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Stanford Spring 2024

AA 203: Optimal and Learning-based Control
Homework #0
Not graded

Learning goals for this problem set:
Problem 1: Review stability of discrete LTI systems.
Problem 2: Review unconstrained convex optimization.

Problem 3: Review linear regression techniques, and numerical and plotting libraries in Python.

Discrete-time LTI stability. Consider the system x;y1 = Az; + Bu;, where
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(a) Explain whether or not this system is “open-loop stable”, i.e., asymptotically stable for u; = 0.

(b) Design a linear feedback controller u; = Kx; with fixed gain matrix K € R?*3 such that the
closed-loop system is asymptotically stable.

Poisson maximum likelihood. Suppose we observe the number of customers X to a store over
N days, and we want to fit a Poisson distribution to the resulting data D = {x1,x9,...,zx}. The
Poisson distribution is a distribution over non-negative integers with a single parameter A > 0. It is
often used to model arrival times of random events or count the number of random arrivals within
a given amount of time. Its probability mass function is

e A\

Pr(X =z) = o

To fit our model, we want to choose the parameter A\ of the Poisson distribution to maximize the
probability of the data D. Assuming the number of customers on each day is independent and
identically distributed (IID), the likelihood of D is

N
p(D; A) = HPr(X = T¢).
t=1

Specifically, we will maximize the log-likelihood of D by solving the optimization problem

imizel D; \).
maz\cgg)nze ogp(D; \)

(a) What property of the logarithm allows us to replace the likelihood with the log-likelihood in
this maximization problem?

(b) Derive the maximum likelihood estimator A := arg max g log p(D; A).



0.3 Asteroid regression. Suppose we obtain measurements {(d;, m;)}; for N asteroids, where d; >
0 and m; > 0 are the diameter and mass, respectively, of the i-th asteroid. If the asteroids were
radially symmetric and uniformly dense, then we could posit that m ~ d3. However, the asteroids
are not radially symmetric nor uniformly dense, yet we still suspect that d and m exhibit a cubic
polynomial relationship, i.e.,

m = z1d + zod® + x3d3,

for some coefficients z := (x1,z2,23) € R3. We do not include a constant term since the asteroid
mass should be zero when its diameter is zero.

(a) Formulate this regression problem (i.e., the problem of fitting the coefficients x to the data
{(di,m:)}Y,) as a convex least-squares optimization of the form

minimize || Az — y||3.
x

Specifically, describe how the matrix A and the vector y are formed from the data {(d;, m;)}¥¥ ;.

b) Express the optimal least-squares solution z* in terms of A and y.
(]

Hint: You may assume A" A is invertible.

(c) Data of the form {(d;,m;)}Y, is provided in data asteroid regression.csv. Using NumPy
in Python, load this data and implement the least-squares solution for z*. Report «* up to
two decimal places for each entry.

In general, the £5-norm is susceptible to overfitting to outliers. We can find a more robust solution
by solving the £1-norm optimization

minimize ||Az — yl|;.
T

Unlike the £s-norm problem, the ¢1-norm problem does not have a closed-form solution. However,
we can use gradient descent to solve for z* by iteratively producing estimates of a minimizer for
the objective f(x) :=||Az — y||;. Gradient descent is described by the update rule

2B — (k) _ (k) Vf(x(k))
at the k-th iteration, where a®) > 0 is the step size.

(d) Derive the gradient of the ¢1-norm regression objective f(z) in terms of A, y, and x.

Hint: Technically, the ¢;-norm is not differentiable at zero or any vector containing a zero
entry. You may choose any number in the interval [—1,1] for %|xi| at x; = 0. The set [—1,1]
is the sub-differential of |z;| at z; = 0, and any element of this set is a sub-gradient.

(e) Using NumPy in Python, implement sub-gradient descent for the ¢;-norm regression problem
for the data in data_asteroid_regression.csv. Initialize 2(°) = 0 and use a constant step
size of a®) = 1074 for all iterations. At each iteration, set z* as the best solution found so
far by keeping track of the objective value f(z). Terminate after 10000 iterations. Report the
f1-norm-optimized x* up to two decimal places for each entry.

(f) Plot the lo-fit, ¢1-fit, and data on the same (d, m)-axes using Matplotlib in Python.



