# AA 203 <br> Optimal and Learning-Based Control 

The Hamilton-Jacobi-Bellman equation

Spencer M. Richards
Autonomous Systems Laboratory, Stanford University
April 26, 2023
(last updated May 3, 2023)
ASE

## Agenda

1. The Bellman equation as a sufficient optimality condition
2. Continuous-time dynamic programming and the HJB equation
3. LQR control in continuous-time
4. Non-smooth value functions

## Agenda

1. The Bellman equation as a sufficient optimality condition
2. Continuous-time dynamic programming and the HJB equation
3. LQR control in continuous-time
4. Non-smooth value functions

## Review: Principle of optimality and dynamic programming

Consider the discrete-time OCP

$$
\begin{aligned}
\underset{\left\{u_{t}\right\}_{t=0}^{T-1}}{\operatorname{minimize}} & \ell_{T}\left(x_{T}\right)+\sum_{t=0}^{T-1} \ell\left(t, x_{t}, u_{t}\right) \\
\text { subject to } & x_{t+1}=f\left(t, x_{t}, u_{t}\right), \forall t \in\{0,1, \ldots, T-1\} \\
& u_{t} \in \mathcal{U}, \forall t \in\{0,1, \ldots, T-1\}
\end{aligned}
$$

Define the tail sub-problem cost-to-go

$$
J\left(t, x,\left\{u_{t}\right\}_{k=t}^{T-1}\right):=\ell_{T}\left(x_{T}\right)+\sum_{k=t}^{T-1} \ell\left(k, x_{k}, u_{k}\right)
$$

where $x_{k+1}=f\left(k, x_{k}, u_{k}\right)$ with initial condition $x_{t}=x$ is assumed implicitly.
Define the value function at $t \in\{0,1, \ldots, T\}$ and $x_{t} \in \mathbb{R}^{n}$ by

$$
V\left(t, x_{t}\right):=\inf _{\left\{u_{k}\right\}_{k=t}^{T-1} \subseteq \mathcal{U}} J\left(t, x_{t},\left\{u_{k}\right\}_{k=t}^{T-1}\right), \quad V\left(T, x_{T}\right)=\ell_{T}\left(x_{T}\right) .
$$

Previously we used " $J_{t}^{*}\left(x_{t}\right)$ ", but this notation will translate better to continuous-time later.

## Review: Principle of optimality and dynamic programming

Suppose $\left\{u_{t}^{*}\right\}_{t=0}^{T-1} \subseteq \mathcal{U}$ is globally optimal for this OCP, i.e.,

$$
J\left(0, x_{0},\left\{u_{t}^{*}\right\}_{t=0}^{T-1}\right)=V\left(0, x_{0}\right) .
$$

Then the truncation $\left\{u_{k}^{*}\right\}_{k=t}^{T-1}$ is globally optimal for the corresponding tail sub-problem, i.e.,

$$
J\left(t, x_{t},\left\{u_{k}^{*}\right\}_{k=t}^{T-1}\right)=V\left(t, x_{t}\right)
$$

From this, we must have the Bellman equation

$$
V(t, x)=\inf _{u \in \mathcal{U}}(\ell(t, x, u)+V(t+1, f(t, x, u)))
$$

with the boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in\{0,1, \ldots, T-1\}$ and $x \in \mathbb{R}^{n}$.
So the Bellman equation above is a necessary condition for global optimality of $\left\{u_{t}^{*}\right\}_{t=0}^{T-1}$.

## The Bellman equation as a sufficient optimality condition

Suppose $\hat{V}:\{0,1, \ldots, T\} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function that satisfies the Bellman equation

$$
\hat{V}(t, x)=\inf _{u \in \mathcal{U}}(\ell(t, x, u)+\hat{V}(t+1, f(t, x, u))), \quad \hat{V}(T, x)=\ell_{T}(x),
$$

for all $t \in\{0,1, \ldots, T-1\}$ and $x \in \mathbb{R}^{n}$.
Suppose $(\hat{x}, \hat{u})$ satisfy $\hat{x}_{t+1}=f\left(t, \hat{x}_{t}, \hat{u}_{t}\right)$ with initial condition $\hat{x}_{0}$ and

$$
\ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right)+\hat{V}\left(t+1, f\left(t, \hat{x}_{t}, \hat{u}_{t}\right)\right)=\inf _{u \in \mathcal{U}}\left(\ell\left(t, \hat{x}_{t}, u\right)+\hat{V}\left(t+1, f\left(t, \hat{x}_{t}, u\right)\right)\right)
$$

for all $t \in\{0,1, \ldots, T-1\}$.
Then we can write

$$
\hat{V}\left(t, \hat{x}_{t}\right)-\hat{V}\left(t+1, f\left(t, \hat{x}_{t}, \hat{u}_{t}\right)\right)=\ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) .
$$

## The Bellman equation as a sufficient optimality condition

Then we can write

$$
\begin{aligned}
\hat{V}\left(t, \hat{x}_{t}\right)-\hat{V}\left(t+1, f\left(t, \hat{x}_{t}, \hat{u}_{t}\right)\right) & =\ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) \\
\hat{V}\left(t, \hat{x}_{t}\right)-\hat{V}\left(t+1, \hat{x}_{t+1}\right) & =\ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) \\
\sum_{t=0}^{T-1}\left(\hat{V}\left(t, \hat{x}_{t}\right)-\hat{V}\left(t+1, \hat{x}_{t+1}\right)\right) & =\sum_{t=0}^{T-1} \ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) \\
\hat{V}\left(0, \hat{x}_{0}\right)-\hat{V}\left(T, \hat{x}_{T}\right) & =\sum_{t=0}^{T-1} \ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) \\
\Longrightarrow \hat{V}\left(0, \hat{x}_{0}\right) & =\ell_{T}\left(\hat{x}_{T}\right)+\sum_{t=0}^{T-1} \ell\left(t, \hat{x}_{t}, \hat{u}_{t}\right) \\
& =J\left(0, \hat{x}_{0},\left\{\hat{u}_{t}\right\}_{t=0}^{T-1}\right)
\end{aligned}
$$

So $\hat{V}\left(0, \hat{x}_{0}\right)$ is the cost-to-go for $\left\{\hat{u}_{t}\right\}_{t=0}^{T-1}$.

## The Bellman equation as a sufficient optimality condition

Now consider any other $(x, u)$ satisfying $x_{t+1}=f\left(t, x_{t}, u_{t}\right)$ and $x_{0}=\hat{x}_{0}$. Then

$$
\begin{aligned}
\hat{V}\left(t, x_{t}\right) & =\inf _{u \in \mathcal{U}}\left(\ell\left(t, x_{t}, u\right)+\hat{V}\left(t+1, f\left(t, x_{t}, u\right)\right)\right) \\
& \leq \ell\left(t, x_{t}, u_{t}\right)+\hat{V}\left(t+1, f\left(t, x_{t}, u_{t}\right)\right)
\end{aligned}
$$

A similar summation argument gives us

$$
\hat{V}\left(0, x_{0}\right) \leq J\left(0, x_{0},\left\{u_{t}\right\}_{t=0}^{T-1}\right) .
$$

Since $x_{0}=\hat{x}_{0}$, we have

$$
\hat{V}\left(0, \hat{x}_{0}\right) \leq J\left(0, \hat{x}_{0},\left\{u_{t}\right\}_{t=0}^{T-1}\right) .
$$

Overall, $\hat{u}$ yields the cost $\hat{V}\left(0, \hat{x}_{0}\right)$ and no other admissible $u$ can produce a smaller cost.
While we chose $t=0$ as the initial time, this was arbitrary since the Bellman equation is assumed to hold for all $t \in\{0,1, \ldots, T\}$ and $x \in \mathbb{R}^{n}$. So $\hat{V}(t, x)$ is the optimal cost-to-go, i.e., $\hat{V}(t, x)=V(t, x)$ for all $t \in\{0,1, \ldots, T\}$ and $x \in \mathbb{R}^{n}$, and $\hat{u}$ is a globally optimal control.

## Agenda

1. The Bellman equation as a sufficient optimality condition
2. Continuous-time dynamic programming and the HJB equation
3. LQR control in continuous-time
4. Non-smooth value functions

## Continuous-time dynamic programming

Consider the continuous-time OCP

$$
\begin{aligned}
\underset{u}{\operatorname{minimize}} & \ell_{T}(x(T))+\int_{0}^{T} \ell(t, x(t), u(t)) d t \\
\text { subject to } & \dot{x}(t)=f(t, x(t), u(t)), \forall t \in[0, T] \\
& u(t) \in \mathcal{U}, \forall t \in[0, T]
\end{aligned}
$$

Define the tail sub-problem cost-to-go

$$
J\left(t, x, u_{[t, T]}\right):=\ell_{T}(x(T))+\int_{t}^{T} \ell(s, x(s), u(s)) d s
$$

where $\dot{x}(s)=f(s, x(s), u(s))$ with initial condition $x(t)=x$ is assumed implicitly.
Define the value function at $t \in[0, T]$ and $x(t) \in \mathbb{R}^{n}$ by

$$
V(t, x(t)):=\inf _{u_{[0, T]} \subseteq \mathcal{U}} J\left(t, x(t), u_{[0, T]}\right), \quad V(T, x(T))=\ell_{T}(x(T)) .
$$

## Continuous-time dynamic programming

Suppose $u^{*}:[0, T] \rightarrow \mathcal{U}$ is globally optimal for this OCP, i.e.,

$$
J\left(0, x(0), u_{[0, T]}^{*}\right)=V(0, x(0)) .
$$

Then the truncation $u_{[t, T]}^{*}:[0, T] \rightarrow \mathcal{U}$ is globally optimal for the corresponding tail sub-problem, i.e.,

$$
J\left(t, x(t), u_{[t, T]}^{*}\right)=V(t, x(t)) .
$$

From this, we must have the Bellman equation

$$
V(t, x)=\inf _{u_{[t, t+\varepsilon]} \in \mathcal{U}}\left(\int_{t}^{t+\varepsilon} \ell(s, x(s), u(s)) d s+V(t+\varepsilon, x(t+\varepsilon))\right)
$$

with the boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in[0, T), \varepsilon \in(0, T-t]$, and $x \in \mathbb{R}^{n}$, where $x(s)$ for $s \in[t, t+\varepsilon]$ is the state trajectory corresponding to $u_{[t, t+\varepsilon]}$ with initial condition $x(t)=x$.

That is, the Bellman equation above is a necessary condition for global optimality of $u^{*}$.

## Continuous-time dynamic programming

From this, we must have the Bellman equation

$$
V(t, x)=\inf _{u_{[t, t+\varepsilon]} \in \mathcal{U}}\left(\int_{t}^{t+\varepsilon} \ell(s, x(s), u(s)) d s+V(t+\varepsilon, x(t+\varepsilon))\right)
$$

with the boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in[0, T), \varepsilon \in(0, T-t]$, and $x \in \mathbb{R}^{n}$, where $x(s)$ for $s \in[t, t+\varepsilon]$ is the state trajectory corresponding to $u_{[t, t+\varepsilon]}$ with initial condition $x(t)=x$.

Assume $V$ is $\mathcal{C}^{1}$-smooth with respect to $t$ and $x$. Then

$$
V(t+\varepsilon, x(t+\varepsilon))=V(t, x)+\frac{\partial V}{\partial t}(t, x) \varepsilon+\nabla_{x} V(t, x)^{\top} f(t, x, u(t)) \varepsilon+o(\varepsilon)
$$

and

$$
\int_{t}^{t+\varepsilon} \ell(s, x(s), u(s)) d s=\ell(t, x, u(t)) \varepsilon+o(\varepsilon)
$$

where $\lim _{\varepsilon \rightarrow 0} \frac{o(\varepsilon)}{\varepsilon}=0$.

## The Hamilton-Jacobi-Bellman equation

Assume $V$ is $\mathcal{C}^{1}$-smooth with respect to $t$ and $x$. Then

$$
V(t+\varepsilon, x(t+\varepsilon))=V(t, x)+\frac{\partial V}{\partial t}(t, x) \varepsilon+\nabla_{x} V(t, x)^{\top} f(t, x, u(t)) \varepsilon+o(\varepsilon)
$$

and

$$
\int_{t}^{t+\varepsilon} \ell(s, x(s), u(s)) d s=\ell(t, x, u(t)) \varepsilon+o(\varepsilon)
$$

where " $o(\varepsilon)$ " is little-o notation encapsulating terms that satisfy $\lim _{\varepsilon \rightarrow 0} \frac{o(\varepsilon)}{\varepsilon}=0$.
Substitute these into the Bellman equation to get

$$
-\frac{\partial V}{\partial t}(t, x) \varepsilon=\inf _{u_{[t, t+\varepsilon]} \in \mathcal{U}}\left(\ell(t, x, u(t)) \varepsilon+\nabla_{x} V(t, x)^{\top} f(t, x, u(t)) \varepsilon+o(\varepsilon)\right)
$$

Divide by $\varepsilon$ and take the limit as $\varepsilon \rightarrow 0$ to get the Hamilton-Jacobi-Bellman (HJB) equation

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in \mathcal{U}}\left(\ell(t, x, u)+\nabla_{x} V(t, x)^{\top} f(t, x, u)\right)
$$

with boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in[0, T)$ and $x \in \mathbb{R}^{n}$.

## The Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation is

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in \mathcal{U}}\left(\ell(t, x, u)+\nabla_{x} V(t, x)^{\top} f(t, x, u)\right)
$$

with boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in[0, T)$ and $x \in \mathbb{R}^{n}$.
If we assume a globally optimal control exists, then we can replace "inf" with "min" above, and the HJB equation is a necessary condition for global optimality of $u^{*}:[0, T] \rightarrow \mathcal{U}$. A similar derivation to the discrete-time case can show that the HJB equation can be used to form sufficient optimality conditions.

Define the Hamiltonian

$$
H(t, x, u, p):=p^{\top} f(t, x, u)-\ell(t, x, u) .
$$

Then we can rewrite the HJB equation as

$$
\frac{\partial V}{\partial t}(t, x)=\sup _{u \in \mathcal{U}} H\left(t, x, u,-\nabla_{x} V(t, x)\right) .
$$

## HJB versus PMP

The Hamilton-Jacobi-Bellman (HJB) equation is

$$
\left.\frac{\partial V}{\partial t}(t, x)=\sup _{u \in \mathcal{U}} H\left(t, x, u,-\nabla_{x} V(t, x)\right)\right)
$$

with boundary condition $V(T, x)=\ell_{T}(x)$, for all $t \in[0, T)$ and $x \in \mathbb{R}^{n}$.
In the PMP, we saw that an optimal control $u^{*}$ must satisfy

$$
u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \max } H\left(t, x^{*}(t), u, p^{*}(t)\right), \forall t \in[0, T] .
$$

This is an open-loop specification, since $u^{*}$ depends on the state and co-state trajectories, which come from solving a BVP over the entire interval $[0, T]$.

With the HJB, we have that

$$
u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \max } H\left(t, x^{*}(t), u,-\nabla_{x} V\left(t, x^{*}(t)\right)\right), \forall t \in[0, T] .
$$

This is a closed-loop specification, since if we know $V(t, x)$ everywhere, then $u^{*}(t)$ is completely determined by $x^{*}(t)$.

## HJB versus PMP

In the PMP, we saw that an optimal control $u^{*}$ must satisfy

$$
u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \max } H\left(t, x^{*}(t), u, p^{*}(t)\right), \forall t \in[0, T] .
$$

This is an open-loop specification, since $u^{*}$ depends on the state and co-state trajectories, which come from solving a BVP over the entire interval $[0, T]$.

With the HJB, we have that

$$
u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \max } H\left(t, x^{*}(t), u,-\nabla_{x} V\left(t, x^{*}(t)\right)\right), \forall t \in[0, T] .
$$

This is a closed-loop specification, since if we know $V(t, x)$ everywhere, then $u^{*}(t)$ is completely determined by $x^{*}(t)$. However, computing $V(t, x)$ everywhere is much harder to do; it is the solution of a PDE, while the PMP required us to solve a system of ODEs.

Comparing the PMP and the HJB also gives us a new interpretation of the adjoint state as a sensitivity

$$
p^{*}(t)=-\nabla_{x} V\left(t, x^{*}(t)\right) .
$$

## Agenda

1. The Bellman equation as a sufficient optimality condition
2. Continuous-time dynamic programming and the HJB equation
3. LQR control in continuous-time
4. Non-smooth value functions

## LQR control in continuous-time

Consider the continuous-time OCP

$$
\begin{aligned}
\underset{u}{\operatorname{minimize}} & \frac{1}{2} x(t)^{\top} Q_{T} x(t)+\frac{1}{2} \int_{0}^{T}\left(x(t)^{\top} Q(t) x(t)+u(t)^{\top} R(t) u(t)\right) d t \\
\text { subject to } & \dot{x}(t)=A(t) x(t)+B(t) u(t), \forall t \in[0, T]
\end{aligned}
$$

where $Q_{T} \succeq 0, Q(t) \succeq 0$, and $R(t) \succ 0$ for all $t \in[0, T]$.
The HJB equation for this problem is

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in \mathbb{R}^{m}}\left(\frac{1}{2} x^{\top} Q(t) x+\frac{1}{2} u^{\top} R(t) u+\nabla_{x} V(t, x)^{\top}(A(t) x+B(t) u)\right)
$$

with boundary condition $V(T, x)=\frac{1}{2} x^{\top} Q_{T} x$.
Take the derivative with respect to $u$ and set it equal to zero to get

$$
u=-R(t)^{-1} B(t)^{\top} \nabla_{x} V(t, x)
$$

## LQR control in continuous-time

The HJB equation for this problem is

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in \mathbb{R}^{m}}\left(\frac{1}{2} x^{\boldsymbol{\top}} Q(t) x+\frac{1}{2} u^{\top} R(t) u+\nabla_{x} V(t, x)^{\top}(A(t) x+B(t) u)\right)
$$

with boundary condition $V(T, x)=\frac{1}{2} x^{\top} Q_{T} x$.
Take the derivative with respect to $u$ and set it equal to zero to get

$$
u=-R(t)^{-1} B(t)^{\top} \nabla_{x} V(t, x)
$$

Substitute this back into the HJB equation and rearrange to get

$$
\frac{\partial V}{\partial t}(t, x)=\frac{1}{2} \nabla_{x} V(t, x)^{\boldsymbol{\top}} B(t) R(t)^{-1} B(t)^{\top} \nabla_{x} V(t, x)-x^{\boldsymbol{\top}} A(t)^{\top} \nabla_{x} V(t, x)-\frac{1}{2} x^{\top} Q(t) x,
$$

which must hold for all $(t, x)$ with boundary condition $V(T, x)=\frac{1}{2} x^{\top} Q_{T} x$.

## LQR control in continuous-time

Substitute this back into the HJB equation and rearrange to get

$$
\frac{\partial V}{\partial t}(t, x)=\frac{1}{2} \nabla_{x} V(t, x)^{\boldsymbol{\top}} B(t) R(t)^{-1} B(t)^{\top} \nabla_{x} V(t, x)-x^{\boldsymbol{\top}} A(t)^{\top} \nabla_{x} V(t, x)-\frac{1}{2} x^{\top} Q(t) x,
$$

which must hold for all $(t, x)$ with boundary condition $V(T, x)=\frac{1}{2} x^{\top} Q_{T} x$.
Based on the boundary condition, let us make the ansatz $V(t, x)=\frac{1}{2} x^{\top} P(t) x$, where $P(t)$ is symmetric positive-definite. Then the HJB equation becomes

$$
\begin{aligned}
\frac{1}{2} x \dot{P}(t) x & =\frac{1}{2} x^{\boldsymbol{\top}} P(t) B(t) R(t)^{-1} B(t)^{\top} P(t) x-x^{\boldsymbol{\top}} A(t)^{\top} P(t) x-\frac{1}{2} x^{\top} Q(t) x \\
& =\frac{1}{2} x^{\boldsymbol{\top}}\left(P(t) B(t) R(t)^{-1} B(t)^{\top} P(t)-P(t) A(t)-A(t)^{\top} P(t)-Q(t)\right) x
\end{aligned}
$$

This must hold for all $(t, x)$, so $P(t)$ must satisfy the continuous-time Riccati equation

$$
\dot{P}(t)=P(t) B(t) R(t)^{-1} B(t)^{\top} P(t)-P(t) A(t)-A(t)^{\top} P(t)-Q(t),
$$

which is an ODE that can be solved backwards in time from $P(T)=Q_{T}$.

## LQR control in continuous-time

The value function is $V(t, x)=\frac{1}{2} x^{\top} P(t) x$, where $P(t) \succ 0$ must satisfy the continuous-time Riccati equation

$$
\dot{P}(t)=P(t) B(t) R(t)^{-1} B(t)^{\top} P(t)-P(t) A(t)-A(t)^{\top} P(t)-Q(t),
$$

which is an ODE that can be solved backwards in time from $P(T)=Q_{T}$.
The optimal control is

$$
u^{*}=-R(t)^{-1} B(t)^{\top} \nabla_{x} V(t, x)=\underbrace{-R(t)^{-1} B(t)^{\top} P(t)}_{=: K(t)} x
$$

which is a linear feedback policy.
Recall that in the discrete-time case we had to solve the discrete-time Riccati equation

$$
P_{t}=Q_{t}+A_{t}^{\top} P_{t+1} A_{t}-A_{t}^{\top} P_{t+1} B_{t}\left(R_{t}+B_{t}^{\top} P_{t+1} B_{t}\right)^{-1} B_{t}^{\top} P_{t+1} A_{t}
$$

recursively from the boundary condition $P_{T}=Q_{T}$. The optimal control input in this case was $u^{*}=K_{t} x$ with $K_{t}:=-\left(R_{t}+B_{t}^{\top} P_{t+1} B_{t}\right)^{-1} B_{t}^{\top} P_{t+1} A_{t}$.

## Agenda

1. The Bellman equation as a sufficient optimality condition
2. Continuous-time dynamic programming and the HJB equation
3. LQR control in continuous-time
4. Non-smooth value functions

## Non-smooth value functions

Recall that in deriving the HJB equation we assumed that $V(t, x)$ is $\mathcal{C}^{1}$-smooth with respect to $t$ and $x$. However, this is often not true, particularly for problems with bounded control and a terminal cost.

As an example, consider the scalar problem

$$
\begin{aligned}
\underset{u}{\operatorname{minimize}} & x(T) \\
\text { subject to } & \dot{x}(t)=x(t) u(t), \forall t \in[0, T] \\
& u(t) \in[-1,1], \forall t \in[0, T]
\end{aligned}
$$

By inspection,

$$
u^{*}=\left\{\begin{array}{ll}
1, & x<0 \\
?, & x=0 \\
-1, & x>0
\end{array} \Longrightarrow \dot{x}^{*}=\left\{\begin{array}{ll}
x, & x<0 \\
0, & x=0 \\
-x, & x>0
\end{array} \Longrightarrow x^{*}(t)= \begin{cases}e^{t-t_{0}} x_{0}, & x_{0}<0 \\
0, & x_{0}=0 \\
e^{-\left(t-t_{0}\right)} x_{0}, & x_{0}>0\end{cases}\right.\right.
$$

## Non-smooth value functions

As an example, consider the scalar problem

$$
\begin{aligned}
\underset{u}{\operatorname{minimize}} & x(T) \\
\text { subject to } & \dot{x}(t)=x(t) u(t), \forall t \in[0, T] \\
& u(t) \in[-1,1], \forall t \in[0, T]
\end{aligned}
$$

The value function is

$$
V(t, x)= \begin{cases}e^{T-t} x, & x<0 \\ 0, & x=0 \\ e^{-(T-t)} x, & x>0\end{cases}
$$

which is not $\mathcal{C}^{1}$-smooth, but it does satisfy the HJB equation

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in[-1,1]} \nabla_{x} V(t, x) x u=-\left|\nabla_{x} V(t, x) x\right|
$$

away from $x=0$, with boundary condition $V(T, x)=x$.

$V(t, x)$ for fixed $t$.

## Non-smooth value functions

It turns out that the HJB equation

$$
-\frac{\partial V}{\partial t}(t, x)=\inf _{u \in \mathcal{U}}\left(\ell(t, x, u)+\nabla_{x} V(t, x)^{\top} f(t, x, u)\right)
$$

with boundary condition $V(T, x)=\ell_{T}(x)$ can have non-smooth solutions. However, we must reinterpret what we mean by a solution.

We say $V$ is a viscosity solution to the HJB if for each $(t, x)$ we have

$$
\begin{aligned}
& -\frac{\partial \bar{\varphi}}{\partial t}(t, x)-\inf _{u \in \mathcal{U}}\left(\ell(t, x, u)+\nabla_{x} \bar{\varphi}(t, x)^{\top} f(t, x, u)\right) \leq 0 \\
& -\frac{\partial \varphi}{\partial t}(t, x)-\inf _{u \in \mathcal{U}}\left(\ell(t, x, u)+\nabla_{x} \underline{\varphi}(t, x)^{\top} f(t, x, u)\right) \geq 0
\end{aligned}
$$

for all $\mathcal{C}^{1}$-smooth test functions $\bar{\phi}$ and $\phi$ such that $\bar{\varphi}-V$ has a local minimum at $(t, x)$ and $\underline{\varphi}-V$ has a local maximum at $(t, x)$. More details can be found in (Liberzon, 2012, §5.3).

With appropriate technical assumptions on $f, \ell, \ell_{T}$, and $\mathcal{U}$, the value function $V$ is the unique viscosity solution of the HJB equation and it is locally Lipschitz.

## Next class

System identification and adaptive control

## References

D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, 2012.

