
AA203 Optimal and Learning-based Control
Lecture 18

Model-based Policy Learning

Autonomous Systems Laboratory
Daniele Gammelli

AA203 | Lecture 175/31/2023

Roadmap

Recap: Model-based RL
• In model-free RL, we discussed different approaches to solve unknown MDPs directly from experience via policy / value-

function learning
• In model-based RL, we aim to (1) estimate an approximate model of the dynamics, and (2) use it for control

Approach 1: “learn a model from experience and use it to plan” p(xt+1 |xt, ut)

1. Run base policy in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

3. Use the learned model to plan a sequence of actions

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

τ

R(τ)

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we are our about the prediction

This allows us to reason in terms of expectations under our model

YES NO
Sys. ID Distribution

mismatch
Exploitation of errors

Recap: Model-based RL
Uncertainty estimation

• Learning from a probabilistic standpoint (i.e., deterministic vs
probabilistic predictions)

Aleatoric uncertainty Epistemic uncertainty

• The importance of estimating model/epistemic uncertainty

• A structured way to represent uncertainty over a parametric model is
through a posterior distribution over the parameters p(θ |𝒟)

• Two examples:
• Gaussian Processes (accurate; expensive; limited expressivity)
• Ensembles (approximate; simple; high-capacity NNs)

θ
x

p(xt+1 |xt, ut)

u

θ
x

p(xt+1 |xt, ut)

u

θ
x

p(xt+1 |xt, ut)

u

Recap: Model-based RL
• How do we use this in planning? A possible idea is the following:

• Given a candidate action sequence :
1. Sample (in the case of ensembles, this is equivalent to choosing one among the models)
2. Propagate forward the learned dynamics according to , for all
3. Compute (predicted) rewards

4. Repeat steps 1-3 and compute the average reward

u1, …, uT
θi ∼ p(θ |𝒟)

xt+1 ∼ pθi
(xt+1 |xt, ut) t

∑
t

r(xt, ut)

J (u1, …, uT) =
1
N

N

∑
i=1

H

∑
t=1

r (xt,i, ut), where xt+1,i ∼ pθi (xt+1,i |xt,i, ut)

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

Generate samples

Fit a model / estimate
return

Improve the policy plan through fθ

AA203 | Lecture 175/31/2023

Recap: Model-based RL

AA203 | Lecture 175/31/2023

Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling
• Key idea:

• Model: Use ensemble of NNs to approximate
posterior over model

AA203 | Lecture 175/31/2023

Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling
• Key idea:

• Model: Use ensemble of NNs to approximate
posterior over model

• Propagation: sample different models and use them
to generate predictions of different “futures”

AA203 | Lecture 175/31/2023

Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling
• Key idea:

• Model: Use ensemble of NNs to approximate
posterior over model

• Propagation: sample different models and use them
to generate predictions of different “futures”

• Planning: apply MPC (compute action sequence via
sampling, i.e., cross-entropy method (CEM))

AA203 | Lecture 175/31/2023

Case study: PETS

AA203 | Lecture 175/31/2023

Why model-based?

• Pros:
• Sample efficiency
• Improved multi-task performance
• Transitions provide strong supervision (opposed to e.g., sparse reward)

• Cons:
• Optimize the wrong objective
• Can converge to worse performance if model is wrong
• Can be difficult to train with high-dimensional states/observations (e.g., images)

AA203 | Lecture 175/31/2023

Outline

Last week Approach 1:
“Learn a model and use it to plan”

Approach 2:
“Learn a model and improve model-
free learning”

General idea

Remarks

“Dyna-style” algorithms

• Integrating planning and learning

• Dyna-Q & Extensions

AA203 | Lecture 175/31/2023

A bird’s eye view of previous lectures
• Value-based methods: learn value functions from experience
• Policy optimization: learn policies from experience
• Previous lecture: learn a model from experience (and plan to construct a policy)
• Today: integrate learning and planning into a single architecture

Note:
• Last week we used the term model to describe a dynamics model, i.e.,

• In general, we can assume the model to represent the unknowns in our MDP

xt+1 ∼ pθ(xt+1 |xt, ut)

ℳ = (X, U, P, R)
xt+1 ∼ pθ(xt+1 |xt, ut)

Rt = rθ(xt, ut)

Examples of models:
• Table look-up
• Linear
• GP
• Neural network,…

AA203 | Lecture 175/31/2023

Different sources of experience
• Having a model enables us to consider two sources of experience

Real experience: sampled from the environment (true MDP)

• Interacting with the environment provides us with samples from the true MDP

ℳ = (X, U, P, R)
xt+1 ∼ P(xt+1 |xt, ut)

Rt = R(xt, ut)

Simulated experience: sampled from the model (approximate MDP)

• Simulating transitions through the model provides us with samples from an approximation of the MDP
 xt+1 ∼ pθ(xt+1 |xt, ut)

Rt = rθ(xt, ut)

AA203 | Lecture 175/31/2023

A general recipe for model-based acceleration
1. Interact with the environment to generate a dataset of transitions
2. Fit dynamics/reward model to
3. Generate simulated experience under your model and use model-free algorithms

𝒟 = {(xt, ut, rt, xt+1)}
𝒟

Arrow = relationship of
influence and presumed
improvement

AA203 | Lecture 175/31/2023

Example: MBRL via policy gradient
• In PO, we defined the policy gradient via (variations of) the following equation:

where used real experience (in the form of trajectories of interactions with the environment) to practically approximate the
expectations

• We could consider the following scheme:

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Qϕ(xi,t, ui,t)

1. Run base policy in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

3. Use the learned model to generate simulated trajectories through policy
4. Use to improve via policy gradient

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

{τi} πθ
{τi} πθ

Question
What is a potential problem
with this?

AA203 | Lecture 175/31/2023

Issue with (long) model-based rollouts

Run with real dynamicsπθ
Run with estimated dynamicsπθ

• We want to avoid long model-based rollouts, as
these will necessarily incur in accumulating error

• At the same time, short rollouts do not
guarantee exploration of “later timesteps”

AA203 | Lecture 175/31/2023

Dyna-Q

Initialize and ,
Repeat (for each episode):

(a) current (non-terminal) state
(b) Choose from using policy derived from Q (e.g., -greedy)
(c) Take action , observe

(d)

(e)
(f) Repeat n times:

sample random state previously observed
sample random action previously taken in

 ; predict through model

until is terminal

Q(x, u) Model(x, u), ∀x ∈ X, ∀u ∈ U

xt ←
ut xt ϵ

ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))
Model(xt, ut) ← xt+1, rt

xt ←
ut ← xt
xt+1, rt ← Model(xt, ut)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))
xt

AA203 | Lecture 175/31/2023

Dyna-Q

Initialize and ,
Repeat (for each episode):

(a) current (non-terminal) state
(b) Choose from using policy derived from Q (e.g., -greedy)
(c) Take action , observe

(d)

(e)
(f) Repeat n times:

sample random state previously observed
sample random action previously taken in

 ; predict through model

until is terminal

Q(x, u) Model(x, u), ∀x ∈ X, ∀u ∈ U

xt ←
ut xt ϵ

ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))
Model(xt, ut) ← xt+1, rt

xt ←
ut ← xt
xt+1, rt ← Model(xt, ut)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))
xt

• Model = Tabular model
• Direct RL = Q-learning
• Planning = 1-step

AA203 | Lecture 175/31/2023

Example: Dyna-maze

• 47 states, 4 actions
• Deterministic dynamics
• Reward = 0 everywhere, except +1 on G
•
• Zero-initialized Q,

γ = 0.95
α = 0.1, ϵ = 0.1

AA203 | Lecture 175/31/2023

Example: Dyna-maze

AA203 | Lecture 175/31/2023

Example: Dyna-maze

• The plot compares the policies found by Dyna-Q with and without planning, half-way through
the second episode

• Without planning (n = 0), each episode adds only one additional step to the policy, and so only
one step (the last) has been learned so far

• With planning, again only one step is learned during the first episode, but during the second
episode planning allows to develop an extensive policy that will reach almost back to the start
state

AA203 | Lecture 175/31/2023

“Dyna-style” algorithms
• Dyna-Q represents a specific choice of model, planning, direct RL algorithm, etc.

• More generally, we can define the following recipe for “dyna-style” algorithms

1. Collect data
2. Learn dynamics / reward model, i.e.,
3. Repeat n times

1. Sample from buffer
2. Choose action (from dataset, , random, exploration, etc.)
3. Simulate dynamics / reward
4. Train on via model-free RL
5. Optionally, take more model-based steps

{(xt, ut, rt, xt+1)}
pθ(xt+1 |xt, ut), rθ(xt, ut)

xt
ut π

̂xt+1 ∼ pθ(xt+1 |xt, ut), ̂rt = rθ(xt, ut)
{(xt, ut, ̂rt, ̂xt+1)}

k

• Only uses short roll-outs
• While observing diverse states

AA203 | Lecture 175/31/2023

Example: model-based acceleration of DQN

Process 1: Collect data

Dataset of transitions

(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)

Process 2: Q-function
regression

Δθ = α (rt + γ max
u′ t+1

Qθ (xt+1, u′ t+1)−Q̂θ(xt, ut))∇θQ̂θ(xt, ut)
TD update

Process 3: Target
network update

θ → ϕ

Process 4: Model
training

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

Process 5: Model-data
collection

Dataset of transitions

(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)

• Pros:
• Generally more sample efficient via

augmented experience
• Cons:

• Model errors can affect learning (we could
consider ideas from uncertainty
estimation)

• In practice, these models tend to learn
faster, but converge to overall worse
performance

AA203 | Lecture 175/31/2023

Case study: PILCO

• Deisenroth and Rasmussen, Probabilistic
inference for learning control, ICML 2011

• Approach: use Gaussian process for dynamics
model

• Gives measure of epistemic uncertainty
• Extremely sample efficient

• Pair with arbitrary (possibly nonlinear) policy

• By propagating the uncertainty in the
transitions, capture the effect of small amount
of data

https://www.youtube.com/watch?v=XiigTGKZfks

Samples from prior distribution Samples from posterior distribution

Bayesian inference
• Represent “distribution over functions”

Gaussian process reminder

• Typically, initialize with zero mean; behavior determined entirely by kernel
• Standard kernel choice: squared exponential, used in PILCO

• Has smooth interpolating behavior

AA203 | Lecture 175/31/2023

Case study: PILCO

• For GP conditioned on data, one step
prediction is Gaussian

• But, need to make multistep predictions: so,
need to derive multi-step predictive distribution

• Turn to approximating distribution at each time
with a Gaussian via moment matching

AA203 | Lecture 175/31/2023

Case study: PILCO

• All algorithm design choices made to ensure analytical tractability:

• Because of the squared exponential kernel, mean and variance can be computed in closed form
• Choose cost:

• which is similarly squared exponential; thus expected cost can be computed exactly, factoring in uncertainty

• Choose also radial basis function or linear policy, to enable analytical uncertainty propagation

c(x) = 1 − exp (− x − xtarget
2/σ2

c)

AA203 | Lecture 175/31/2023

PILCO (at a high level)

• Uncertainty prop: leverage specific functional forms to derive analytical expressions for mean
and variance of trajectory under policy.

• Can use chain rule (aka backprop through time) to compute the gradient of expected total cost w.r.t. policy parameters

• Algorithm:
• Roll out policy to get new measurements; update model
• Compute (locally) optimal policy via gradient descent

• This policy is “local” in the sense of the data we’ve given it, i.e., it’s tailored to the regions of state space it’s seen
before; this is more general than “local” in the sense of linearization

• Repeat

AA203 | Lecture 175/31/2023

Combining model and policy learning

• We discussed two possible solutions, but there are infinitely many more!

• Very busy research direction! Many topics not covered here
• Many possible combinations of planning/control, policies, values, and models

• Quite practical: model learning is data efficient and parameterized policy is cheap to evaluate at run time

RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL
objective

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via
 or V(x) Q(x, u)

 set π (st) = arg max
a

Q (st, at)

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

(e.g., Q-learning, DQN)

(e.g., PG, A2C, A3C)

Generate samples

Fit a model /
estimate return

Improve the policy
 set π (xt) = arg max

a
Q (xt, ut)

θ ← θ + α∇θ𝔼 [∑
t

r (xt, ut)]

AA203 | Lecture 175/31/2023

Next time

• Course recap
• Research presentations

