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Model predictive control

* Persistent feasibility of MPC (cont'd)
* Stability of MPC

* Reading;:
 F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design, 2017.
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Persistent feasibility theorem

* Feasibility theorem: if set X, is a control invariant set for system:
x(t+1) =Ax(t) + Bu(t), x(t)eX, u@)eU, t=0

then the MPC law is persistently feasible
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Persistent feasibility theorem

* Proof

1. Define “truncated” feasibility set at step N — 1:
Xy_1 ={Xy_1 €EX|Tuy_;suchthatxy_,; € X,uy_, € U,
Xy€E X where Xy = AXy_; + Buy_q}

2. Dueto the terminal constraint
AXN—l + BuN_l — XN - Xf
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Persistent feasibility theorem

* Proof

3. Since Xy is a control invariant set, there existsau € U

such that
X" = AXy + Bu € X;

The above is indeed the requirement to belong to set Xy _4
ThUS, AXN_]_ + BuN_1 — XN € XN—I
We have just proved that X _4 is control invariant

~N o 0k

Repeating this argument, one can recursively show that
Xy_o2,Xn_3,+,Xq are control invariant, and the
persistent feasibility lemma then applies
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Practical aspects of persistent feasibility

* The terminal set X, is introduced artificially for the sole purpose of
leading to a sufficient condition for persistent feasibility

* We want it to be large so that it does not compromise closed-loop
performance

* Though itis simplest to choose Xf = {0}, thisis generally undesirable
» We’ll discuss better choices later
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Stability of MPC

* Persistent feasibility does not guarantee that the closed-loop
trajectories converge towards the desired equilibrium point

* One of the most popular approaches to guarantee persistent
feasibility and stability of the MPC law makes use of a control
invariant terminal set X, for feasibility, and of a terminal function

p(-) for stability
* To prove stability, we leverage the tool of Lyapunov stability theory
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Lyapunov stability theory

 Lyapunov theorem: Consider the equilibrium point x = 0 for the
autonomous system {x;;; = f(x;)} (with f(0) = 0). Let Q c R" be
a closed, bounded, positively invariant set containing the origin. Let
V:R"™ = R be a function, continuous at the origin, such that

V(0)=0andV(x) >0 vxe Q\ {0}
V(Xk41) — V(X)) <0 vxi € O\ {0}
Then x = 0 is asymptotically stable in ().

* The idea is to show that with appropriate choices of X and p(-),
Jo is a Lyapunov function for the closed-loop system
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-
MPC stability theorem

* MPC stability theorem (for quadratic cost): Assume

A0:Q =Q" >0, R=R">0,P>0

Al: Sets X, X;, and U contain the origin in their interior and are closed
A2: X, € X is control invariant and bounded

: - _ <
A3: weu min exf( p(x) +c(x,u) + p(Ax + Bu)) < 0,Vx € X;

Then, the origin of the closed-loop system is asymptotically stable
with domain of attraction X,.
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-
MPC stability theorem

* Proof:
1. Note that, by assumption A2, persistent feasibility is guaranteed for
any P,Q, R

2. We want to show that J; is a Lyapunov function for the closed-loop
systemx(t + 1) = f,(x(t)), with respect to the equilibrium f(0) =
0 (the origin is indeed an equilibrium as 0 € X,0 € U, and the cost is
positive for any non-zero control sequence)

3. X, is bounded and closed (follows from assumption on X¢)
4. J3(0) = 0 (value is nonnegative by construction, and 0 is achievable)
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MPC stability theorem

* Proof:
5. Jop(x) > 0forallx € X, \ {0}
6. Next we show the decay property. Since the setup is time-invariant,
we can study the decay property betweent = 0andt =1
* Letx(0) € X, let U[ I = [ug)],ugo], ...,ul[\(,)]_l] be the optimal control sequence,
and let [x(0), x1 ) e, X [O]] be the corresponding trajectory
* After applying ug ], one obtains x(1) = Ax(0) + Bu([)o]

* Consider the sequence of controls [ugo], u[z?] ,\J, Where v € U, and the

corresponding state trajectory is [x(1), x2 xN ,AxN + Bv]|
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MPC stability theorem

e Since xl[\(,)] € Xr(by terminal constraint), and since X¢ is control invariant,

3v € U such that Axl[\?] + BV € X¢

 With such a choice of v, the sequence [ugo], ugo], e “1[\(1)]—1» v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

N—-1
]S(X(l)) <p (Ax,[\(,)] + B\_/) + 2 C (XLO], uLO]) +c (xl[\?],\_r)
k=1
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MPC stability theorem

e Since xl[\(,)] € Xr(by terminal constraint), and since X¢ is control invariant,

3v € U such that Axl[\?] + BV € X¢

 With such a choice of v, the sequence [ugo], ugo], e “1[\(1)]—1' v] is feasible for the

MPC optimization problem attimet =1
* Since this sequence is not necessarily optimal

Jo(x(D)) <p (Ax,[\(,)] + B\_/) + ) c (XE)], uLO]) +c (xl[\?],\_r)
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MPC stability theorem

* Equivalently

J5(x() < p (4x + BY) +J5(x(0)) = p (xi") = ¢ (x(0), uf") + c(xy, )

* Since xl[\(,)] € Xr, by assumption A3, we can select v such that

J3(x(1) < J5(x(0)) = ¢ (x(0), ug” )
* Sincec (x(O), ugo]) > 0 forallx(0) € Xy \ {0},
J5(x(1)) = J5(x(0)) < 0

* The last step is to prove continuity; details are omitted and can be
found in Borrelli, Bemporad, Morari, 2017

* Note: A2 is used to guarantee persistent feasibility; this assumption
can be replaced with an assumption on the horizon N
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How to choose Xf and P?

e Case 1: assume A is asymptotically stable

* Set X as the maximally positive invariant set O, for system x(t + 1) =
Ax(t), x(t) e X

* Xrisa controlinvariant set for system x(t + 1) = Ax(t) + Bu(t),asu =
0 is a feasible control

* Asfor stability, u = 0 is feasible and Ax € X; if X € X, thus assumption A3
becomes

—x"Px +x"Qx + x"A"PAx < 0, forall x € Xy,
which is true since, due to the fact that 4 is asymptotically stable,
3P >0| —P+Q +ATPA =0 (LyapunovEquation)

Cost-to-go/value function
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How to choose Xf and P?

» Case 2: general case (e.g., if A is open-loop unstable)
* Let F, be the optimal gain for the infinite-horizon LQR controller
* Set Xr as the maximal positive invariant set for system

x(t+1) = (A+ BE,)x(t)

(with constraints x(t) € X, and F.x(t) € U)

» Set P as the solution P, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q+ATPA— (A"PB)(R + BTPB) " 1(BTPA) = 0
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How to choose Xf and P?

» Case 2: general case (e.g., if A is open-loop unstable)
* Let F, be the optimal gain for the infinite-horizon LQR controller
* Set Xr as the maximal positive invariant set for system

x(t+1) = (A+ BE,)x(t)

(with constraints x(t) € X, and F.x(t) € U)

» Set P as the solution P, to the discrete-time Riccati equation, i.e., the value
function via LQR

—P+Q+ATPA— (A"PB)(R + BTPB) " Y(BTPA) = 0
* Note: both cases as presented are just (suboptimal) choices!
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Next time

* Explicit MPC
* Practical aspects of MPC
* Robust MPC
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