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Model predictive control

• Persistent feasibility of MPC (cont'd)
• Stability of MPC

• Reading:
• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.
• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.
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Persistent feasibility theorem

• Feasibility theorem: if set 𝑋!  is a control invariant set for system:
𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮 𝑡 , 𝐱 𝑡 ∈ 𝑋, 	𝐮 𝑡 ∈ 𝑈, 	𝑡 ≥ 0	

   then the MPC law is persistently feasible
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Persistent feasibility theorem

• Proof
1. Define “truncated” feasibility set at step 𝑁 − 1:

𝑋"#$ ≔ 𝐱"#$ ∈ 𝑋	 ∃	𝐮"#$	such	that	𝐱"#$ ∈ 𝑋, 𝐮"#$ ∈ 	𝑈,	
	𝐱"∈ 𝑋! 	where	𝐱" = 𝐴𝐱"#$ + 𝐵𝐮"#$}	

2. Due to the terminal constraint
𝐴𝐱"#$ + 𝐵𝐮"#$ = 𝐱" ∈ 𝑋!
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Persistent feasibility theorem

• Proof
3. Since 𝑋!  is a control invariant set, there exists a 𝐮 ∈ 𝑈 

such that 
𝐱" = 𝐴𝐱# + 𝐵𝐮 ∈ 𝑋!

4. The above is indeed the requirement to belong to set 𝑋#$%
5. Thus, 𝐴𝐱#$% + 𝐵𝐮#$% = 𝐱# ∈ 𝑋#$%
6. We have just proved that 𝑋#$% is control invariant 
7. Repeating this argument, one can recursively show that 

𝑋#$&, 𝑋#$', ⋯ , 𝑋% are control  invariant, and the 
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

• The terminal set 𝑋!  is introduced artificially for the sole purpose of 
leading to a sufficient condition for persistent feasibility
• We want it to be large so that it does not compromise closed-loop 

performance
• Though it is simplest to choose 𝑋! 	= {0}, this is generally undesirable 
• We’ll discuss better choices later
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Stability of MPC

• Persistent feasibility does not guarantee that the closed-loop 
trajectories converge towards the desired equilibrium point

• One of the most popular approaches to guarantee persistent 
feasibility and stability of the MPC law makes use of a control 
invariant terminal set 𝑋!  for feasibility, and of a terminal function 
𝑝(⋅) for stability 

• To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

• Lyapunov theorem: Consider the equilibrium point 𝐱 = 0 for the 
autonomous system 𝐱%&$ = 𝐟 𝐱%  (with 𝐟 𝟎 = 𝟎). Let Ω ⊂ ℝ'  be 
a closed, bounded, positively invariant set containing the origin. Let 
𝑉:ℝ' → ℝ	be a function, continuous at the origin, such that 

𝑉 𝟎 = 0 and 𝑉 𝐱 > 0   ∀𝐱 ∈ Ω ∖ {𝟎} 
𝑉 𝐱%&$ − 𝑉 𝐱% < 0	 ∀𝐱% ∈ Ω ∖ {𝟎} 

   Then 𝐱 = 0 is asymptotically stable in Ω.

• The idea is to show that with appropriate choices of 𝑋!  and 𝑝(⋅),
𝐽(∗ is a Lyapunov function for the closed-loop system 
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MPC stability theorem

• MPC stability theorem (for quadratic cost): Assume
A0: 𝑄 = 𝑄* ≻ 0, 𝑅 = 𝑅* ≻ 0, 𝑃 ≻ 0
A1: Sets 𝑋, 𝑋!, and 𝑈 contain the origin in their interior and are closed
A2: 𝑋! ⊆ 𝑋 is control invariant and bounded

A3: min
𝐮∈-,	0𝐱&2𝐮	∈	3!

−𝑝 𝐱 + 𝑐 𝐱, 𝐮 + 𝑝 𝐴𝐱 + 𝐵𝐮 ≤ 0, ∀𝐱 ∈ 𝑋!  

Then, the origin of the closed-loop system is asymptotically stable 
with domain of attraction 𝑋(.

5/12/24 AA 203 | Lecture 13 10



MPC stability theorem

• Proof: 
1. Note that, by assumption A2, persistent feasibility is guaranteed for 

any 𝑃, 𝑄, 𝑅
2. We want to show that 𝐽(∗ is a Lyapunov function for the closed-loop 

system 𝐱 𝑡 + 1 = 	 𝐟45(𝐱 𝑡 ), with respect to the equilibrium 𝐟45 𝟎 =
𝟎 (the origin is indeed an equilibrium as 𝟎 ∈ 𝑋, 𝟎 ∈ 𝑈, and the cost is 
positive for any non-zero control sequence)

3. 𝑋( is bounded and closed (follows from assumption on 𝑋!)
4.  𝐽(∗ 𝟎 = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

• Proof: 
5.  𝐽(∗ 𝐱 > 0 for all 𝐱 ∈ 𝑋( ∖ {𝟎} 
6. Next we show the decay property. Since the setup is time-invariant, 

we can study the decay property between 𝑡 = 0 and 𝑡 = 1
• Let 𝐱 0 ∈ 𝑋!, let 𝑈!

[!] = [𝐮!
! , 𝐮$

! , … , 𝐮%&$
! ] be the optimal control sequence, 

and let [𝐱(0), 𝐱$
! , … , 𝐱%

! ] be the corresponding trajectory 
• After applying 𝐮!

! , one obtains 𝐱 1 = 𝐴𝐱 0 + 𝐵𝐮!
!

• Consider the sequence of controls [𝐮$
! , 𝐮'

! , … , 𝐮%&$
! , 𝐯], where 𝐯 ∈ 𝑈, and the 

corresponding state trajectory is [𝐱(1), 𝐱'
! , … , 𝐱%

! , 𝐴𝐱%
! + 𝐵𝐯] 
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MPC stability theorem

• Since 𝐱%
! ∈ 𝑋((by terminal constraint), and since 𝑋( is control invariant, 

∃4𝐯 ∈ 𝑈	such	that	𝐴𝐱%
! + 𝐵4𝐯 ∈ 𝑋(

• With such a choice of 4𝐯, the sequence [𝐮$
! , 𝐮'

! , … , 𝐮%&$
! , 4𝐯] is feasible for the 

MPC optimization problem at time 𝑡 = 1
• Since this sequence is not necessarily optimal

 

𝐽!∗ 𝐱 1 ≤ 𝑝 𝐴𝐱%
! + 𝐵4𝐯 + @

*+$

%&$

𝑐 𝐱*
! , 𝐮*

! + 𝑐 𝐱%
! , 4𝐯
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MPC stability theorem

• Since 𝐱%
! ∈ 𝑋((by terminal constraint), and since 𝑋( is control invariant, 

∃4𝐯 ∈ 𝑈	such	that	𝐴𝐱%
! + 𝐵4𝐯 ∈ 𝑋(

• With such a choice of 4𝐯, the sequence [𝐮$
! , 𝐮'

! , … , 𝐮%&$
! , 4𝐯] is feasible for the 

MPC optimization problem at time 𝑡 = 1
• Since this sequence is not necessarily optimal

 

𝐽!∗ 𝐱 1 ≤ 𝑝 𝐴𝐱%
! + 𝐵4𝐯 + @

*+$

%&$

𝑐 𝐱*
! , 𝐮*

! + 𝑐 𝐱%
! , 4𝐯

            + 𝑝 𝐱%
! − 𝑝 𝐱%

! + 𝑐 𝐱 0 , 𝐮!
! − 𝑐 𝐱(0), 𝐮!

!
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MPC stability theorem

• Equivalently 
𝐽!∗ 𝐱 1 ≤ 𝑝 𝐴𝐱%

! + 𝐵4𝐯 + 𝐽!∗ 𝐱 0 − 𝑝 𝐱%
! − 𝑐 𝐱(0), 𝐮!

! + 𝑐(𝐱%
! , 4𝐯)

• Since 𝐱%
! ∈ 𝑋(, by assumption A3, we can select 4𝐯 such that 

𝐽!∗ 𝐱 1 ≤ 𝐽!∗ 𝐱 0 − 𝑐 𝐱(0), 𝐮!
!

• Since 𝑐 𝐱(0), 𝐮!
! > 0 for all 𝐱 0 ∈ 𝑋! ∖ {0},

𝐽!∗ 𝐱 1 − 𝐽!∗ 𝐱 0 < 0
• The last step is to prove continuity; details are omitted and can be 

found in Borrelli, Bemporad, Morari, 2017
• Note: A2 is used to guarantee persistent feasibility; this assumption 

can be replaced with an assumption on the horizon 𝑁 
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How to choose 𝑋! and 𝑃?

• Case 1: assume 𝐴 is asymptotically stable 
• Set 𝑋( as the maximally positive invariant set 𝑂, for system 𝐱 𝑡 + 1 =
𝐴𝐱 𝑡 , 	𝐱 𝑡 ∈ 𝑋
• 𝑋( is a control invariant set for system 𝐱 𝑡 + 1 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡),	as 𝐮 =
0	is a feasible control 
• As for stability, 𝐮 = 0	is feasible and 𝐴𝐱 ∈ 𝑋( if 𝐱 ∈ 𝑋(, thus assumption A3 

becomes 
−𝐱-𝑃𝐱 + 𝐱-𝑄𝐱 + 𝐱-𝐴-𝑃𝐴𝐱 ≤ 0, for all 𝐱 ∈ 𝑋(,

   which is true since, due to the fact that 𝐴 is asymptotically stable, 
∃𝑃 ≻ 0	| 	− 𝑃 + 𝑄 + 𝐴-𝑃𝐴 = 0 (Lyapunov Equation)

Cost-to-go/value function
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How to choose 𝑋! and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹, be the optimal gain for the infinite-horizon LQR controller
• Set 𝑋( as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹, 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹,𝐱 𝑡 ∈ 𝑈)
• Set 𝑃 as the solution 𝑃, to the discrete-time Riccati equation, i.e., the value 

function via LQR

−𝑃 + 𝑄 + 𝐴-𝑃𝐴 − 𝐴-𝑃𝐵 𝑅 + 𝐵-𝑃𝐵 &$(𝐵-𝑃𝐴) = 0
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How to choose 𝑋! and 𝑃?

• Case 2: general case (e.g., if 𝐴 is open-loop unstable)
• Let 𝐹, be the optimal gain for the infinite-horizon LQR controller
• Set 𝑋( as the maximal positive invariant set for system

𝐱 𝑡 + 1 = 𝐴 + 𝐵𝐹, 𝐱 𝑡

(with constraints 𝐱 𝑡 ∈ 𝑋, and 𝐹,𝐱 𝑡 ∈ 𝑈)
• Set 𝑃 as the solution 𝑃, to the discrete-time Riccati equation, i.e., the value 

function via LQR

−𝑃 + 𝑄 + 𝐴-𝑃𝐴 − 𝐴-𝑃𝐵 𝑅 + 𝐵-𝑃𝐵 &$(𝐵-𝑃𝐴) = 0
• Note: both cases as presented are just (suboptimal) choices!
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Next time

• Explicit MPC
• Practical aspects of MPC
• Robust MPC
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