
Stanford Spring 2024

AA 203: Optimal and Learning-based Control
Homework #0
Not graded

Learning goals for this problem set:

Problem 1: Review stability of discrete LTI systems.

Problem 2: Review unconstrained convex optimization.

Problem 3: Review linear regression techniques, and numerical and plotting libraries in Python.

0.1 Discrete-time LTI stability. Consider the system xt+1 = Axt +But, where

A =

4/5 0 0

0
√

3 1

0 −1
√

3

 , B =

0 0
1 1
1 0

 .
(a) Explain whether or not this system is “open-loop stable”, i.e., asymptotically stable for ut ≡ 0.

(b) Design a linear feedback controller ut = Kxt with fixed gain matrix K ∈ R2×3 such that the
closed-loop system is asymptotically stable.

0.2 Poisson maximum likelihood. Suppose we observe the number of customers X to a store over
N days, and we want to fit a Poisson distribution to the resulting data D := {x1, x2, . . . , xN}. The
Poisson distribution is a distribution over non-negative integers with a single parameter λ ≥ 0. It is
often used to model arrival times of random events or count the number of random arrivals within
a given amount of time. Its probability mass function is

Pr(X = x) =
e−λλx

x!
.

To fit our model, we want to choose the parameter λ of the Poisson distribution to maximize the
probability of the data D. Assuming the number of customers on each day is independent and
identically distributed (IID), the likelihood of D is

p(D;λ) :=
N∏
t=1

Pr(X = xt).

Specifically, we will maximize the log-likelihood of D by solving the optimization problem

maximize
λ≥0

log p(D;λ).

(a) What property of the logarithm allows us to replace the likelihood with the log-likelihood in
this maximization problem?

(b) Derive the maximum likelihood estimator λ̂ := arg maxλ≥0 log p(D;λ).

1

0.3 Asteroid regression. Suppose we obtain measurements {(di,mi)}Ni=1 for N asteroids, where di >
0 and mi > 0 are the diameter and mass, respectively, of the i-th asteroid. If the asteroids were
radially symmetric and uniformly dense, then we could posit that m ∼ d3. However, the asteroids
are not radially symmetric nor uniformly dense, yet we still suspect that d and m exhibit a cubic
polynomial relationship, i.e.,

m = x1d+ x2d
2 + x3d

3,

for some coefficients x := (x1, x2, x3) ∈ R3. We do not include a constant term since the asteroid
mass should be zero when its diameter is zero.

(a) Formulate this regression problem (i.e., the problem of fitting the coefficients x to the data
{(di,mi)}Ni=1) as a convex least-squares optimization of the form

minimize
x

‖Ax− y‖22.

Specifically, describe how the matrix A and the vector y are formed from the data {(di,mi)}Ni=1.

(b) Express the optimal least-squares solution x∗ in terms of A and y.

Hint: You may assume ATA is invertible.

(c) Data of the form {(di,mi)}Ni=1 is provided in data asteroid regression.csv. Using NumPy
in Python, load this data and implement the least-squares solution for x∗. Report x∗ up to
two decimal places for each entry.

In general, the `2-norm is susceptible to overfitting to outliers. We can find a more robust solution
by solving the `1-norm optimization

minimize
x

‖Ax− y‖1.

Unlike the `2-norm problem, the `1-norm problem does not have a closed-form solution. However,
we can use gradient descent to solve for x∗ by iteratively producing estimates of a minimizer for
the objective f(x) := ‖Ax− y‖1. Gradient descent is described by the update rule

x(k+1) = x(k) − α(k)∇f(x(k))

at the k-th iteration, where α(k) > 0 is the step size.

(d) Derive the gradient of the `1-norm regression objective f(x) in terms of A, y, and x.

Hint: Technically, the `1-norm is not differentiable at zero or any vector containing a zero
entry. You may choose any number in the interval [−1, 1] for ∂

∂xi
|xi| at xi = 0. The set [−1, 1]

is the sub-differential of |xi| at xi = 0, and any element of this set is a sub-gradient.

(e) Using NumPy in Python, implement sub-gradient descent for the `1-norm regression problem
for the data in data asteroid regression.csv. Initialize x(0) = 0 and use a constant step
size of α(k) = 10−4 for all iterations. At each iteration, set x∗ as the best solution found so
far by keeping track of the objective value f(x). Terminate after 10000 iterations. Report the
`1-norm-optimized x∗ up to two decimal places for each entry.

(f) Plot the `2-fit, `1-fit, and data on the same (d,m)-axes using Matplotlib in Python.

2

