AA203
Optimal and Learning-based Control

Course overview; intro to nonlinear optimization

Stanford ASEJ
&%/ University :



Course mechanics

Teaching team:

* Instructors: Marco Pavone (OH: Tue 1pm - 2pm) and Daniele Gammelli (OH: Thur
1:30pm - 2:30pm)

* CAs: Matt Foutter and Daniel Morton (OH: TBD)

Logistics:

Lecture slides, homework assignments: http://asl.stanford.edu/aa203/

Lecture recordings, announcements: https://canvas.stanford.edu/courses/188274

Discussion forum: https://edstem.org/us/courses/57727/

Homework submission: https://www.gradescope.com/courses/760531

* Forurgent questions: aa203-spr2324-staff@lists.stanford.edu
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Course requirements

* Homework: there will be a total of four graded problem sets
 Mixture of theory and implementation (Python)

* Final project: details on the course website
* Open-ended, groups of (up to) 3 people
* Grading;:
« Homework: 60% (15% per HW)
* Final project: 40% (5% proposal, 10% midterm report, 25% final report)
» Ed Discussion: bonus up to 5%, 0.5% per endorsed post

* Late day policy: 6 total, maximum of 3 on any given assignment
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Course material

 Course notes: an evolving set of partial course notes is available at
https://github.com/StanfordASL/AA203-Notes

* Recitations: Friday recitations (F 9:00am-11:30am, weeks 1-4) led by
the CAs covering relevant tools (computational and mathematical)

» Textbooks that may be valuable for context or further reference are
listed in the syllabus
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Prerequisites

* Familiarity with a standard undergraduate engineering mathematics
curriculum (e.g., CME100-106; vector calculus, ordinary differential equations,
introductory probability theory)

* Strong familiarity with linear algebra (e.g., EE263 or CME200)
* Nice-to-have: a course in optimization (e.g., EE364A, CME307, CS2690, AA222)

* To get the most out of this class, at least one of:

* A course in machine learning (e.g., CS229, CS230, CS231N)
or

* Acoursein control (e.g., ENGR105, ENGR205, AA212)

Homework 0 (ungraded) is out now to help you gauge your preparedness
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Caveats

* Arguably, this class aims for “breadth over depth”
 Past students have found self-study of the details necessary

* This class is quite challenging/demanding
 Past students have noted that project progress is difficult to pace with HWs

* Projects focused on learning-based control may require some self-study
before the relevant lectures (talk to the teaching staff for pointers)
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Today’s Outline

1. Context and course goals

2. Problem formulation for optimal control

3. Introduction to non-linear optimization
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Today’s Outline

1. Context and course goals
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Feedback control

* Tracking a reference signal

System } Output R

Reference f/z\ (
. L

A

Controller } Control ={

Measurement

Sensor

Y
—

3/30/24 AA 203 | Lecture 1



Feedback control

* Tracking a reference signal
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Feedback control

* Reference tracking, with uncertainty Disturbance
Ref + Control Output
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Feedback control desiderata

* Stability: multiple notions; loosely system output is “under control”
* Tracking: the output should track the reference “as closely as possible”

* Disturbance rejection: the output should be “as insensitive as possible”
to disturbances/noise

* Robustness: controller should still perform well up to “some degree of”
model misspecification

3/30/24 AA 203 | Lecture 1



S
What’s missing?

* Performance: mathematical quantification of the above desiderata,
and providing a control that best realizes the tradeoffs between them

 Planning: providing an appropriate reference trajectory for the
controller to track (particularly nontrivial, e.g., when controlling
mobile robots)

* Learning: a controller that adapts to an initially unknown, or possibly
time-varying system
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Course overview
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Course goals

To learn the theoretical and implementation aspects of main
techniques in optimal and learning-based control
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Course goals

To learn the theoretical and implementation aspects of main
techniques in optimal and learning-based control

To provide a unified framework and context for understanding and
relating these techniques to each other
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Today’s Outline

2. Problem formulation for optimal control
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Problem formulation

* Mathematical description of the system to be controlled
 Statement of the constraints
* Specification of a performance criterion

3/30/24 AA 203 | Lecture 1



Mathematical model

t1(t) = f1(x1(t), x2(),. .., Tn(t),ur(t), us(t),..., U, (L), T

332(75) — fz(ajl t) ZEQ(t) ..... ﬂin(t) ul(t) UQ(t) ..... um(t) t)

Tn(t) = fn(x1(t), z2(t),. .., Ty (t),ur(t),us(t), ..., U (T), 1)
Where

* x1(t), z2(t),...,x,(t) arethe state variables
* ui(t),us(t),...,un(t) arethe controlinputs



Mathematical model

In compact form

* a history of control input values during the interval [to, tf] is called a
control history

* a history of state values during the interval [to, tf] is called a state
trajectory
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

5(t) = a(t) S
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

5(t) = a(t) S

S v
' a
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

o0 100 4 [0 o — =6
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Illustrative example: double integrator

* Double integrator: point mass under
controlled acceleration

51 o 117[s], [0 —=
| 710 o] [v] T 1 @

x(t)= A x(t)+ B u(t) LTisystem
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Constraints

e initial and final conditions (boundary conditions)
X(to) = %0,  X(tf) =%y
* constraints on state trajectories
X <x(t)<X
 control authority

U<u(t)<U

IN

e and many more...
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Constraints

* A control history which satisfies the control constraints during the
entire time interval [to, tf] is called an admissible control

* A state trajectory which satisfies the state variable constraints
during the entire time interval [¢, ¢/ ] is called an admissible
trajectory
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Performance measure

J = h(x(t), t7) + / " g(x(t), u(t), ) dt

to

* h (terminal cost) and g (stagewise/running cost) are scalar functions
* tr may be specified or free
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Optimal control problem

Find an admissible control u™ which causes the system
x(t) = £(x(t), u(t),?)

to follow an admissible trajectory x* that minimizes the performance
measure

J = h(x(ty), t) + / " g(x(), u(t), ¢) dt

to

Very general problem formulation!
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Optimal control problem

Comments:

* minimizer (x*,u") called optimal trajectory-control pair
* existence: in general, not guaranteed

* unigueness: optimal control may not be unique

* minimality: we are seeking a global minimum

 for maximization, we rewrite the problem as muin —]
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Forms of optimal control

1. ifu* =n(x(t),t),thenmis called optimal control law or optimal
policy (closed-loop)
* important example: m(x(t),t) = F x(t)

2. ifu” =e(x(ty),t), then the optimal control is open-loop
 optimal only for a particular initial state value
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Discrete-time formulation

e System: X, ., =f(X,uy, k), k=0,...,N—1
* Control constraints: u,€ U

e Cost:
N-—1

JXo; ug, -, uy—1) = hy(Xy) + zgk(xk»uk» k)
k=0
* Decision-making problem:

(X)) = min Xn: U, ..., Un_
J (Xo) ukEU,k=O,...,N—1]( 0 Ug N—1)
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Discrete-time formulation

e System: X, ., =f(X,uy, k), k=0,...,N—1
* Control constraints: u,€ U

e Cost:
N-—1

JXo; ug, -, uy—1) = hy(Xy) + zgk(xk»uk» k)
k=0

* Decision-making problem:

(X)) = min Xn: U, ..., Un_
J (Xo) ukEU,k=O,...,N—1]( 0 Ug N—1)

Extension to stochastic setting will be covered later in the course
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Today’s Outline

3. Introduction to non-linear optimization
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Non-linear optimization

Unconstrained non-linear program

min f(x)

* f usually assumed continuously differentiable (and often twice
continuously differentiable)
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Local and global minima

* Avector x* is said an unconstrained local minimum if 3e > 0 such
that

f(x*) < f(x),  Vx|x—x"[| <e
* Avector x® is said an unconstrained global minimum if
f(x*) < f(x),  Vx€ER"

* X" is a strict local/global minimum if the inequality is strict
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Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors
« Assume f € C1, by using Taylor series expansion

f(x*+ Ax) — f(x*) = Vf(x") Ax
*If f € C*

f(x* + Ax) — f(x*) = Vf(x*) Ax + %AX/V2f(X*)AX
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Necessary conditions for optimality

* We expect that if x* is an unconstrained local minimum, the first
order cost variation due to a small variation Ax is nonnegative, i.e.,

Vix*)Ax = Z a];(;*)Azci > 0

1=1
* By taking Ax to be positive and negative multiples of the unit
coordinate vectors, we obtain conditions of the type

of (x*) of (x*)
ox; o0x;

* Equivalently we have the necessary condition

>0, and <0

Vx*)=0 (x™ is said a stationary point)
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Necessary conditions for optimality

* Of course, also the second order cost variation due to a small
variation Ax must be non-negative

Vf(x") Ax + %Ax’VQ F(x)Ax > 0

* Since Vf(x*)'Ax=0, we obtain AX'V4f(x*)Ax > 0. Hence

VZ f(x*) has to be positive semidefinite

3/30/24 AA 203 | Lecture 1



NOC - formal

Theorem: NOC

Let x*be an unconstrained local minimum of f: R™ » R and assume
that fis C' in an open set S containing x*. Then

Vf(x*)=0 (first order NOC)

If in addition f € C# within S,

V2 f(x*) positive semidefinite (second order NOC)
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R EEEEEEEEE—————S——m—m—m———
SOC

* Assume that x*satisfies the first order NOC
Vf(x*)=0
 and also assume that the second order NOC is strengthened to
V2 f(x*) positive definite

* Then, for all Ax # 0, AX'V? f(x*)Ax > 0. Hence, f tends to increase
strictly with small excursions from x*, suggesting SOC...
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R EEEEEEEEE—————S——m—m—m———
SOC

Theorem: SOC

Let f:R™ » R be C?inan open setS. Suppose that a vector x* €
S satisfies the conditions

Vf(x*)=0 and VZ f(x*) positive definite

Then x* is a strict unconstrained local minimum of f
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Special case: convex optimization

A subset C of R" is called convex if
ax+ (1—a)yeC, Vx,ye(CVace]0,1]

Let C be convex. A function f: C — R is called convex if

flax+(1—-a)y) <af(x)+ (1 —a)f(y)

Let f: C — R be a convex function over a convex set C

* Alocal minimum of f over C is also a global minimum over C. If in addition
f is strictly convex, then there exists at most one global minimum of f

* If fisin C! and convex, and the set C is open, Vf(x*) = 0 is a necessary
and sufficient condition for a vector x* € C to be a global minimum over C
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Discussion

* Optimality conditions are important to filter candidates for global
minima

* They often provide the basis for the design and analysis of

optimization algorithms

* They can be used for sensitivity analysis
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Next lecture

Computational methods for non-linear optimization;
constrained optimization
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