invariant target set 𝑋-
• Control invariant target set 𝑋- should be as large as possible for performance 
• Choose the parameters 𝑄 and 𝑅 freely to affect the control performance 
• Adjust 𝑃 as per the stability theorem 
• Useful toolbox (MATLAB): https://www.mpt3.org/

• In practice, sometimes choosing a good terminal cost is enough (i.e., 
don’t need to enforce a terminal control invariant condition), though 
you may be sacrificing guarantees
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MPC for reference tracking

• Usual cost 
∑!%&'() 𝐱!*𝑄𝐱! + 𝐮!*𝑅𝐮!  

   does not work, as in steady state control does not need to be zero 
• 𝛿𝐮- formulation: reason in terms of control changes 

 𝐮! = 𝐮!() + 𝛿𝐮!
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MPC for reference tracking

• The MPC problem is readily modified to

 

• The control input is then 𝐮 𝑡 = 𝛿𝐮!∗ + 𝐮(𝑡 − 1)

𝐽!∗ 𝐱 𝑡 = min
.𝐮!,…,.𝐮"#$

)
(

𝐲( − 𝐫( /
0 + 𝛿𝐮( 1

0

subject to	 𝐱(,+= 𝐴𝐱( + 𝐵𝐮(, 	 𝑘 = 0,… ,𝑁 − 1

𝐱(∈ 𝑋,	 𝐮(∈ 𝑈, 	 𝑘 = 0,… ,𝑁 − 1
𝐱&∈ 𝑋-

𝐱!= 𝐱 𝑡 ,	 𝐮*+= 𝐮(𝑡 − 1)	

𝐲(= 𝐶𝐱(, 	 𝑘 = 0,… ,𝑁 − 1

𝐮( = 𝐮(*+ + 𝛿𝐮(, 	 𝑘 = 0,… ,𝑁 − 1
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Robust MPC 

• We have so far not explicitly considered disturbances in constraint 
satisfaction
• Consider system of the form 

𝐱!+) = 𝐴𝐱! + 𝐵𝐮! +𝐰!
𝐰! ∈ 𝑊	 ∀𝑘

    with constraints 𝐱 ∈ 𝑋, 𝐮 ∈ 𝑈, and 𝑊 is bounded.
• Can we guarantee stability and persistent feasibility for this system?
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Robust optimal control problem 

𝐽!∗ 𝐱 𝑡 = max
𝐰!,…,𝐰"#$	

min
𝐮!,…,𝐮"#$

𝑝 𝐱& +)
()!
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𝑐(𝐱(, 𝐮()

subject to	 𝐱(,+= 𝐴𝐱( + 𝐵𝐮( +𝐰(, 	 𝑘 = 0,… ,𝑁 − 1
𝐱(∈ 𝑋,	 𝐮(∈ 𝑈, 𝐰( ∈ 𝑊	 𝑘 = 0,… ,𝑁 − 1

𝐱&∈ 𝑋-
𝐱!= 𝐱(𝑡)
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Robust MPC 

• Key idea: consider forward reachable sets at each  time

𝑆&(𝐱&) = {𝐱 0 }
𝑆! 𝐱&, 𝐮&:!()	 = 𝐴𝑆!() 𝐱&, 𝐮&:!(.	 + 𝐵𝐮!() +𝑊

All trajectories in these “tubes” must satisfy constraints. 
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Robust MPC 

𝐽!∗ 𝐱 𝑡 = max
𝐰!,…,𝐰%#$	

min
𝐮!,…,𝐮"#$

𝑝 𝐱& +)
()!

&*+

𝑐(𝐱(, 𝐮()

subject to	 𝐱(,+= 𝐴𝐱( + 𝐵𝐮( +𝐰(, 	 𝑘 = 0,… ,𝑁 − 1
𝑆( ∈ 𝑋,	 𝐮(∈ 𝑈, 𝐰( ∈ 𝑊	 𝑘 = 0,… ,𝑁 − 1

𝑆& ∈ 𝑋-
𝐱!= 𝐱(𝑡)

Where 𝑝 𝐱!  is robustly stable and 𝑋" is robust control invariant.
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Tube MPC

• Forward tubes in robust MPC can be 
prohibitively large, motivating 
techniques to reduce their size
• Introduce nominal trajectory:
Nominal trajectory: E𝐱!+) = 𝐴E𝐱! + 𝐵𝐮!
Error: 𝐞! = 𝐱! 	− E𝐱!
Yields dynamics: 𝐞!+) = 𝐴𝐞! +𝐰!

• Consider feedback law: 𝐮! = H𝐮! + 𝐹/𝐞!
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Tube MPC

• Adding error feedback gives dynamics 

E𝐱!+) = 𝐴E𝐱! + 𝐵H𝐮!
𝐞!+) = 𝐴 + 𝐵𝐹/ 𝐞! +𝐰!

Must choose H𝐮! 	to guarantee that E𝐱! + 𝐞!  satisfy state, action, and 
terminal constraints for 𝑘 = 1,… ,𝑁.
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What about nonlinearity?
• A very active field of research today!
• Control Barrier Functions (CBFs)

• Analogous to Control Lyapunov Functions (CLFs) but for constraints
• For general nonlinear dynamics �̇� = 𝑓 𝐱, 𝐮 , if we can construct a function 𝐵 𝐱  

satisfying
max
𝐮∈%

	∇𝐱B 𝐱 '𝑓 𝐱, 𝐮 ≥ −𝛼 𝐵 𝐱

then 𝐶 ≔ 𝐱 ∈ ℝ(	 B 𝐱 ≥ 0} is control invariant.
• Combining CBFs for persistent feasibility, CLFs for stability, horizon 𝑁 = 1 

results in a quadratic program for control-affine systems: CLF-CBF QPs
• Ames, et al., “Control Barrier Function Based Quadratic Programs for Safety Critical 

Systems,” TAC, 2017.
• In practice, guarantees of persistent feasibility or stability are often 

sacrificed; heuristic choices of terminal constraint, cost are employed
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Next time

• Back to learning!
Intro to learning, sys ID, 
adaptive control
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