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Recap: Model-free RL

Dynamic Programming

xt

V̂ (xt) ← 𝔼 [Rt + γV̂ (xt+1)]
Monte Carlo Temporal-Difference

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))
xt

ut

xt+1
rt

ut

xt+1rt

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))

Q̂(xt, ut) ← Q̂(xt, ut) + α (Rt + γQ̂ (xt+1, ut+1)−Q̂(xt, ut))Q̂(xt, ut) ← Q̂(xt, ut) + α (Gt−Q̂(xt, ut))Q̂ (xt, ut) ← 𝔼 [Rt + γQ̂ (xt+1, ut+1)]

θ

x

̂V(x)

θ

x

Q̂(x, u)

θ

xu

Q̂(x, u1) Q̂(x, u2) Q̂(x, um)
…

• We discussed different ways to estimate value functions
Exact
Requires 
knowledge 
of MDP

Unbiased
High variance; 
must reach 
terminal state

Low variance; can learn online
Biased

• And how to scale these ideas through function approximation

V̂ (x) =

̂V(x1)
̂V(x2)
⋮
̂V(xn)

Tabular representation:

Q̂ (x, u) =

Q̂(x1, u1) Q̂(x1, u2) … Q̂(x1, um)

Q̂(x2, u1) Q̂(x2, u2) … Q̂(x2, um)
⋮

Q̂(xn, u1) Q̂(xn, u2) … Q̂(xn, um)

Function approximation:

Δθ = α (Gt− ̂Vθ(xt))∇θ
̂Vθ(xt)

Δθ = α (rt + γ ̂Vθ(xt+1)− ̂Vθ(xt))∇θ
̂Vθ(xt)

MC update

TD update
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Recap: Model-free RL
• Generalized Policy Iteration • Sarsa & Q-learning

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))

SARSA: on-policy

On-policy: evaluate or improve the policy that is used to make decisions 
Off-policy: evaluate or improve a policy different from that used to 
generate the data

Q-learning: off-policy

(1) Use deep neural nets to represent Qθ

(2) Uses experience replay and fixed Q-targets

• Deep RL:

• In policy optimization, we care about learning an (explicit) parametric policy , with parameters  to directly maximize:πθ θ

θ* = arg max
π

𝔼τ∼p(τ) ∑
t≥0

γtR (xt, ut)

J(θ)

(1) estimate its gradient  
(2) do approximate gradient ascent on : 

∇θJ(θ)
J(θ) θ ← θ + α∇θJ(θ)

Policy gradient: ∇θ J(θ) ≈
1
N

N

∑
i=1 [(

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t)) (
T

∑
t=1

R (xi,t, ui,t))]
Maximum Likelihood: ∇θ JMLE(θ) ≈

1
N

N

∑
i=1 [(

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t))] “Change parameters  s.t. trajectories with 
higher reward have higher probability”

θ

Problem: high variance of PG
Solution: baselines, “critics”

p(xt+1 |xt, ut)

𝔼τ∼p(τ) [
T

∑
t′ =t

R (xi,t′ , ui,t′ )]
Qπ(xt, ut)

=

∇θ J(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ (ui,t ∣ xi,t) Qϕ(xt, ut)

Value-based methods

Policy Optimization



Recap: The skeleton of an RL algorithm 

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

(e.g., Q-learning, 
DQN)

(e.g., PG, A2C, 
A3C)

Generate samples

Fit a model / estimate 
return

Improve the policy
 set π (xt) = arg max

a
Q (xt, ut)

θ ← θ + α∇θ𝔼 [∑
t

r (xt, ut)]
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Recap: Why so many RL algorithms?

• Different tradeoffs:  
• Sample efficiency 
• Stability & easy of use 

• Different assumptions:  
• Stochastic or deterministic 
• Continuous or discrete 
• Episodic or infinite horizon 

• Different things are easy or hard in different settings:  
• Easier to represent the policy? 
• Easier to represent the model?
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Recap: Comparison: sample efficiency

• Sample efficiency = how many samples do we need to get a good policy? 

• Crucial question: is the algorithm off policy? 
• Off policy: able to improve the policy without generating new samples from the current policy 
• On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!
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Recap: stability and ease of use

• Does it converge? 
• And if it does, to what? 
• Does it always converge? 

• Supervised learning: almost always gradient descent 
• Reinforcement learning: often not gradient descent 

• Q-learning: fixed point iteration 
• Model-based RL: model estimator is not optimized for expected reward 
• Policy gradient actually is gradient descent (but can be sample inefficient)

8



Outline (from last week)
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Intro to policy gradients
• REINFORCE algorithm 
• Reducing variance of policy gradient 

Deep RL Algorithms & Applications

Actor-Critic methods
• Advantage 
• Architecture design
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Practical implementation (and alternative formulation)
∇θJ(θ) = 𝔼τ∼pθ(τ) [∇θlog pθ(τ)A(τ)]• We discussed how, in PO, we want to compute the following gradient

• To implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following 
loss function:

LPG(θ) = 𝔼τ∼pθ(τ) [log pθ(τ)A(τ)]

• But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy 
estimate 

• Let’s define an alternative loss

LIS(θ) = 𝔼τ∼pθ(τ) [ πθ(ut |xt)
πθold

(ut |xt)
A(τ)]

• If we take the derivative of  and evaluate at , we get the same gradient LIS θ = θold

∇θlog f(θ)
θold 

=
∇θ f(θ)

θold 
f (θold )

= ∇θ( f(θ)
f (θold ) )

θold 
AA203 | Lecture 175/31/2023
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Trust Region Policy Optimization (TRPO)

maximize
θ

�̂�t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At]

 subject to �̂�t [KL[πθold ( ⋅ ∣ xt), πθ ( ⋅ ∣ xt)] ≤ δ

• Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

• Hard to use with architectures with multiple outputs, e.g., policy and value function 
• Empirically performs poorly on tasks requiring CNNs and RNNs 
• Conjugate gradient makes implementation more complicated
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Proximal Policy Optimization (PPO)
• Can we solve the problem defined in TRPO without second-order optimization?

maximize
θ

�̂�t [
πθ (ut ∣ xt)

πθold (ut ∣ xt)
̂At] + β (�̂�t [KL[πθold ( ⋅ ∣ xt), πθ ( ⋅ ∣ xt)] − δ)

PPO v1 - Surrogate loss with Lagrange multipliers 

• Run SGD on the above objective 
• Do dual descent update for β

maximize
θ

�̂�t [min(r(θ)A(τ), clip(r(θ),1 − ϵ,1 + ϵ)A(τ))]
• Heuristically replicates constraint in the objective 
• One of the (if not the) most popular PO algorithm 

PPO v2 - Clipped surrogate loss r(θ) =
πθ (ut ∣ xt)

πθold (ut ∣ xt)
, r(θold) = 1

AA203 | Lecture 175/31/2023
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A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL 
objective 

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate 
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via 
 or  V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)
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A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL 
objective 

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate 
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via 
 or  V(x) Q(x, u)

 set π (xt) = arg max
u

Q (xt, ut)
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Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

• A basic recipe (and its limitations) 
• Learning with high-capacity models: distributional shift 

• Gaussian Processes 
• Bootstrap Ensembles
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Basics of model-based RL
• A basic recipe (and its limitations) 
• Learning with high-capacity models: distributional shift 

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

Approach 1: 
“Learn a model and use it to plan”

• Gaussian Processes 
• Bootstrap Ensembles
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Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

Approach 1: 
“Learn a model and use it to plan”

Approach 2: 
“Learn a model and improve model-
free learning”

Next week

• A basic recipe (and its limitations) 
• Learning with high-capacity models: distributional shift 

• Gaussian Processes 
• Bootstrap Ensembles
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General recipe 
• If we knew the dynamics , we could use tools from optimal control 
• Main idea: learn a model  from data (or  in the stochastic case) 

At a high-level, we could apply the following strategy: 

1. Run base policy  in the environment (e.g., random policy, exploration policy) and collect dataset of transitions 
 

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)  

 

3. Use the learned model to plan a sequence of actions 

T(xt+1 |xt, ut)
fθ(xt, ut) ≈ T(xt+1 |xt, ut) p(xt+1 |xt, ut)

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2
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Will this work?

• In cases with e.g., linear-time invariant dynamics, this tends to work pretty well 

• Particularly effective if we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a 
few parameters 

• If the dataset is generated with sufficient excitation, it gives global knowledge (i.e., some care should be taken to 
design a good base policy) 

• This is essentially how system identification works

• If we’re dealing with non-linear dynamics (and high-capacity models! e.g., neural networks) extrapolation is difficult 
and can be misleading 

YES

NO
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Motivating example

π0

pπ0
(x)

• The goal is to go as further north as possible 
• The base policy defines state distribution (under ) 
• When planning under the model we observe a different state 

distribution, i.e., 

π0

pπf
(x)

pπf
(x)

The more (i) the dynamics are complex, (ii) we use high-capacity 
models, the easier it is incur in distribution mismatch
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A simple improvement 
• We can leverage ideas from adaptive and receding-horizon control:

1. Run base policy  in the environment (e.g., random policy, exploration policy) and collect dataset of transitions 
 

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)  

 

3. Use the learned model to plan a sequence of actions 
4. Execute only the first action and measure the new state  (i.e., MPC) 
5. Add the observed transition  to the dataset  and update model (i.e., gradually closing the gap between 

)  

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

xt+1
(xt, ut, xt+1) 𝒟

pπ0
(x) and pπf

(x)



AA203 | Lecture 175/31/2023

Outline

22

Basics of model-based RL

Examples & Applications (e.g., PETS)

Uncertainty quantification in model-based RL

• A basic recipe (and its limitations) 
• Learning with high-capacity models: distributional shift 

• Gaussian Processes 
• Bootstrap Ensembles
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The main challenge in MBRL
• Ideally, we’d want our model to: 

• Have high-capacity to represent complex dynamics in the high-data regime 
• Not overfit to observed data in the low-data regime

τ

R(τ)

• For example, consider the case where we fit our model to observed data and use 
it to plan, according to the previous scheme

1. Run base policy  in the environment (e.g., random policy, exploration policy) and collect dataset of transitions 
 

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)  

 

3. Use the learned model to plan a sequence of actions 
4. Execute only the first action and measure the new state  (i.e., MPC) 
5. Add the observed transition  to the dataset  and update model (i.e., gradually closing the gap 

between )  

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

xt+1
(xt, ut, xt+1) 𝒟

pπ0
(x) and pπf

(x)

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we our about the prediction
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The role of uncertainty estimation
• Specifically, by uncertainty on our predictions, we mean an expression of a distribution over possible outcomes 
• This allows us to reason in terms of expectations under our model 

Expected reward under high-variance prediction is low
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Learning from a probabilistic standpoint
• Let’s consider regression as an example:
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Learning from a probabilistic standpoint
• Let’s consider regression as an example:
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Learning from a probabilistic standpoint
• Let’s consider regression as an example:
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Learning from a probabilistic standpoint
• Let’s consider regression as an example:
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Learning from a probabilistic standpoint
• Let’s consider regression as an example:
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How can we model uncertainty?
• Idea 1: use output entropy (spoiler: this does not work) 
• Suppose we estimated a model, why not use its entropy?

τ

R(τ)

st+1p(s1
t+1) p(s2

t+1) p(s3
t+1)

θ

x

p(xt+1 |xt, ut)

u

Discrete state-space Continuous state-space

• Doing so will not take epistemic uncertainty into account

Aleatoric uncertainty: 
“The process is 
intrinsically noisy”

Epistemic uncertainty: 
“Uncertainty about the 
model”
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How can we model uncertainty?
• Idea 2: estimate model uncertainty

θ

x

p(xt+1 |xt, ut)

u
• Typically, given a dataset , we estimate:  𝒟

arg max
θ

log p(𝒟 ∣ θ)
• To express model uncertainty means 

estimating: 
 

and predict according to the predictive posterior 

distribution 

p(θ ∣ 𝒟)

∫ p (xt+1 ∣ xt, ut, θ) p(θ ∣ 𝒟)dθ

Prior: , Likelihood: , Posterior p(θ) p(𝒟 ∣ θ) p(θ ∣ 𝒟)

Bayes’ Theorem p(θ ∣ 𝒟) =
p(𝒟 ∣ θ)p(θ)

p(𝒟)
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(1) Gaussian Processes

Samples from prior distribution Samples from posterior distribution

Bayesian inference
• Represent “distribution over functions”

• Strengths 
• Data efficient 
• Exact posterior 
• Predictable behavior via the choice of kernel

• Weaknesses 
• High computational complexity 
• Cannot learn expressive features
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(2) Bootstrap ensembles
• High level idea: “train multiple models and see if they agree” 

• Different models will likely agree in regions where we have data and disagree where we do not

p(θ ∣ 𝒟) ≈
1
N ∑

i

δ (θi)

∫ p (xt+1 ∣ xt, ut, θ) p(θ ∣ 𝒟)dθ ≈
1
N ∑

i

p (xt+1 ∣ xt, ut, θi)

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

θ

x

p(xt+1 |xt, ut)

u

• Formally, we approximate the posterior with a mixture of Dirac 
distributions:

• Usually, no need for resampling or independent datasets: SGD and random initialization make the models 
sufficiently independent

p(θ ∣ 𝒟)

θ
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Planning with uncertainty
• How can we use this additional knowledge in planning? 

• Given a candidate action sequence : 
1. Sample  (in the case of ensembles, this is equivalent to choosing one among the models) 
2. Propagate forward the learned dynamics according to , for all  
3. Compute (predicted) rewards  

4. Repeat steps 1-3 and compute the average reward 

u1, …, uT
θi ∼ p(θ |𝒟)

xt+1 ∼ pθi
(xt+1 |xt, ut) t

∑
t

r(xt, ut)

J (u1, …, uT) =
1
N

N

∑
i=1

H

∑
t=1

r (xt,i, ut),  where xt+1,i ∼ pθi (xt+1,i |xt,i, ut)

• Caveat: this is only a choice, one could think of other ways to approximate the posterior predictive distribution. 
• The general idea is that, when planning, we want to evaluate the expected reward under our model
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Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling 
• Key idea:  

• Model: Use ensemble of NNs to approximate 
posterior over model 

• Propagation: sample different models and use them 
to generate predictions of different “futures” 

• Planning: apply MPC (compute action sequence via 
sampling, i.e., cross-entropy method (CEM) )

35
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Case study: PETS

36
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Next time

• Model-based RL: Policy learning


