AA 203: Optimal and Learning-based Control
 Homework \#0
 Not graded

Learning goals for this problem set:

Problem 1: Review stability of discrete LTI systems.
Problem 2: Review unconstrained convex optimization.
Problem 3: Review linear regression techniques, and numerical and plotting libraries in Python.
0.1 Discrete-time LTI stability. Consider the system $x_{t+1}=A x_{t}+B u_{t}$, where

$$
A=\left[\begin{array}{ccc}
4 / 5 & 0 & 0 \\
0 & \sqrt{3} & 1 \\
0 & -1 & \sqrt{3}
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right] .
$$

(a) Explain whether or not this system is "open-loop stable", i.e., asymptotically stable for $u_{t} \equiv 0$.
(b) Design a linear feedback controller $u_{t}=K x_{t}$ with fixed gain matrix $K \in \mathbb{R}^{2 \times 3}$ such that the closed-loop system is asymptotically stable.
0.2 Poisson maximum likelihood. Suppose we observe the number of customers X to a store over N days, and we want to fit a Poisson distribution to the resulting data $\mathcal{D}:=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. The Poisson distribution is a distribution over non-negative integers with a single parameter $\lambda \geq 0$. It is often used to model arrival times of random events or count the number of random arrivals within a given amount of time. Its probability mass function is

$$
\operatorname{Pr}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} .
$$

To fit our model, we want to choose the parameter λ of the Poisson distribution to maximize the probability of the data \mathcal{D}. Assuming the number of customers on each day is independent and identically distributed (IID), the likelihood of \mathcal{D} is

$$
p(\mathcal{D} ; \lambda):=\prod_{t=1}^{N} \operatorname{Pr}\left(X=x_{t}\right) .
$$

Specifically, we will maximize the log-likelihood of \mathcal{D} by solving the optimization problem

$$
\underset{\lambda \geq 0}{\operatorname{maximize}} \log p(\mathcal{D} ; \lambda) .
$$

(a) What property of the logarithm allows us to replace the likelihood with the log-likelihood in this maximization problem?
(b) Derive the maximum likelihood estimator $\hat{\lambda}:=\arg \max _{\lambda \geq 0} \log p(\mathcal{D} ; \lambda)$.
0.3 Asteroid regression. Suppose we obtain measurements $\left\{\left(d_{i}, m_{i}\right)\right\}_{i=1}^{N}$ for N asteroids, where $d_{i}>$ 0 and $m_{i}>0$ are the diameter and mass, respectively, of the i-th asteroid. If the asteroids were radially symmetric and uniformly dense, then we could posit that $m \sim d^{3}$. However, the asteroids are not radially symmetric nor uniformly dense, yet we still suspect that d and m exhibit a cubic polynomial relationship, i.e.,

$$
m=x_{1} d+x_{2} d^{2}+x_{3} d^{3},
$$

for some coefficients $x:=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. We do not include a constant term since the asteroid mass should be zero when its diameter is zero.
(a) Formulate this regression problem (i.e., the problem of fitting the coefficients x to the data $\left.\left\{\left(d_{i}, m_{i}\right)\right\}_{i=1}^{N}\right)$ as a convex least-squares optimization of the form

$$
\underset{x}{\operatorname{minimize}}\|A x-y\|_{2}^{2} .
$$

Specifically, describe how the matrix A and the vector y are formed from the data $\left\{\left(d_{i}, m_{i}\right)\right\}_{i=1}^{N}$.
(b) Express the optimal least-squares solution x^{*} in terms of A and y.

Hint: You may assume $A^{\top} A$ is invertible.
(c) Data of the form $\left\{\left(d_{i}, m_{i}\right)\right\}_{i=1}^{N}$ is provided in data_asteroid_regression.csv. Using NumPy in Python, load this data and implement the least-squares solution for x^{*}. Report x^{*} up to two decimal places for each entry.

In general, the ℓ_{2}-norm is susceptible to overfitting to outliers. We can find a more robust solution by solving the ℓ_{1}-norm optimization

$$
\underset{x}{\operatorname{minimize}}\|A x-y\|_{1} .
$$

Unlike the ℓ_{2}-norm problem, the ℓ_{1}-norm problem does not have a closed-form solution. However, we can use gradient descent to solve for x^{*} by iteratively producing estimates of a minimizer for the objective $f(x):=\|A x-y\|_{1}$. Gradient descent is described by the update rule

$$
x^{(k+1)}=x^{(k)}-\alpha^{(k)} \nabla f\left(x^{(k)}\right)
$$

at the k-th iteration, where $\alpha^{(k)}>0$ is the step size.
(d) Derive the gradient of the ℓ_{1}-norm regression objective $f(x)$ in terms of A, y, and x.

Hint: Technically, the ℓ_{1}-norm is not differentiable at zero or any vector containing a zero entry. You may choose any number in the interval $[-1,1]$ for $\frac{\partial}{\partial x_{i}}\left|x_{i}\right|$ at $x_{i}=0$. The set $[-1,1]$ is the sub-differential of $\left|x_{i}\right|$ at $x_{i}=0$, and any element of this set is a sub-gradient.
(e) Using NumPy in Python, implement sub-gradient descent for the ℓ_{1}-norm regression problem for the data in data_asteroid_regression.csv. Initialize $x^{(0)}=0$ and use a constant step size of $\alpha^{(k)}=10^{-4}$ for all iterations. At each iteration, set x^{*} as the best solution found so far by keeping track of the objective value $f(x)$. Terminate after 10000 iterations. Report the ℓ_{1}-norm-optimized x^{*} up to two decimal places for each entry.
(f) Plot the ℓ_{2}-fit, ℓ_{1}-fit, and data on the same (d, m)-axes using Matplotlib in Python.

