
Stanford Spring 2024

AA 203: Optimal and Learning-based Control
Homework #2

Due May 6 by 11:59 pm

Learning goals for this problem set:

Problem 1: Study sequential convex programming in nonlinear trajectory optimization and gain
experience with CVXPY.

Problem 2: Familiarize the DP algorithm and appreciate the computational savings of DP versus
an exhaustive search algorithm.

Problem 3: Gain experience with implementing LQR controllers by coding them “from scratch”.

Problem 4: Apply iLQR for nonlinear trajectory optimization and stabilization, while using JAX
for dynamics linearization.

Problem 5: Apply stochastic dynamic programming in stochastic environments by reasoning
about expected utilities.

2.1 Cart-pole swing-up with limited actuation. Throughout this problem set, we will consider
three instantiations of the classic “cart-pole” benchmark in which we attempt to balance an inverted
pendulum upright on a cart. In this problem, we will tackle the challenging cart-pole “swing up”
problem, in which the pendulum begins hanging downwards and is then brought to the upright
position, with constraints on the control input that moves the cart horizontally. In practice, such
control constraints often arise from motor limitations. The transcribed optimal control problem
we would like to solve is

minimize
s,u

N−1∑
k=0

(
(sk − sgoal)TQ(sk − sgoal) + uTkRuk

)
subject to s0 = s̄0

sN = sgoal

sk+1 = fd(sk, uk), ∀k ∈ {0, 1, . . . , N − 1}
uk ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

,

where s̄0 ∈ Rn is the initial state, sgoal = (0, π, 0, 0) is the goal state (i.e., the upright position),
Q � 0 and R � 0 are stage cost matrices, U is the control constraint set, and fd : Rn × Rm → Rn
is a discretized form of the cart-pole dynamics.

However, this optimal control problem is non-convex due to the nonlinear equality constraints
sk+1 = fd(sk, uk); even if the dynamics were linear, this optimization cannot be solved with Riccati
recursion due to the constraints on actuation. We will circumvent this issue with sequential convex
programming (SCP). Recall that the key idea of SCP is to iteratively linearize the dynamics around
an estimate (s(i), u(i)) and solve a convex approximation of the optimal control problem near this
trajectory, at each iteration i. Since linearization provides a good approximation to the nonlinear
dynamics only in a small neighborhood around (s(i), u(i)), the accuracy of the convex model may
be poor if (s, u) deviates far from (s(i), u(i)). To ensure smooth convergence, we consider a convex
trust region around the state and input that is imposed as an additional constraint in the convex

1

optimization problem. Specifically, we consider a box around the nominal trajectory (s(i), u(i))
described by

‖sk − s
(i)
k ‖∞ ≤ ρ, ∀k ∈ {0, 1, . . . , N}

‖uk − u
(i)
k ‖∞ ≤ ρ, ∀k ∈ {0, 1, . . . , N − 1}

for some constant ρ > 0. Moreover, the terminal constraint sN = sgoal is difficult to enforce during
each iteration of SCP; any sub-problem for which the trust region does not contain a swing-up
maneuver will be infeasible. Thus, we will remove the terminal constraint sN = sgoal and add the
terminal state cost term (sN − sgoal)TP (sN − sgoal) as a proxy, where P � 0 has large entries.

In cartpole swingup constrained.py, you will use JAX and CVXPY to construct and solve a
convex sub-problem at each SCP iteration. Carefully read all of the provided code.

(a) Derive the convex approximation of the optimal control problem around an iterate (s(i), u(i)),
including the control constraint set U := [−umax, umax] with umax > 0, trust region constraints,
and the terminal state cost term in place of the terminal state constraint. The convex problem
should have linear equality constraints of the form sk+1 = Aksk + Bkuk + ck obtained by
linearizing the dynamics around (s(i), u(i)). Derive Ak, Bk, and ck in terms of s(i), u(i), and fd.

(b) Use JAX to complete the function affinize such that it computes Ak, Bk, and ck from s(i),
u(i), and fd in two lines of code.

(c) Complete the function scp iteration. Specifically, given the current iterate (s(i), u(i)), use
CVXPY to specify and solve the convex optimization problem you derived to obtain an updated
solution (s(i+1), u(i+1)).

(d) Run cartpole swingup constrained.py. Submit the generated state, control, and SCP cost
plots. You should notice that the pendulum just reaches the goal state before the simulation
ends; it would be more satisfying to swing the pendulum upright and then keep it there. In
words, suggest a control scheme to do this.

Submit all of the requested plots and your completed version of cartpole swingup constrained.py.

2

2.2 Shortest path through a grid. Consider the shortest path problem in Figure 1 where it is only
possible to travel to the right and the numbers represent the travel times for each segment. The
control input is the decision to go “up” or “down” at each node. Given that state transitions
are deterministic in a low-dimensional state space, we will use dynamic programming to develop a
closed-loop policy for each node in the grid.

Figure 1: Shortest path problem on a grid.

(a) Use dynamic programming (DP) to find the shortest path from A to B.

(b) Consider a generalized version of the shortest path problem in Figure 1 where the grid has
n segments on each side. Find the number of computations required by an exhaustive search
algorithm (i.e., the number of routes that such an algorithm would need to evaluate) and the
number of computations required by a DP algorithm (i.e., the number of DP evaluations). For
example, for n = 3 as in Figure 1, an exhaustive search algorithm requires 20 computations,
while the DP algorithm requires only 15.

3

2.3 Cart-pole balance. In this problem, we consider a new cart-pole formulation in which we will
design a controller to balance the inverted pendulum by linearizing the dynamics around a single
stationary point. Therefore, unlike the cart-pole swing-up problem, we will consider a trajectory
initialized in a neighborhood about the final, upright state and the optimal control is a closed-form
solution derived through Riccati recursion. This system has two degrees of freedom corresponding
to the horizontal position x of the cart, and the angle θ of the pendulum (where θ = 0 occurs
when the pendulum is hanging straight downwards). We can apply a force u ∈ R to push the
cart horizontally, where u > 0 corresponds to a force in the positive x-direction. With the state
s := (x, θ, ẋ, θ̇) ∈ R4, we can write the continuous-time dynamics of the cart-pole system as

ṡ = f(s, u) =

ẋ

θ̇
mp(`θ̇2+g cos θ) sin θ+u

mc+mp sin2 θ

− (mc+mp)g sin θ+mp`θ̇2 sin θ cos θ+u cos θ

`(mc+mp sin2 θ)

 ,

where mp is the mass of the pendulum, mc is the mass of the cart, ` is the length of the pendulum,
and g is the acceleration due to gravity. We can discretize the continuous-time dynamics using
Euler integration with a fixed time step ∆t to get the approximate discrete-time dynamics

sk+1 ≈ sk + ∆tf(sk, uk),

where sk and uk are the state and control input, respectively, at time t = k∆t.

(a) Consider the upright state s̄ := (0, π, 0, 0) with ū := 0, and define s̃k := sk − s̄. Linearizing the
approximate discrete-time dynamics sk+1 ≈ sk+∆tf(sk, uk) about (s̄, ū) yields an approximate
LTI system of the form

s̃k+1 ≈ As̃k +Buk.

Express A and B in terms of mp, mc, `, g, and ∆t. You may use the fact that

∂f

∂s
(s̄, ū) =

0 0 1 0

0 0 0 1

0
mpg
mc

0 0

0
(mc+mp)g

mc`
0 0

 , ∂f

∂u
(s̄, ū) =

0

0
1
mc

1
mc`

 .

We will design a stabilizing LQR controller for this discrete-time LTI system to solve

minimize
u

∞∑
k=0

(
1

2
s̃TkQs̃k +

1

2
uTkRuk

)
subject to s̃k+1 = As̃k +Buk, ∀k ∈ N≥0

,

for fixed Q,R � 0. Recall that after N iterations of the discrete-time Riccati recursion

Kk = −(R+BTPk+1B)−1BTPk+1A

Pk = Q+ATPk+1(A+BKk)
,

the cost-to-go matrices {Pk}Nk=0 and the time-varying feedback gains {Kk}N−1k=0 describe the optimal
LQR controller for a finite-horizon version of the problem above. If (A,B) is stabilizable, then these

4

iterates asymptotically converge to some P∞ � 0 and K∞. In fact, J∗(s0) := (s0 − s̄)TP∞(s0 − s̄)
is the finite optimal cost-to-go for any initialization s0, and uk = K∞s̃k is the optimal feedback
policy, which happens to be linear and time-invariant1.

(b) Write code to approximate P∞ and K∞ for the linearized, discretized cart-pole system by
initializing P∞ = 0 and then applying the Ricatti recursion until convergence with respect
to the maximum element-wise norm condition ‖Pk − Pk−1‖max < 10−4. Use mp = 2 kg,
mc = 10 kg, ` = 1 m, g = 9.81 m/s2, ∆t = 0.1 s, Q = I4, and R = I1. Report the value of K∞
with two decimal places for each entry.

(c) Write code to simulate the continuous-time, nonlinear cart-pole system with the linear feedback
controller u = K∞s̃. Initialize the system at s = (0, 3π/4, 0, 0), and use a controller sampling
rate of 10 Hz. Plot each state variable and the control input over time on separate plots for
t ∈ [0, 30] (i.e., you should have five plots). For your own interest, we provide the function
animate cartpole in animations.py to create a video animation of the cart-pole over time.

Hint: Write a function ds = cartpole(s,t,u) that computes the state derivative ds for the
continuous-time, nonlinear cart-pole dynamics. To simulate the cart-pole with the fixed control
input u[k] from state s[k] at time t[k] to state s[k+1] at time t[k+1], you can use the
following Python code:

1 from scipy.integrate import odeint

2 s[k+1] = odeint(cartpole, s[k], t[k:k+2], (u[k],))[1]

Make sure to review the documentation for odeint.

(d) We will now use an LQR controller to track a time-varying trajectory. Specifically, we will aim
to balance the pendulum upright (i.e., θ̄(t) ≡ π) while oscillating the position of the cart to
track a desired reference x̄(t) = a sin(2πt/T), where a > 0 and T > 0 are known constants.

i. Normally, as derived in class when applying LQR for trajectory tracking to nonlinear
systems, you would have to re-linearize the system around the desired trajectory at each
time step. Why is this not the case for this particular problem (i.e., why can you just reuse
A and B)?

ii. Repeat part (c) for this case with a = 10 and T = 10, except this time initialize the system
upright at s(0) = (0, π, 0, 0). For each state plot, overlay the corresponding entry from the
reference trajectory s̄(t).

iii. You may notice that this controller does not have good tracking performance. You could
try increasing the state penalty matrix Q to, e.g., Q = 10I4. However, this should only
improve tracking for x(t) and ẋ(t), while θ(t) and θ̇(t) still oscillate around π and 0,
respectively. What physical characteristic of the desired trajectory (or lack thereof) causes
this to happen?

Submit all of the requested plots and your complete code.

1The infinite-horizon LQR problem also converges for fixed Q � 0 and R � 0, as long as (A,B) is stabilizable and
(A,Q) is detectable.

5

2.4 Cart-pole swing-up. In this problem, we will implement a controller to solve the cart-pole “swing
up” problem without limited actuation. Recall that in the swing-up problem, the pendulum begins
hanging downwards and is then brought to the upright position. Unlike in the cart-pole balancing
problem, it is no longer sufficient to linearize around a single stationary point. Therefore, we will
formulate the optimal control problem into a convex sub-problem and iteratively solve for optimal
perturbations from a reference trajectory. Unlike the case with limited actuation, the solution to
each convex sub-problem can be solved with Riccati recursion, i.e., we will iteratively develop our
solution using iterative LQR (iLQR) control. In this case iLQR control provides an elegant and
easy to implement closed-loop policy. However, through the standard LQR formulation at each
iteration, we generally cannot reason, at least directly, over constraints on the state or control
space: in the case of limited actuation, we require the more flexible and sophisticated framework
provided by SCP. We provide starter code in cartpole swingup.py.

Recall that the cart-pole is a continuous-time system with dynamics of the form ṡ = f(s, u). To
compute the iLQR control law, we will consider the Euler discretized dynamics

sk+1 ≈ fd(sk, uk) := sk + ∆tf(sk, uk) (1)

with time step ∆t > 0. The provided code will then simulate this control law on the original
continuous-time system.

(a) For a given operating point (s̄k, ūk), suppose we define the Jacobians

Ak :=
∂fd
∂s

(s̄k, ūk), Bk :=
∂fd
∂u

(s̄k, ūk). (2)

Use JAX in the function linearize to write a single line of code that computes Ak and Bk,
given fd, s̄k and ūk.

For our iLQR controller, we will use the quadratic cost function

J(s, u) :=
1

2
(sN − sgoal)TQN (sN − sgoal) +

1

2

N−1∑
k=0

(
(sk − sgoal)TQ(sk − sgoal) + uTkRuk

)
, (3)

where sgoal is the goal state (i.e., the upright position). The entries of QN � 0 are chosen to be
large so that the terminal cost acts as a soft terminal “constraint”.

(b) Rewrite the cost function in terms of the deviations s̃N := sN − s̄N , s̃k := sk − s̄k, and
ũk := uk− ūk. This will result in a quadratic cost function with linear terms of the form qTN s̃N ,
qTk s̃k, and rTk ũk; identify the vectors qN , qk, and rk.

(c) Use NumPy to complete the iLQR controller code in the delineated section of the function
ilqr. Specifically, your code must update the controller gain and offset terms {Yk}N−1k=0 and

{yk}N−1k=0 , respectively2, the nominal trajectory (s̄, ū), and the deviations (s̃, ũ).

(d) Towards the end of cartpole swingup.py, fill in the delineated section of the code to either
apply the open-loop iLQR control input or the closed-loop iLQR policy, depending on the
value of the Boolean flag closed loop. Run your code for both cases to simulate the system
and generate plots of the state and control input over time. You should notice that the iLQR
control sequence does not accomplish the task if applied open-loop. Submit both sets of plots
(i.e., you should have 10 plots in total).

Submit all of the requested plots and your completed version of cartpole swingup.py.
2In lecture, we labelled these terms as Kt and kt, but here we try to avoid confusion with the discrete index k.

6

2.5 Machine maintenance. Suppose we have a machine that is either running or is broken down.
If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross
profit is zero. If it is running at the start of the week and we perform preventive maintenance,
the probability that it will fail during the week is 0.4. If we do not perform such maintenance,
the probability of failure is 0.7. However, maintenance will cost $20. When the machine is broken
down at the start of the week, it may either be repaired at a cost of $40, in which case it will fail
during the week with a probability of 0.4, or it may be replaced at a cost of $150 by a new machine
that is guaranteed to run through its first week of operation. Find the optimal repair, replacement,
and maintenance policy that maximizes total profit over four weeks, assuming a new machine at
the start of the first week (that is guaranteed to run during the first week of operation).

7

