
AA203 Optimal and Learning-based Control
Lecture 15

Model-free RL: Value-based methods

Autonomous Systems Laboratory
Daniele Gammelli

AA203 | Lecture 155/22/2023 2

Roadmap

AA203 | Lecture 155/22/2023

Review

3

In previous lectures, we made the distinction between prediction (given a policy , estimate) and control (learn the
optimal policy)

π Vπ, Qπ
π*

Motivated by Dynamic Programming, we discussed exact methods
for solving MDPs:
• Policy Iteration
• Value Iteration

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model T (xt+1 ∣ xt, ut)
We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:
• Monte Carlo (MC) Learning
• Temporal-Difference (TD) Learning take action

observe state
observe reward

ut

rt

xt rt+1
xt+1

AA203 | Lecture 155/22/2023 4

Dynamic Programming backup

xt

V̂ (xt) ← 𝔼 [Rt + γV̂ (xt+1)]

• For prediction:

Monte Carlo backup

Temporal-Difference backup

xt

ut

xt+1
rt

Terminal state

̂V (xt) ← ̂V (xt) + α (Gt− ̂V (xt))

xt

ut

xt+1
rt

ut

xt+1rt

̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))
• Sampling: define the update through samples to approximate expectations

• MC samples
• TD samples
• DP does not sample

• Bootstrapping: define the update through an estimate
• MC does not bootstrap
• TD bootstraps
• DP bootstraps

AA203 | Lecture 155/22/2023 5

• For control: GPI Problem 1:

Greedy policy improvement over requires a model of
the MDP!

On the other hand, greedy policy improvement over
does not

V(x)

Q(x, u)

πk+1(x) = arg max
u

R(x, u) + γ ∑
xt+1∈𝒳

T (xt+1 ∣ xt, ut) Vk+1 (xt+1)

πk+1(x) = arg max
u

Q(x, u)

Problem 2:

Exploration! To estimate state-action values through
samples, every state-action pair needs to be visited

• With probability , choose the greedy action
• With probability , choose a random action
• Ensures that all actions are tried with non-zero probability

1 − ϵ
ϵ
m

π(u ∣ x) =

ϵ
m + 1 − ϵ if u* = argmax

u∈𝒰
Q(x, u)

ϵ
m otherwise

AA203 | Lecture 155/22/2023 6

A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL
objective

𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate
fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via
 or V(x) Q(x, u)

 set π (xt) = arg max
a

Q (xt, ut)

AA203 | Lecture 155/22/2023

Outline

7

Tabular methods
• On-policy & Off-policy

• SARSA
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

AA203 | Lecture 155/3/2023 8

Temporal-Difference Control
• TD learning has several advantages over MC

• Lower variance
• Online
• Incomplete sequences

• Natural idea: use TD instead of MC in our GPI scheme
• Apply TD to estimate
• Use -greedy policy improvement
• Update every time-step

Q(x, u)
ϵ

AA203 | Lecture 155/3/2023 9

Updating action-value functions with Sarsa
• Uses every element of the quintuple of events, , that make up a transition from one state–action pair to

the next through the following update rule
(xt, ut, rt, xt+1, ut+1)

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
• In RL literature, is often expressed as

 : hence the name
(xt, ut, rt, xt+1, ut+1)

(st, at, rt, st+1, at+1)

Temporal-Difference backup
̂V (xt) ← ̂V (xt) + α (Rt + γ ̂V (xt+1)− ̂V (xt))

AA203 | Lecture 155/3/2023 10

Sarsa algorithm

Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Choose from using policy derived from Q (e.g., -greedy)
Repeat (for each step of episode):

Take action , observe
Choose from using policy derived from Q (e.g., -greedy)

;
until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 xt+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt

AA203 | Lecture 155/3/2023 11

Sarsa algorithm for ?-policy control
Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Choose from using policy derived from Q (e.g., -greedy)
Repeat (for each step of episode):

Take action , observe
Choose from using policy derived from Q (e.g., -greedy)

;
until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt
ut xt ϵ

ut rt, xt+1
ut+1 ut+1 ϵ

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, ut+1) − Q(xt, ut))
xt ← xt+1 ut ← ut+1

xt

On-policy: evaluate or improve the policy that is used to make decisions

Off-policy: evaluate or improve a policy different from that used to generate the data

AA203 | Lecture 155/3/2023 12

Windy Gridworld example

• Reward -1 until goal is reached
•
•
•

ϵ = 0.1
α = 0.5
γ = 1

AA203 | Lecture 155/3/2023 13

Windy Gridworld example

Question:
Would MC methods easily apply to this
problem? And why?

AA203 | Lecture 155/3/2023 14

Windy Gridworld example

Question:
Would MC methods easily apply to this
problem? And why?

No, because termination is not
guaranteed for all policies. If a policy
was ever found that caused the agent
to stay in the same state, then the next
episode would never end.

AA203 | Lecture 155/3/2023 15

Off-policy learning
• Evaluate target policy to compute or while following behavior policy , i.e.,

, “the data we observe is obtained under policy ”

Why is this important?
• Learn from observing humans or other agents

• Re-use experience generated from old policies

• Learn about optimal policy while following exploratory policy
• Learn about multiple policies while following one policy

π(u |x) Vπ(x) Qπ(x, u) μ(u |x)

{x1, u1, r1, …, xT} ∼ μ μ

π1, π2, …, πt−1

AA203 | Lecture 155/3/2023 16

Off-policy learning of action-values
• We consider off-policy learning of action-values

• As in Sarsa, we use the behavior policy to obtain , but we consider an alternative successor action

• And update towards value of alternative action

Q(x, u)

μ (xt, ut, rt, xt+1, u′ t+1)
u′ t+1 ∼ π(u′ t+1 |xt+1)

Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γQ (xt+1, u′ t+1)−Q(xt, ut))

AA203 | Lecture 155/3/2023 17

Q-learning
Specifically, in Q-learning
• The target policy is chosen as the greedy policy w.r.t.

• The behavior policy is chosen as the -greedy policy w.r.t.

Which leads to the following Q-learning target and update:

π Q(x, u)

π(xt+1) = argmax
u′ t+1

Q (xt+1, u′ t+1)

μ ϵ Q(x, u)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1)−Q(xt, ut))
rt+1 + γQ (xt+1, u′ t+1)

= rt+1 + γQ (xt+1, argmax
u′ t+1

Q (xt+1, u′ t+1))
= rt+1 + γ max

u′ t+1

Q (xt+1, u′ t+1)

AA203 | Lecture 155/3/2023 18

Q-learning algorithm for off-policy control
Initialize , arbitrarily, and
Repeat (for each episode):

Initialize
Repeat (for each step of episode):

Choose from using policy derived from Q (e.g., -greedy)
Take action , observe

until is terminal

Q(x, u), ∀x ∈ X, ∀u ∈ U Q(terminal-state, ⋅) = 0

xt

ut xt ϵ
ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′ t+1

Q (xt+1, u′ t+1) − Q(xt, ut))
xt

AA203 | Lecture 155/22/2023 19

Differences between Sarsa and Q-learning
• Reward -1 until goal is reached, -100 if on “The Cliff”
•
•
•

ϵ = 0.1
α = 0.5
γ = 1

• Sarsa converges to the optimal -greedy policy
• Q-learning converges to the optimal policy / value

function

ϵ
π*

Q*

AA203 | Lecture 155/22/2023 20

Relationship between DP and TD

Vπ(x)

Qπ(x, u)

Q*(x, u)

AA203 | Lecture 155/22/2023

Outline

21

Tabular methods
• On-policy & Off-policy

• SARSA
• Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

AA203 | Lecture 155/3/2023 22

Solving large-scale problems with RL
• Reinforcement learning can be used to solve large problems, e.g.,

Backgammon: states1020 Go: states10170 All those problems where
we have a continuous state
space

How can we scale the methods for model-free RL we developed over the last lectures?

AA203 | Lecture 155/3/2023 23

Value function approximation
• So far we used lookup tables to represent value functions:

• One entry for every state in
• One entry for every state-action pair in

• In large MDPs, lookup table might be prohibitive. For two main reasons:
• Memory: too many actions/states to store
• Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

Solution:
• Estimate the value function through function approximation, i.e., define a parametric function with parameters

x V(x)
(x, u) Q(x, u)

θ

Q̂θ(x, u) ≈ Q(x, u)
̂Vθ(x) ≈ V(x)

 Represent the value function compactly (depends only on parameters)
 Generalize across states (avoid having to visit the entire state-action space by generalizing from seen

to unseen states)

→ θ
→

AA203 | Lecture 155/3/2023 24

Different types of value function approximations

θ

x

̂V(x)

θ

x

Q̂(x, u)

θ

xu

Q̂(x, u1) Q̂(x, u2) Q̂(x, um)
…

There are many possible function approximators
• Linear regression, Neural network, Random forest, Nearest neighbor, etc.

AA203 | Lecture 155/3/2023 25

Approximating value fn. by (stochastic) gradient descent

Goal: find the parameter vector that minimizes the mean-squared error between the estimated value and the true
value

θ ̂Vθ(x)
Vπ(x)

J(θ) = 𝔼π [Vπ(x) − ̂Vθ(x)]
Gradient descent converges to a local minimum

Stochastic GD samples the gradient

Δθ = −
1
2

α∇θJ(θ)

= α𝔼π [(Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)]

Δθ = α (Vπ(x) − ̂Vθ(x))∇θ
̂Vθ(x)

AA203 | Lecture 155/3/2023 26

In the previous slide, we assumed to know the true value function in RL there is no supervisor, only rewardVπ →

In practice, we use a target for

• Monte-Carlo: the target is the return

• Temporal-Difference: the target is the TD target

Vπ

Δθ = α (Gt− ̂Vθ(xt))∇θ
̂Vθ(xt)

Δθ = α (rt + γ ̂Vθ(xt+1)− ̂Vθ(xt))∇θ
̂Vθ(xt)

Approximating value fn. by (stochastic) gradient descent

AA203 | Lecture 155/3/2023 27

Tabular ̂V(x)

Intuition

Tabular ̂V(x)

MC

TD

1) Compute return Gt = rt + γrt+1 + …, ∀t

2) Update estimate

̂V(x) = [̂V(xt) + α(Gt − ̂V(xt))…]

1) Compute target rt + γ ̂V(xt+1), ∀t

2) Update estimate

̂V(x) = [̂V(xt) + α(rt + γ ̂V(xt+1) − ̂V(xt))…]

1) Collect dataset 𝒟 = {(xt, Gt)}

2) Update θ

θ = θ + α (Gt − ̂Vθ(xt))∇θ
̂Vθ(xt)

1) Collect dataset 𝒟 = {(xt, rt + γ ̂Vθ(xt))}
2) Update estimate

θ = θ + α (rt + γ ̂Vθ(xt) − ̂Vθ(xt))∇θ
̂Vθ(xt)

…
x0

x1

x2

xT
u0, r0

u1, r1
uT−1, rT−1

AA203 | Lecture 155/3/2023 28

Control with function approximation

AA203 | Lecture 155/3/2023 29

Action-value function approximation
Exactly the same intuitions apply when we try to approximate the action value function:

J(θ) = 𝔼π [Qπ(x, u) − Q̂θ(x, u)]
• Use stochastic gradient descent to find a local minimum

Δθ = α (Qπ(x, u) − Q̂θ(x, u))∇θQ̂θ(x, u)

• Minimize the mean-squared error between the estimated value and the true value Q̂θ(x, u) Qπ(x, u)

Fitted Q-Iteration: update via stochastic gradient descent on TD target θ

Δθ = α (rt + γ max
u′ t+1

Qθ (xt+1, u′ t+1)−Q̂θ(xt, ut))∇θQ̂θ(xt, ut)

AA203 | Lecture 155/3/2023 30

Example: Sarsa with fn. approximation

The skeleton of fitted Q-learning

Generate samples

Fit a model / estimate
return

Improve the policy set π (xt) = arg max
a

Qθ (xt, ut)

Run the policy and observe
(xt, ut, rt, xt+1)

Set target
yt ← rt + γ max

u
Qθ(xt+1, u)

Update to minimize θ
J(θ) = 𝔼π [yt − Qθ(xt, ut)]

AA203 | Lecture 155/3/2023 32

Deep Q-Networks (DQN)
One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks

(2) Uses experience replay and fixed
Q-targets

(1) Use deep neural nets to represent in Q-
learning

Qθ

https://www.youtube.com/watch?v=TmPfTpjtdgg

AA203 | Lecture 155/3/2023 33

Deep Q-Networks (DQN)
(2) Uses experience replay and fixed Q-targets

• These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two
issues:

i) Samples within a trajectory are highly correlated makes supervised learning unstable
ii) The target is a moving target (i.e., as we update , the target of our regression also

changes)

→
rt + γ max

u′ t+1

Qθ (xt+1, u′ t+1) θ

• Take action according to -greedy policy
• Store transition in replay memory

• Sample batch of transitions from (Experience replay decorrelates data)

• Compute Q-learning targets w.r.t. old, fixed parameters
• Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

ut ϵ
(xt, ut, rt, xt+1) 𝒟

{(xt, ut, rt, xt+1)i}B
i=1 𝒟

ϕ

J(θ) = 𝔼(xt,ut,rt,xt+1)∼𝒟 [rt + γ max
u

Qϕ(xt+1, u) − Q̂θ(xt, ut)]

Intuitively:

AA203 | Lecture 155/3/2023 34

Maximization bias

Q̂θ(x̄t, ut)

u1 u2 u3

• In the algorithms we covered so far, a maximum over estimated values is used implicitly as an estimate of the maximum
value

• This can lead to a significant positive bias. For example:

max
u

Q̂θ(xt, ut) ≈ max
u

Qπ(xt, ut)

AA203 | Lecture 155/3/2023 35

Double Q-learning
• Several possible solutions; in general, want to avoid using max of estimates as estimate of max

• Double Q-learning [van Hasselt, NeurIPS 2010]: use two independent estimates

• Use one estimate to determine the maximizing action

• And the other to provide the estimate of its value

• This estimate will be unbiased

• Alternative approach: maintain two independent q-networks, always use [Fujimoto et al, ICML 2018]

Q1, Q2
u* = arg max

u
Q1(x, u)

Q2(x, u*) = Q2(x, arg max
u

Q1(x, u))

min(Q1, Q2)

AA203 | Lecture 155/22/2023 36

Next time

• Model-free RL: policy optimization methods

AA203 | Lecture 155/3/2023 37

References
• Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013

• van Hasselt et al. Double Q-learning. NeurIPS 2010

• Fujimoto et al. Addressing Function Approximation Error in Actor-Critic Methods. ICML 2018

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rLdfJ1gAAAAJ&citation_for_view=rLdfJ1gAAAAJ:WF5omc3nYNoC
https://proceedings.mlr.press/v80/fujimoto18a.html

