AA 203: Optimal and Learning-based Control
 Homework \#1
 Due April 22 by 11:59 pm

Learning goals for this problem set:

Problem 1: To gain insights into the implementation of gradient methods and review some notions of linear algebra.

Problem 2: To familiarize with Linear Quadratic control and learn a first algorithmic approach to this problem.

Problem 3: Become familiar with the process of solving calculus of variations problems.
Problem 4: To familiarize with the Hamiltonian equations for optimal control.
1.1 Gradient descent and line search. Let $Q \in \mathbb{R}^{n \times n}$ be a symmetric positive-definite matrix, and $b \in \mathbb{R}^{n}$ be a given vector. Consider the quadratic optimization problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\boldsymbol{\top}} Q x-b^{\boldsymbol{\top}} x .
$$

Let $f(x):=\frac{1}{2} x^{\top} Q x-b^{\top} x$, and denote the eigenvalues of Q as $\lambda_{1}, \ldots, \lambda_{n}$.
(a) Find the unique local minimum candidate $x^{*} \in \mathbb{R}^{n}$. Prove x^{*} is a global minimum.

Hint: Any twice-differentiable function f is strictly convex if the Hessian $\nabla^{2} f(x)$ is positivedefinite for all $x \in \mathbb{R}^{n}$.
(b) Show that, starting from any initial point $x^{(0)} \in \mathbb{R}^{n}$, Newton's method with constant step size $\eta=1$ converges in one iteration to the optimal solution x^{*}. Hence, performing one step of Newton's method is equivalent to solving the linear system of equations $Q x=b$. What would be the downside of this solution method if n is large (e.g., $n \gg 10^{4}$) and the matrix Q has no particular structure?
(c) Let $S \in \mathbb{R}^{n \times n}$ be a symmetric matrix. By the Spectral Theorem, there exist an orthogonal matrix $U \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$ such that $S=U \Sigma U^{\top}$. Show $\|S x\|_{2}=\left\|\Sigma U^{\top} x\right\|_{2}$ for any $x \in \mathbb{R}^{n}$. Then show $\|\Sigma z\|_{2} \leq \max _{i \in\{1, \ldots, n\}} \mid \mu_{i}\| \| z \|_{2}$ for any $z \in \mathbb{R}^{n}$. Finally, conclude that $\|S x\|_{2} \leq \max _{i \in\{1, \ldots, n\}}\left|\mu_{i}\right|\|x\|_{2}$ for any $x \in \mathbb{R}^{n}$.

Hint: If $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\|U y\|_{2}=\left\|U^{\top} y\right\|_{2}=\|y\|_{2}$ for any $y \in \mathbb{R}^{n}$.
(d) For any $\eta>0$, show that the eigenvalues of the matrix $I-\eta Q$ are exactly $\left\{1-\eta \lambda_{i}\right\}_{i=1}^{n}$.

Hint: Identify an orthonormal basis of vectors $\left\{v_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n}$ such that $(I-\eta Q) v_{i}=\left(1-\eta \lambda_{i}\right) v_{i}$ for each i.
(e) Consider the gradient descent update rule $x^{(k+1)}=x^{(k)}-\eta \nabla f\left(x^{(k)}\right)$ at iteration $k \in \mathbb{N}_{\geq 0}$ with a constant step size $\eta>0$. Define $\delta^{(k)}:=\left\|x^{(k)}-x^{*}\right\|_{2}$ and $\gamma(\eta):=\max _{i \in\{1, \ldots, n\}}\left|1-\eta \lambda_{i}\right|$. Use an inductive argument to show $\delta^{(k)} \leq \gamma(\eta)^{k} \delta_{0}$ for all $k \in \mathbb{N}_{\geq 0}$.
(f) Consider gradient descent with exact line search. At each iteration k, denote the descent direction by $d^{(k)}:=-\nabla f\left(x^{(k)}\right)$ and the optimal step size by

$$
\eta^{(k)}:=\underset{\eta \geq 0}{\arg \min } f\left(x^{(k)}+\eta d^{(k)}\right) .
$$

Prove

$$
\eta^{(k)}=\frac{\left\|d^{(k)}\right\|_{2}^{2}}{d^{(k)^{\top}} Q d^{(k)}}
$$

(g) For $n=2$ and $f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right)$ with $\gamma=10$, what is the optimal solution x^{*} ? Implement gradient descent with a constant step size and exact line search, starting from $x^{(0)}=(5,1)$ and $x^{(0)}=(1,5)$. What do you observe with exact line search? When does gradient descent begin to "zig-zag"? What issue do you observe with a constant step size? Repeat both experiments with $\gamma=1$. Submit your plots.
1.2 LQR as a QP. Consider the Linear Time-Invariant (LTI) dynamical system

$$
x_{t+1}=A x_{t}+B u_{t},
$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ are given matrices, and $x_{t} \in \mathbb{R}^{n}$ and $u_{t} \in \mathbb{R}^{m}$ are the system state and applied control input, respectively, at time $t \in \mathbb{N}_{\geq 0}$.
Let $x_{0} \in \mathbb{R}^{n}$ be the fixed initial state and $T \in \mathbb{N}$ be some time horizon. Our goal is to find a sequence of control inputs $u^{*}:=\left(u_{0}^{*}, u_{1}^{*}, \ldots, u_{T-1}^{*}\right) \in \mathbb{R}^{m T}$ that minimizes the quadratic cost

$$
J(u):=x_{T}^{\top} Q_{T} x_{T}+\sum_{t=0}^{T-1}\left(x_{t}^{\top} Q x_{t}+u_{t}^{\top} R u_{t}\right),
$$

where $Q_{T} \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n}$, and $R \in \mathbb{R}^{m \times m}$ are positive-definite matrices. Later, we will see how dynamic programming can be used to derive an elegant, recursive solution to this problem. For now, we study a convex least-squares formulation. Specifically, we reformulate the problem of minimizing $J(u)$ as

$$
\min _{u \in \mathbb{R}^{m T}} \frac{1}{2} u^{\top} \tilde{Q} u-\tilde{b}^{\top} u
$$

where $u:=\left(u_{0}, u_{1}, \ldots, u_{T-1}\right) \in \mathbb{R}^{m T}$ is the vector of stacked control inputs, $\tilde{Q} \in \mathbb{R}^{m T \times m T}$ is a positive-definite matrix, and $\tilde{b} \in \mathbb{R}^{m T}$.
(a) Write down \tilde{Q} and \tilde{b} in terms of Q_{T}, Q, R, A, B, and x_{0}.
(b) With this reformulation, implement the gradient descent algorithm of your choice to compute the optimal sequence of control inputs u^{*} for

$$
Q_{T}=10 I_{2}, \quad Q=I_{2}, \quad R=I_{1}, \quad A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad T=20,
$$

where I_{n} is the identity matrix with dimension n. What is the optimal cost $J\left(u^{*}\right)$?
1.3 Extremal curves. Given the functional

$$
J(x)=\int_{0}^{1}\left(\frac{1}{2} \dot{x}(t)^{2}+5 x(t) \dot{x}(t)+x(t)^{2}+5 x(t)\right) d t
$$

find an extremal curve $x^{*}:[0,1] \rightarrow \mathbb{R}$ that satisfies $x^{*}(0)=1$ and $x^{*}(1)=3$.
1.4 Zermelo's ship. Zermelo's ship must travel through a region of strong currents. The position of the ship is denoted by $(x(t), y(t)) \in \mathbb{R}^{2}$. The ship travels at a constant speed $v>0$, yet its heading $\theta(t)$ can be controlled. The current moves in the positive x-direction with speed $w(y(t))$. The equations of motion for the ship are

$$
\begin{aligned}
\dot{x}(t) & =v \cos \theta(t)+w(y(t)) \\
\dot{y}(t) & =v \sin \theta(t)
\end{aligned}
$$

We want to control the heading $\theta(t)$ such that the ship travels from a given initial position $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)=\left(x_{0}, y_{0}\right)$ to the origin $(0,0)$ in minimum time.
(a) Suppose $w(y(t))=\frac{v}{h} y(t)$, where $h>0$ is a known constant. Show that an optimal control law $\theta^{*}(t)$ must satisfy a linear tangent law of the form

$$
\tan \theta^{*}(t)=\alpha-\frac{v}{h} t
$$

for some constant $\alpha \in \mathbb{R}$.
(b) Suppose $w(y(t)) \equiv \beta$ for some constant $\beta>0$. Derive an expression for the optimal transfer time $t_{1}^{*}-t_{0}$.

