
AA203 Optimal and Learning-based Control
Lecture 6

Stochastic Dynamic Programming

Autonomous Systems Laboratory
Daniele Gammelli

AA203 | Lecture 64/19/2023 2

Roadmap

AA203 | Lecture 64/19/2023

Outline

3

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:
• Exact Methods:

• (Policy Evaluation)
• Value Iteration
• Policy Iteration

AA203 | Lecture 64/19/2023 4

Stochastic Optimal Control Problem:
Markov Decision Problem (MDP)

• System:

• Probability distribution:

• Control constraints:

• Policies:

• Expected Cost:

Stochastic Optimal Control Problem:

xk+1 = fk (xk, uk, wk), k = 0,…, N − 1

wk ∼ Pk (⋅ ∣ xk, uk)
uk ∈ U (xk)

π = {π0…, πN−1}, where uk = πk (xk)

J* (x0) = min
π

Jπ (x0)

Jπ (x0) = 𝔼wk,k=0,…,N−1 [gN (xN) +
N−1

∑
k=0

gk (xk, πk (xk), wk)]

AA203 | Lecture 64/19/2023 5

Key points
• Discrete-time model
• Markovian model
• Objective: find optimal closed-loop policy
• Additive cost (central assumption in DP)
• Risk-neutral formulation

Other communities use different notation:
[Powell, W. B. AI, OR and control theory: A Rosetta Stone for stochastic optimization. Princeton
University, 2012.]

AA203 | Lecture 64/19/2023 6

Principle of optimality (stochastic case)

Intuition:
• DP first solves ALL tail subproblems at the final stage
• At the generic step, it solves ALL tail subproblems of a given time length, using solution of tail

subproblems of shorter length

Principle of optimality:

• Let be an optimal policy
• Consider the tail subproblem

the tail policy is optimal for the tail subproblem

π* := {π*0 , π*1 , …, π*N−1}

{π*i , …, π*N−1}

𝔼wk [gN (xN) +
N−1

∑
k=i

gk (xk, πk (xk), wk)]

AA203 | Lecture 64/19/2023 7

DP Algorithm (stochastic case)
Like in the deterministic case, start with:

J*k (xk) = min
uk∈U(xk)

𝔼wk [gk (xk, uk, wk) + J*k+1 (f (xk, uk, wk))], k = 0,…, N − 1

π*k (xk) = argmin
uk∈U(xk)

𝔼wk [gk (xk, uk, wk) + J*k+1 (f (xk, uk, wk))]

J*N (xN) = gN (xN)
and iterate backwards in time using

for which the optimal cost is equal to and the optimal policy is constructed by setting J*(x0) J0(x0)

AA203 | Lecture 64/19/2023 8

Example: Inventory Control Problem
: stock available
: inventory
: demand

xk ∈ ℕ
uk ∈ ℕ
wk ∈ ℕ

Dynamics:
Constraints:

Probabilistic structure:

Objective:

xk+1 = max (0,xk + uk − wk)
xk + uk ≤ 2

𝔼wk [0 +
2

∑
k=0

(uk + (xk + uk − wk)2)]

p(wk = 0) = 0.1
p(wk = 1) = 0.7
p(wk = 2) = 0.2

More generally, could imagine costs:
: holding inventory
: buying inventory

: selling (matching stock with demand)

H(xk)
B(uk)
S(xk, uk, wk)

}
gk(xk, uk, wk)

}
g3(x3)

AA203 | Lecture 64/19/2023 9

Example: Inventory Control Problem
Algorithm takes the form

for k = 0,1,2

For example
J*2 (0) = min

u2=0,1,2
𝔼w2 [u2 + (u2 − w2)2] =

min
u2=0,1,2

u2 + 0.1 (u2)2 + 0.7 (u2 − 1)2 + 0.2 (u2 − 2)2

Which yields and J*2 (0) = 1.3 π*2 (0) = 1

J*k (xk) = min
0≤uk≤2−xk

𝔼wk [uk + (xk + uk − wk)2 + J*k+1 (max (0,xk + uk − wk))]

AA203 | Lecture 64/19/2023 10

Example: Inventory Control Problem
Final solution:

J*0 (0) = 3.7
J*0 (1) = 2.7
J*0 (2) = 2.818

(See this spreadsheet)

https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit#gid=0

AA203 | Lecture 64/19/2023 11

Find control policy that minimizes

𝔼wk [1
2

xT
NQxN +

1
2

N−1

∑
k=0

(xT
k Qkxk + uT

k Rkuk)]

Stochastic LQR

Subject to

• Dynamics

with independent and Gaussian vectors

xk+1 = Akxk + Bkuk + wk, k ∈ {0,1,…, N − 1}

x0 ∼ 𝒩 (x0, Σx0), {wk ∼ 𝒩 (0, Σwk)}

AA203 | Lecture 64/19/2023 12

Stochastic LQR
As in the deterministic case, with

• The optimal cost to go is increased by some constant related to the magnitude of the noise (on which we have no control on)
• The optimal policy is the same as in the deterministic case

J*k+1 (xk+1) =
1
2

xT
k+1Pk+1xk+1

J*k (xk+1) = min
uk

𝔼wk [gk (xk, uk, wk) + J*k+1 (f (xk, uk, wk))]
= min

uk

1
2

𝔼wk [xT
kQkxk + uT

k Rkuk + (Akxk + Bkuk + wk)T Pk+1 (Akxk + Bkuk + wk)]
= min

uk

1
2

𝔼wk [xT
kQkxk + uT

k Rkuk + (Akxk + Bkuk)T Pk+1 (Akxk + Bkuk)
2 (Akxk + Bkuk)T Pk+1wk + wT

k Pk+1wk]
= min

uk

1
2 (xT

kQkxk + uT
k Rkuk + (Akxk + Bkuk)T Pk+1 (Akxk + Bkuk) + tr (Pk+1Σwk))

AA203 | Lecture 64/19/2023 13

Infinite Horizon MDPs

State:

Action:

Transition function / Dynamics: T (xt ∣ xt−1, ut−1) = p (xt ∣ xt−1, ut−1)
u ∈ 𝒰
x ∈ 𝒳

Reward function: rt = R(xt, ut) : 𝒳 × 𝒰 → ℝ
Discount factor: γ ∈ (0,1)

Typically represented as a tuple
ℳ = (𝒳, 𝒰, T, R, γ)

Goal: choose a policy that maximizes cumulative (discounted) reward

Stationary policy: ut = π(xt)

π* = arg max
π

𝔼p ∑
t≥0

γtR (xt, π (xt))

AA203 | Lecture 64/19/2023 14

Value functions

Optimal state-value function

Vπ(x) = 𝔼p ∑
t≥0

γtR (xt, π (xt))

Qπ(x, u) = 𝔼p ∑
t≥0

γtR (xt, ut)

V*(x) = max
π

Vπ(x)

Q*(x, u) = max
π

Qπ(x, u)Optimal action-state value function

State-value function: “the expected total reward if we start in that state and act
accordingly to a particular policy”

Action-state value function: “the expected total reward if we start in that state, take
an action, and act accordingly to a particular policy”

AA203 | Lecture 64/19/2023 15

Bellman Equations
Value functions can be decomposed into immediate reward plus discounted value of successor state

Vπ (xt) = 𝔼π [R (xt, π (xt)) + γVπ (xt+1)]
= R (xt, π (xt)) + γ ∑

xt+1∈X

T (xt+1 ∣ xt, π (xt)) Vπ (xt+1)
Bellman Expectation Equation

V* (xt) = max
u

R (xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) V* (xt+1)

Similarly, also optimal value function can be decomposed as:
Bellman Optimality Equation

AA203 | Lecture 64/19/2023 16

Three paradigms that rely on DP
For prediction:
• Policy Evaluation: “given a policy , find the value function , i.e., how good is that policy?”

For control:
• Policy Iteration: leverages policy evaluation as an inner loop to find the optimal policy

• Value Iteration: applies Bellman’s optimality equation to compute the optimal value function

π Vπ(x)

AA203 | Lecture 64/19/2023 17

Problem: evaluate a given policy
Solution: iterative application of Bellman expectation backup (→ →…→)

• At each iteration k+1
• For all states x∈X
• Update from through

• This sequence is proven to converge to

π
V1 V2 Vπ

Vk+1(x) Vk(x)

Vπ

Vk+1 (xt) = R (xt, π (xt)) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, π (xt)) Vk (xt+1)

Policy Evaluation

Bellman Expectation Equation

AA203 | Lecture 64/19/2023 18

Example: Grid World

• Nonterminal states 1, …, 14. Terminal states as shaded squared
• Reward is -1 until the terminal state is reached
• Controls leading out of the grid leave state unchanged
• Undiscounted MDP ()
• We want to evaluate a uniform random policy

γ = 1

From Sutton and Barto, Reinforcement Learning: An Introduction (Chapter 4)

AA203 | Lecture 64/19/2023 19

AA203 | Lecture 64/19/2023 20

AA203 | Lecture 64/19/2023 21

Some technical questions
• How do we know that iterative policy evaluation converges to ?
• Is the solution unique?
• How fast does this algorithm converge?

These questions are resolved by the contraction mapping theorem

Vπ

Sketch of proof:

• Def: -norm , i.e. the largest difference between state values

• Def: an update operation is a -contraction if
• Theorem: a -contraction converges to a unique fixed point, no matter the initialization, at a linear

convergence rate of
• Fact: the policy evaluation operator is a -contraction in -norm
• Corollary: policy evaluation converges to a unique fixed point

∞ ∥u − v∥∞ = max
x∈𝒳

|u(x) − v(x) |

γ ∥Ui+1 − Vi+1 |∥ ≤ ∥Ui − Vi∥, ∀Ui, Vi
γ

γ
γ ∞

AA203 | Lecture 64/19/2023 22

Policy Iteration
Given policy

Evaluate the policy

Improve the policy by acting greedily w.r.t.

• In general, policy iteration requires more iterations of evaluation / improvement (in our small Grid World, one was sufficient)
• This process always converges to the optimal policy

π

π

π Vπ

Vk+1 (xt) = R (xt, π (xt)) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, π (xt)) Vk (xt+1)

πk+1(x) = arg max
u

R(x, u) + γ ∑
xt+1∈𝒳

T (xt+1 ∣ xt, ut) Vk+1 (xt+1)

AA203 | Lecture 64/19/2023 23

Policy Improvement
• Given a deterministic policy
• We can improve the policy by acting greedily w.r.t. the current value function

• Consider the one step decision, where we use for one step and then act accordingly to the old policy

• If we repeat the same reasoning for all following steps, we can see how this improves the value function

π(x)

π′ π

vπ′
(x) ≥ vπ(x)

π′ (x) = argmax
u∈𝒰

qπ(x, u)

qπ (s, π′ (s)) = max
a∈𝒜

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s)

AA203 | Lecture 64/19/2023 24

Value Iteration
Problem: find the optimal policy
Solution: iterative application of Bellman optimality backup (→ →…→)

• At each iteration k+1
• For all states x∈X
• Update from through

• This sequence is proven to converge to

π*
V1 V2 V*π

Vk+1(x) Vk(x)

V*

Bellman Optimality Equation

V*k+1 (xt) = max
u

R (xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) V*k (xt+1)

AA203 | Lecture 64/19/2023 25

Exercise from Pieter Abbeel, CS287

AA203 | Lecture 64/19/2023 26

Recap

All of these formulations require a model of the MDP!

AA203 | Lecture 64/19/2023

Outline

3

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:
• Exact Methods:

• (Policy Evaluation)
• Value Iteration
• Policy Iteration

AA203 | Lecture 64/19/2023 28

Next time

• Nonlinear LQR for tracking
• iLQR
• DDP

