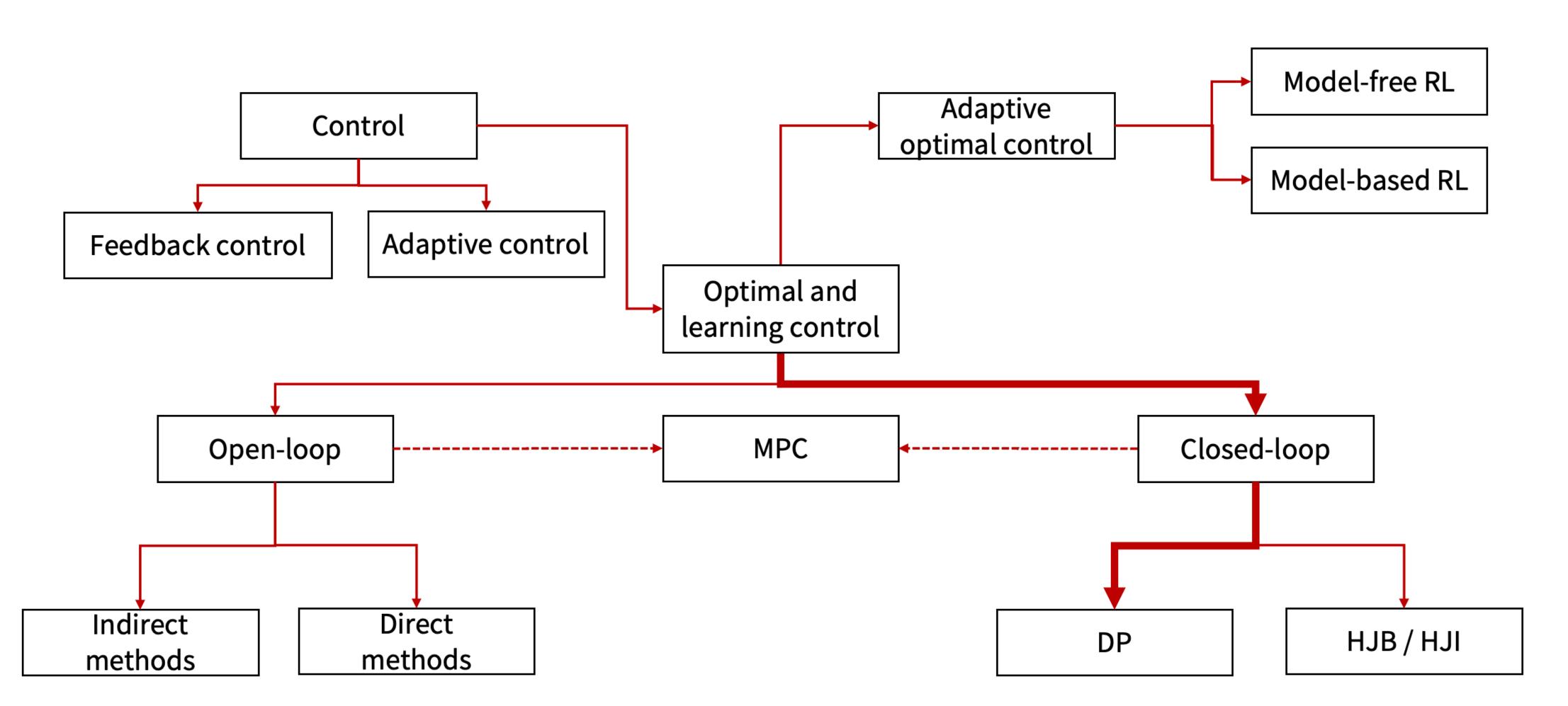
AA203 Optimal and Learning-based Control Lecture 6 Stochastic Dynamic Programming

Autonomous Systems Laboratory Daniele Gammelli

Autonomous Systems Laboratory Stanford Aeronautics & Astronautics

Roadmap



Outline

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:

- Exact Methods:
 - (Policy Evaluation)
 - Value Iteration
 - Policy Iteration

Stochastic Optimal Control Problem: Markov Decision Problem (MDP)

- **System**: $x_{k+1} = f_k(x_k, u_k, w_k), k = 0, ..., N-1$
- Probability distribution: $w_k \sim P_k \left(\cdot | x_k, u_k \right)$
- Control constraints: $u_k \in U(x_k)$
- Policies: $\pi = \{\pi_0, ..., \pi_{N-1}\}$, where $u_k = \pi_k(x_k)$
- Expected Cost:

$$J_{\pi}(\boldsymbol{x}_{0}) = \mathbb{E}_{\boldsymbol{w}_{k}, k=0,\dots,N-1}$$

Stochastic Optimal Control Problem:

$$J^*(x_0)$$

$$\left[g_N(\boldsymbol{x}_N) + \sum_{k=0}^{N-1} g_k(\boldsymbol{x}_k, \pi_k(\boldsymbol{x}_k), \boldsymbol{w}_k)\right]$$

$$= \min_{\pi} J_{\pi} \left(x_0 \right)$$

AA203 | Lecture 6

Key points

- Discrete-time model
- Markovian model
- Objective: find optimal **closed-loop** policy
- Additive cost (central assumption in DP)
- Risk-neutral formulation

Other communities use different notation: [Powell, W. B. *AI, OR and control theory: A Rosetta Stone for stochastic optimization.* Princeton University, 2012.]

Principle of optimality (stochastic case)

Principle of optimality:

- Let $\pi^* := \left\{ \pi_0^*, \pi_1^*, ..., \pi_{N-1}^* \right\}$ be an optimal policy
- Consider the tail subproblem

 $\mathbb{E}_{w_k} \mid g_N(\boldsymbol{x}_N)$

the tail policy $\left\{\pi_i^*, \ldots, \pi_{N-1}^*\right\}$ is optimal for the tail subproblem

Intuition:

- DP first solves ALL tail subproblems at the final stage
- At the generic step, it solves ALL tail subproblems of a given time length, using solution of tail subproblems of shorter length

$$+\sum_{k=i}^{N-1}g_k\left(\boldsymbol{x}_k,\pi_k\left(\boldsymbol{x}_k\right),\boldsymbol{w}_k\right)\right]$$

AA203 | Lecture 6

DP Algorithm (stochastic case)

Like in the deterministic case, start with:

and iterate backwards in time using

$$J_k^*\left(\boldsymbol{x}_k\right) = \min_{\boldsymbol{u}_k \in U(\boldsymbol{x}_k)} \mathbb{E}_{w_k}\left[g_k\left(\boldsymbol{x}_k, \boldsymbol{u}_k, \boldsymbol{w}_k\right) + J_{k+1}^*\left(f\left(\boldsymbol{x}_k, \boldsymbol{u}_k, \boldsymbol{w}_k\right)\right)\right], \quad k = 0, \dots, N-1$$

for which the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0(\mathbf{x}_0)$ and the optimal policy is constructed by setting

$$\pi_{k}^{*}\left(\boldsymbol{x}_{k}\right) = \operatorname*{argmin}_{\boldsymbol{u}_{k}\in U(\boldsymbol{x}_{k})} \mathbb{E}_{w_{k}}\left[g_{k}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) + J_{k+1}^{*}\left(f\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right)\right)\right]$$

$$\left(x_{N}\right)=g_{N}\left(x_{N}\right)$$

 J_N^*

Example: Inventory Control Problem

- $x_k \in \mathbb{N}$: stock available
- $u_k \in \mathbb{N}$: inventory
- $w_k \in \mathbb{N}$: demand

Dynamics: Constraints:

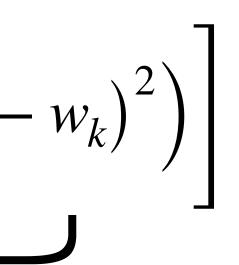
$$x_{k+1} = \max\left(0, x_k + u_k - w_k\right)$$
$$x_k + u_k \le 2$$

Probabilistic structure:

$$p(w_k = 0) = 0.1$$

 $p(w_k = 1) = 0.7$
 $p(w_k = 2) = 0.2$

 $\mathbb{E}_{w_k} \left[0 + \sum_{k=1}^{2} \left(u_k + \left(x_k + u_k - w_k \right)^2 \right) \right]$ **Objective:** k=0 $g_3(x_3)$ $g_k(x_k, u_k, w_k)$



More generally, could imagine costs: $H(x_k)$: holding inventory $B(u_k)$: buying inventory $S(x_k, u_k, w_k)$: selling (matching stock with demand)

Example: Inventory Control Problem

Algorithm takes the form

$$J_{k}^{*}(x_{k}) = \min_{0 \le u_{k} \le 2-x_{k}} \mathbb{E}_{w_{k}} \left[u_{k} + (x_{k} + u_{k} - w_{k})^{2} + J_{k+1}^{*} \left(\max \left(0, x_{k} + u_{k} - w_{k} \right) \right) \right]$$

for k = 0, 1, 2

For example

$$J_{2}^{*}(0) = \min_{u_{2}=0,1,2} \mathbb{E}_{w_{2}} \left[u_{2} + (u_{2} - w_{2})^{2} \right] = \min_{u_{2}=0,1,2} u_{2} + 0.1 (u_{2})^{2} + 0.7 (u_{2} - 1)^{2} + 0.2 (u_{2} - 2)^{2}$$

 $u_2 = 0, 1, 2$

Which yields $J_2^*(0) = 1.3$ and $\pi_2^*(0) = 1$

Example: Inventory Control Problem

Final solution:

 $J_0^*(0) = 3.7$ $J_0^*(1) = 2.7$ $J_0^*(2) = 2.818$

(See this <u>spreadsheet</u>)

Stochastic LQR

Find control policy that minimizes

$$\mathbb{E}_{w_k}\left[\frac{1}{2}\boldsymbol{x}_N^T \boldsymbol{Q} \boldsymbol{x}_N + \frac{1}{2}\sum_{k=0}^{N-1} \left(\boldsymbol{x}_k^T \boldsymbol{Q}_k \boldsymbol{x}_k + \boldsymbol{u}_k^T \boldsymbol{R}_k \boldsymbol{u}_k\right)\right]$$

Subject to

• Dynamics $\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k + \mathbf{w}_k$, $k \in \{0, 1, ..., N-1\}$

with
$$x_0 \sim \mathcal{N}\left(\overline{x_0}, \Sigma_{x_0}\right), \left\{w_k \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{w_k}\right)\right\}$$
 indepen

ndent and Gaussian vectors

AA203 | Lecture 6

Stochastic LQR

As in the deterministic case, with $J_{k+1}^*(\mathbf{x}_{k+1}) = \frac{1}{2}\mathbf{x}_{k+1}^T P_{k+1}\mathbf{x}_{k+1}$

$$J_{k}^{*}(\mathbf{x}_{k+1}) = \min_{\mathbf{u}_{k}} \mathbb{E}_{\mathbf{w}_{k}} \left[g_{k}(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k}) + J_{k+1}^{*} \left(f(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k}) \right) \right] \\ = \min_{\mathbf{u}_{k}} \frac{1}{2} \mathbb{E}_{\mathbf{w}_{k}} \left[\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k} + (A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k} + \mathbf{w}_{k})^{T} P_{k+1} \left(A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k} + \mathbf{w}_{k} \right) \right] \\ = \min_{\mathbf{u}_{k}} \frac{1}{2} \mathbb{E}_{\mathbf{w}_{k}} \left[\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k} + (A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k})^{T} P_{k+1} \left(A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k} \right) \right] \\ = 2 \left(A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k} \right)^{T} P_{k+1} \mathbf{w}_{k} + \mathbf{w}_{k}^{T} P_{k+1} \mathbf{w}_{k} \right] \\ = \min_{\mathbf{u}_{k}} \frac{1}{2} \left(\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k} + (A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k})^{T} P_{k+1} \left(A_{k} \mathbf{x}_{k} + B_{k} \mathbf{u}_{k} \right) + \operatorname{tr} \left(P_{k+1} \Sigma_{\mathbf{w}_{k}} \right) \right)$$

- The optimal policy is the same as in the deterministic case

• The optimal cost to go is increased by some constant related to the magnitude of the noise (on which we have no control on)

Infinite Horizon MDPs

State:	$x \in \mathscr{X}$
Action:	$u \in \mathcal{U}$
Transition function / Dynamics:	$T\left(x_t \mid x_{t-1}, u_{t-1}\right)$
Reward function:	$r_t = R(x_t, u_t) : \mathcal{X}$
Discount factor:	$\gamma \in (0,1)$
Stationary policy:	$u_t = \pi(x_t)$

Goal: choose a policy that maximizes cumulative (discounted) reward

$$\pi^* = \arg \max_{\pi} \mathbb{E}_p \left[\sum_{t \ge 0} \gamma^t R\left(x_t, \pi\left(x_t \right) \right) \right]$$

$$P = p \left(x_t \mid x_{t-1}, u_{t-1} \right)$$
$$C \times \mathcal{U} \to \mathbb{R}$$

Typically represented as a tuple

 $\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma)$

Value functions

State-value function: "the expected total reward if we start in that state and act accordingly to a particular policy"

Action-state value function: "the expected total reward if we start in that state, take an action, and act accordingly to a particular policy"

Optimal state-value function $V^*(x) = \max_{\pi} V_{\pi}(x)$ Optimal action-state value function $Q^*(x, u) = \max_{\pi} Q_{\pi}(x, u)$

$$V_{\pi}(x) = \mathbb{E}_{p} \left[\sum_{t \ge 0} \gamma^{t} R\left(x_{t}, \pi\left(x_{t}\right)\right) \right]$$
$$Q_{\pi}(x, u) = \mathbb{E}_{p} \left[\sum_{t \ge 0} \gamma^{t} R\left(x_{t}, u_{t}\right) \right]$$

Bellman Equations

Value functions can be decomposed into immediate reward plus discounted value of successor state

$$\begin{aligned} \mathbf{V}_{\pi}\left(x_{t}\right) &= \mathbb{E}_{\pi}\left[R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \mathbf{V}_{\pi}\left(x_{t+1}\right)\right] & \text{Bellman Expectation Equation} \\ &= R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_{t}, \pi\left(x_{t}\right)\right) \mathbf{V}_{\pi}\left(x_{t+1}\right) \end{aligned}$$

Similarly, also optimal value function can be decomposed as:

$$V^{*}(x_{t}) = \max_{u} \left(R(x_{t}, u_{t}) + \gamma \sum_{x_{t+1} \in X} T(x_{t+1} \mid x_{t}, u_{t}) V^{*}(x_{t+1}) \right)$$

Bellman Optimality Equation

Three paradigms that rely on DP

For *prediction*:

• Policy Evaluation: "given a policy π , find the value function $V_{\pi}(x)$, i.e., how good is that policy?"

For *control*:

- Policy Iteration: leverages policy evaluation as an inner loop to find the optimal policy
- Value Iteration: applies Bellman's optimality equation to compute the optimal value function

Policy Evaluation

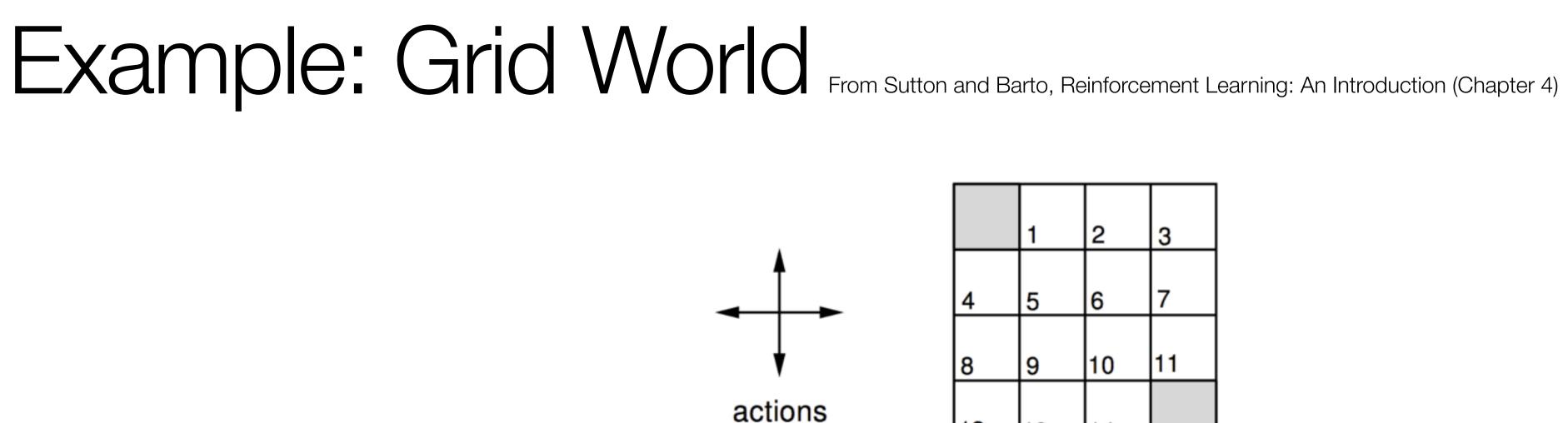
Problem: evaluate a given policy π **Solution:** iterative application of Bellman expectation backup $(V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_{\pi})$

- At each iteration k+1
- For all states $x \in X$
- Update $V_{k+1}(x)$ from $V_k(x)$ through

$$\mathbf{V}_{k+1}\left(x_{t}\right) = R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_{t}, \pi\left(x_{t}\right)\right) \mathbf{V}_{k}\left(x_{t+1}\right)$$

• This sequence is proven to converge to V_{π}

Bellman Expectation Equation



- Nonterminal states 1, ..., 14. Terminal states as shaded squared
- Reward is -1 until the terminal state is reached
- Controls leading out of the grid leave state unchanged
- Undiscounted MDP ($\gamma = 1$)
- We want to evaluate a uniform random policy

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

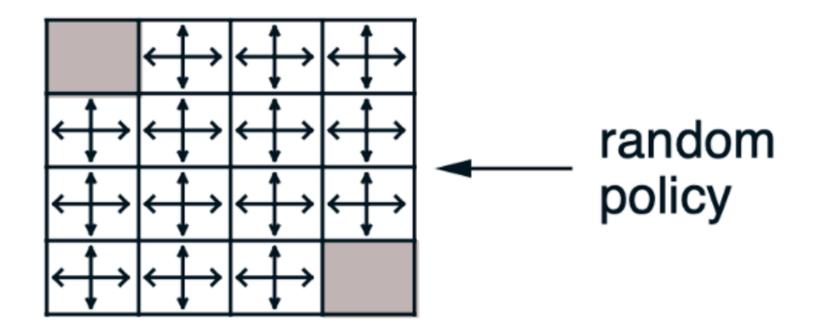
0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

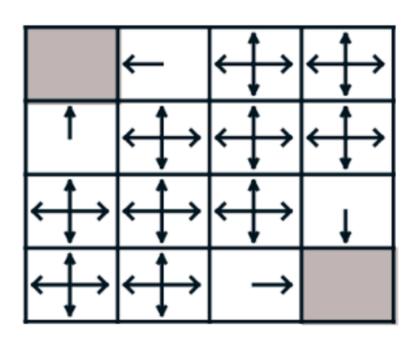
k = 0

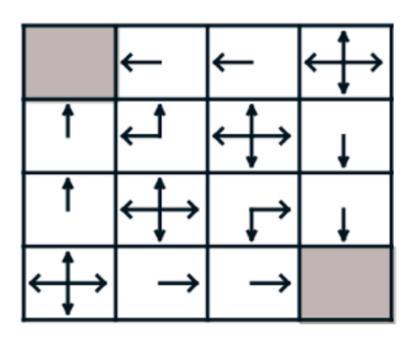
k = 1

k = 2

 $V_k(x)$ for the random policy Greedy policy w.r.t. $V_k(x)$







$V_k(x)$ for the random policy Greedy policy w.r.t. $V_k(x)$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0
	-2.4 -2.9	-2.4 -2.9 -2.9 -3.0	0.0 -2.4 -2.9 -2.4 -2.9 -3.0 -2.9 -3.0 -2.9 -3.0 -2.9 -2.4

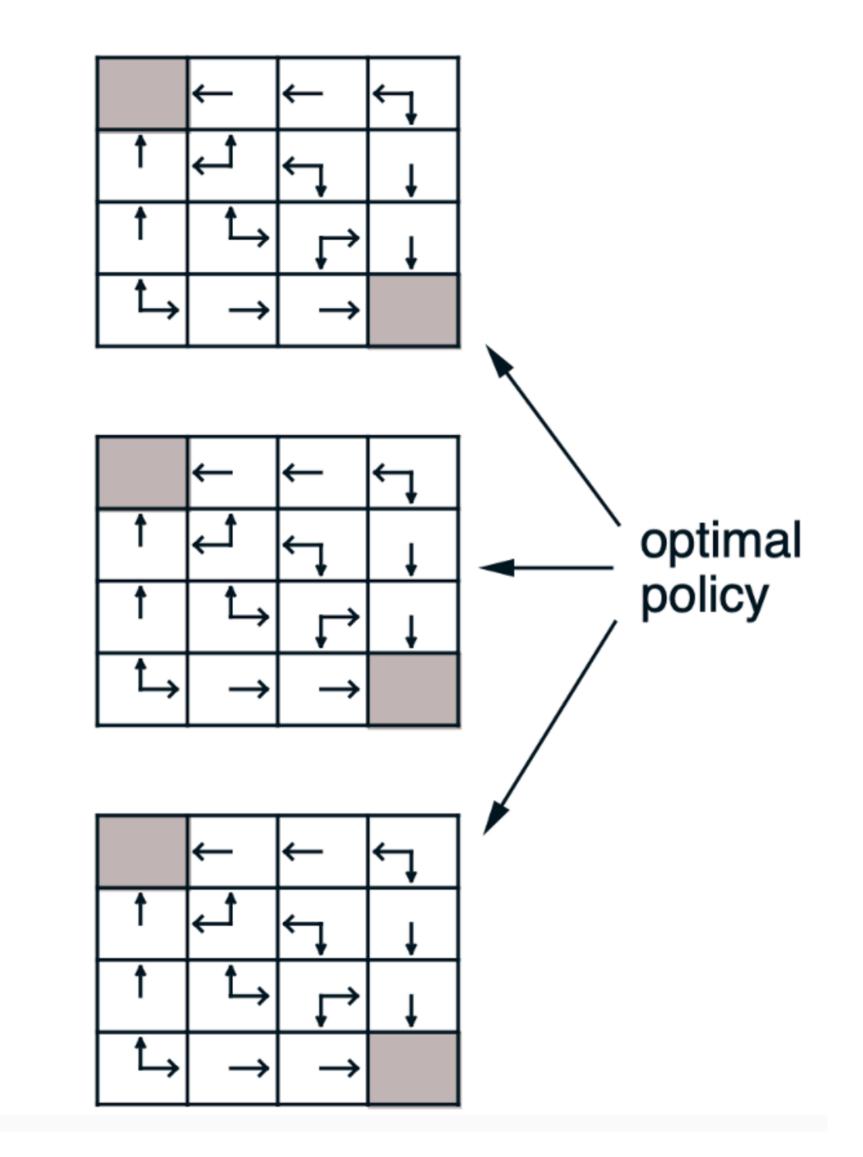
0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

k = 3

k = 10

 $k = \infty$



Some technical questions

- How do we know that iterative policy evaluation converges to V^{π} ?
- Is the solution unique?
- How fast does this algorithm converge?

These questions are resolved by the contraction mapping theorem

Sketch of proof:

- Def: ∞ -norm $\|\mathbf{u} \mathbf{v}\|_{\infty} = \max_{x \in \mathcal{X}} |\mathbf{u}(x) \mathbf{v}(x)|$, i.e. the largest difference between state values
- Def: an update operation is a γ -contraction if $||U_{i+1} V_{i+1}||| \le ||U_i V_i||, \forall U_i, V_i|$
- Theorem: a γ -contraction converges to a unique fixed point, no matter the initialization, at a linear convergence rate of γ
- Fact: the policy evaluation operator is a γ -contraction in ∞ -norm
- Corollary: policy evaluation converges to a unique fixed point

Policy Iteration

Given policy π

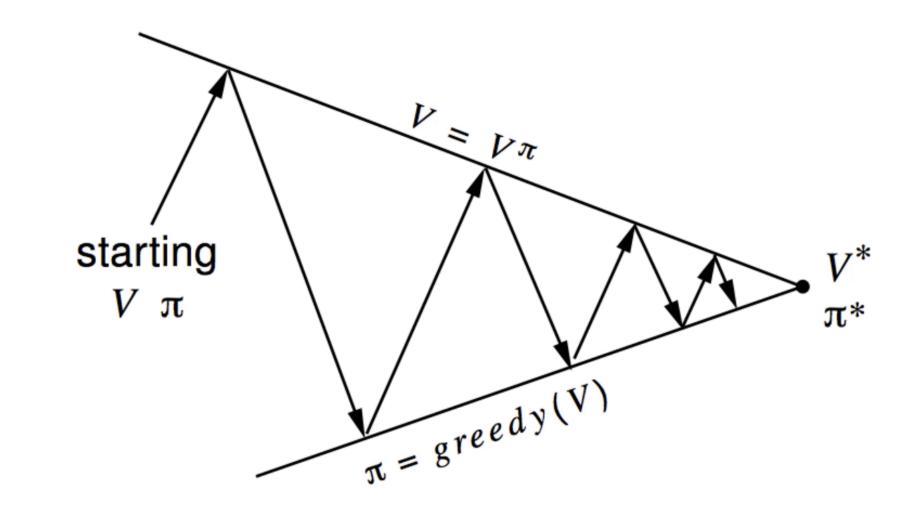
Evaluate the policy π

$$V_{k+1}(x_t) = R\left(x_t, \pi\left(x_t\right)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_t, \pi\left(x_t\right)\right) V_k(x_{t+1})$$

Improve the policy π by acting greedily w.r.t. V_{π}

$$\pi_{k+1}(x) = \arg\max_{u} \left(R(x, u) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T\left(x_{t+1} \mid x_t, u_t\right) V_{k+1}\left(x_{t+1}\right) \right)$$

- This process always converges to the optimal policy



• In general, policy iteration requires more iterations of evaluation / improvement (in our small Grid World, one was sufficient)

Policy Improvement

- Given a deterministic policy $\pi(x)$
- We can improve the policy by acting greedily w.r.t. the current value function

 $\pi'(x)$

• Consider the one step decision, where we use π' for one step and then act accordingly to the old policy π

$$q_{\pi}\left(s, \pi'(s)\right) = \max_{a \in \mathscr{A}} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

$$= \operatorname*{argmax}_{u \in \mathscr{U}} q_{\pi}(x, u)$$

• If we repeat the same reasoning for all following steps, we can see how this improves the value function $v_{\pi'}(x) \ge v_{\pi}(x)$

Value Iteration

Problem: find the optimal policy π^* **Solution:** iterative application of Bellman optimality backu

- At each iteration k+1
- For all states x∈X
- Update $V_{k+1}(x)$ from $V_k(x)$ through

$$V_{k+1}^{*}(x_{t}) = \max_{u} \left(R(x_{t}, u_{t}) + \gamma \sum_{x_{t+1} \in X} T(x_{t+1} \mid x_{t}, u_{t}) V_{k}^{*}(x_{t+1}) \right)$$

- This sequence is proven to converge to V^{*}

$$\mathsf{Jp} \ (V_1 \! \rightarrow \! V_2 \! \rightarrow \! \dots \! \rightarrow \! V_\pi^*)$$

Bellman Optimality Equation

Exercise from Pieter Abbeel, CS287

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1) γ = 0.1, noise = 0.5

(2) γ = 0.99, noise = 0

(3) γ = 0.99, noise = 0.5

(4) γ = 0.1, noise = 0

Recap

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative
Frediction	Demnan Expectation Equation	Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

All of these formulations require a model of the MDP!

Outline

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:

- Exact Methods:
 - (Policy Evaluation)
 - Value Iteration
 - Policy Iteration

Next time

- Nonlinear LQR for tracking
- iLQR
- DDP

