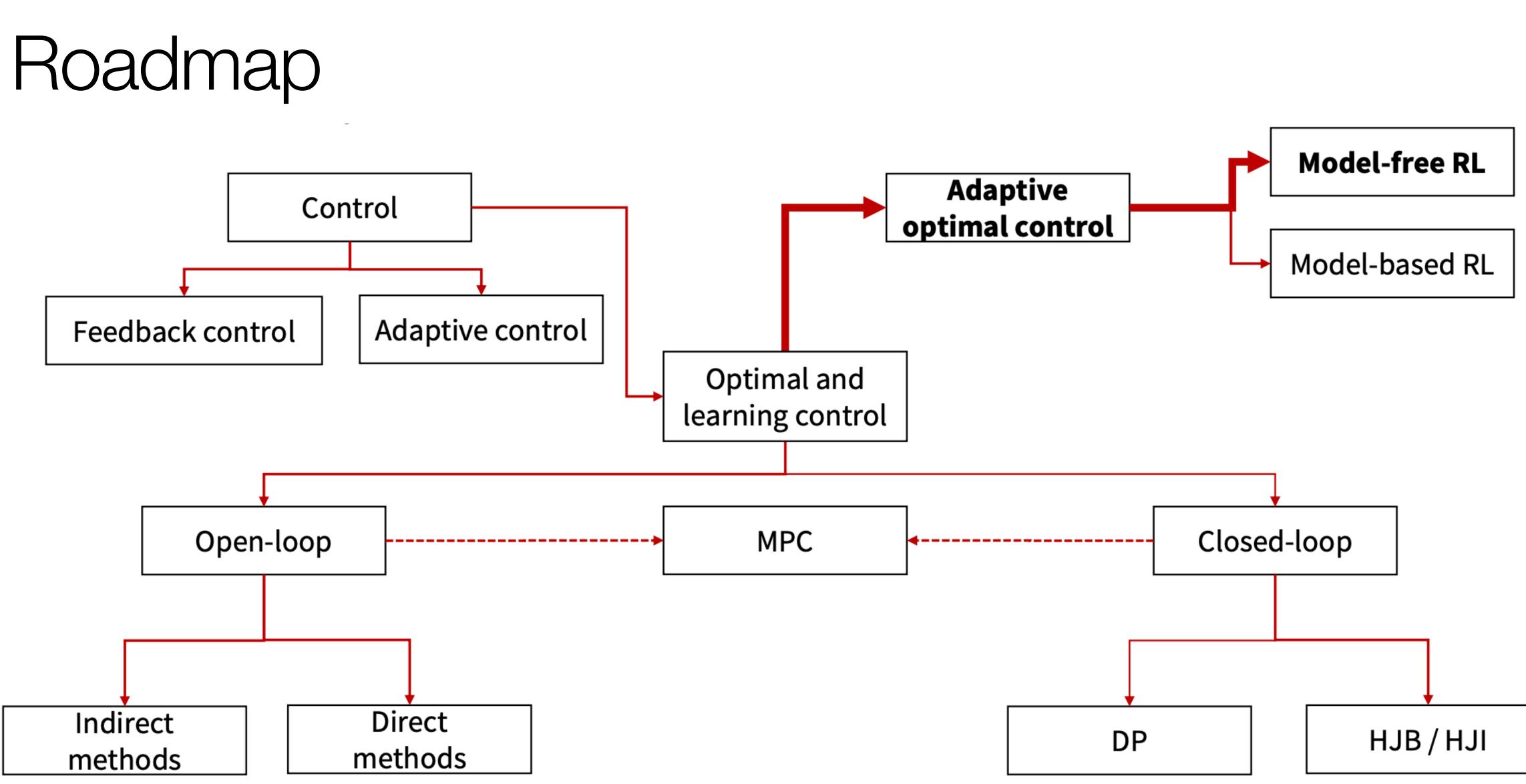
AA203 Optimal and Learning-based Control Lecture 15 Model-free RL: Value-based methods

Autonomous Systems Laboratory Daniele Gammelli

Stanford University

Autonomous Systems Laboratory Stanford Aeronautics & Astronautics



Review

In previous lectures, we made the distinction between pred optimal policy π^*)

Motivated by Dynamic Programming, we discussed *exact methods* for solving MDPs:

- Policy Iteration
- Value Iteration

Limitation: Update equations (i.e., Bellman equations) requ

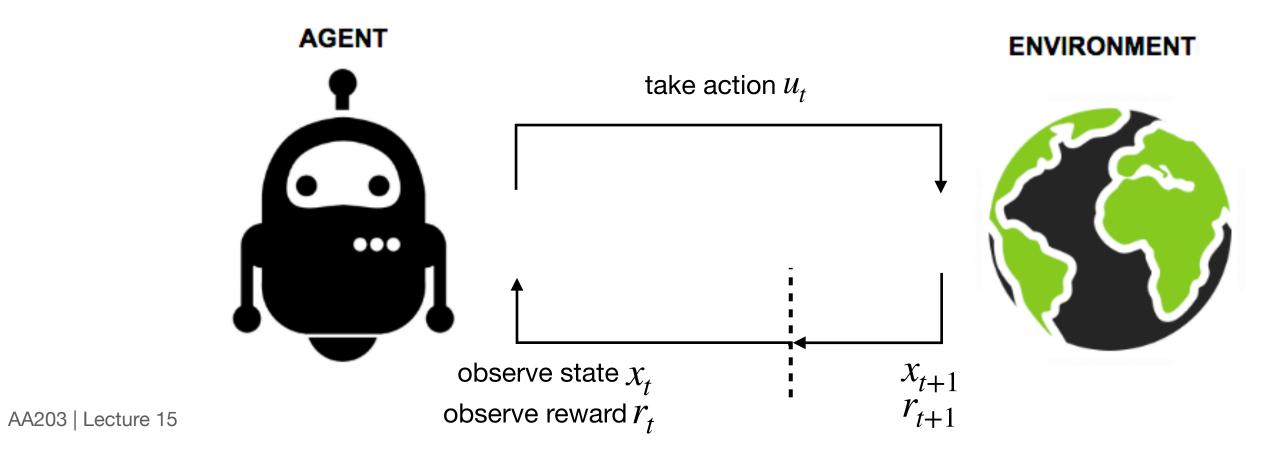
We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:

- Monte Carlo (MC) Learning
- Temporal-Difference (TD) Learning

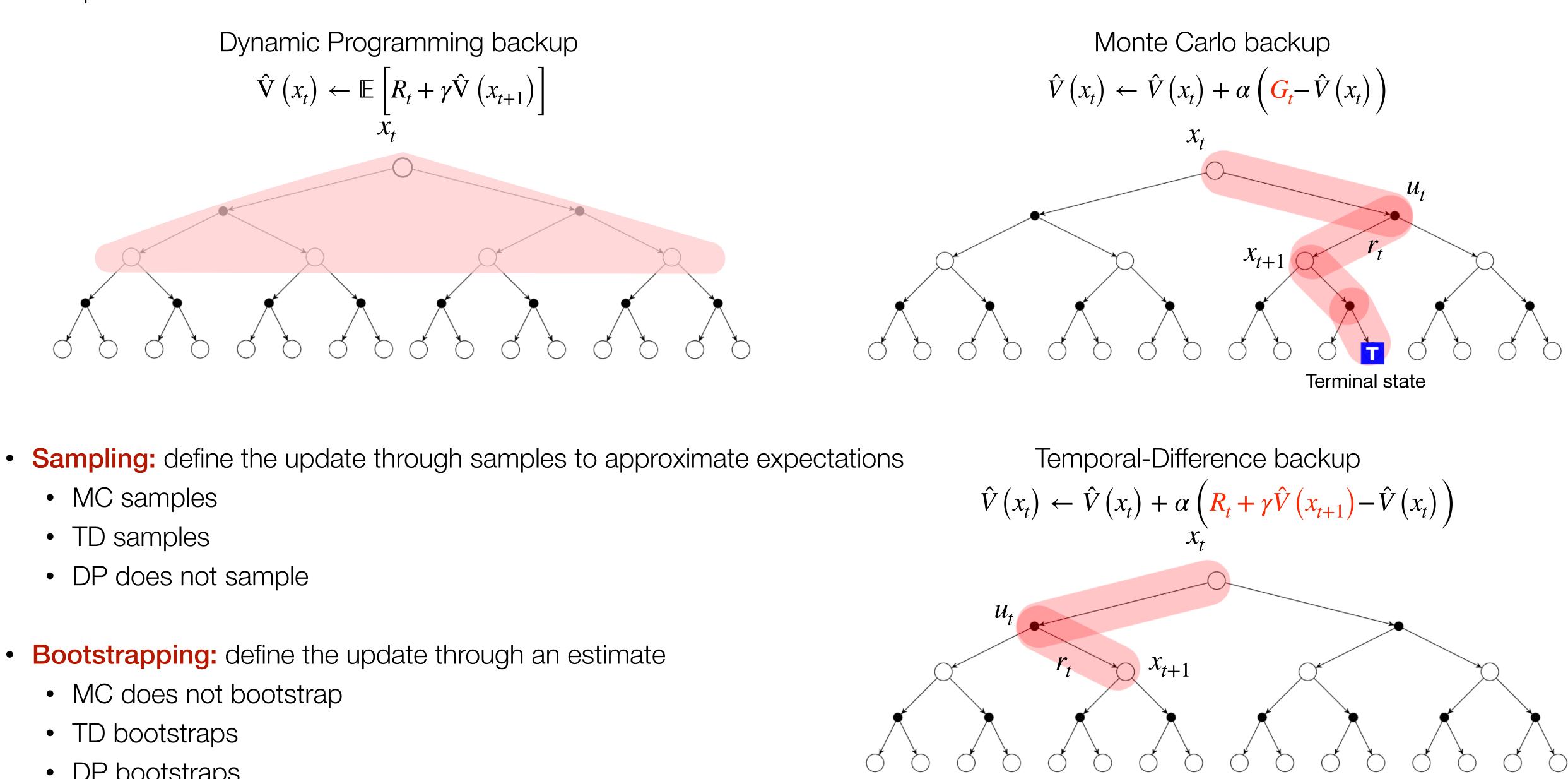
In previous lectures, we made the distinction between prediction (given a policy π , estimate V_{π}, Q_{π}) and control (learn the

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative
		Policy Evaluation
Control	Bellman Expectation Equation	Policy Iteration
	+ Greedy Policy Improvement	
Control	Bellman Optimality Equation	Value Iteration

uire access to dynamics model
$$T(x_{t+1} \mid x_t, u_t)$$



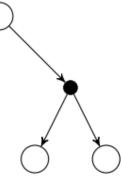
For prediction: ullet



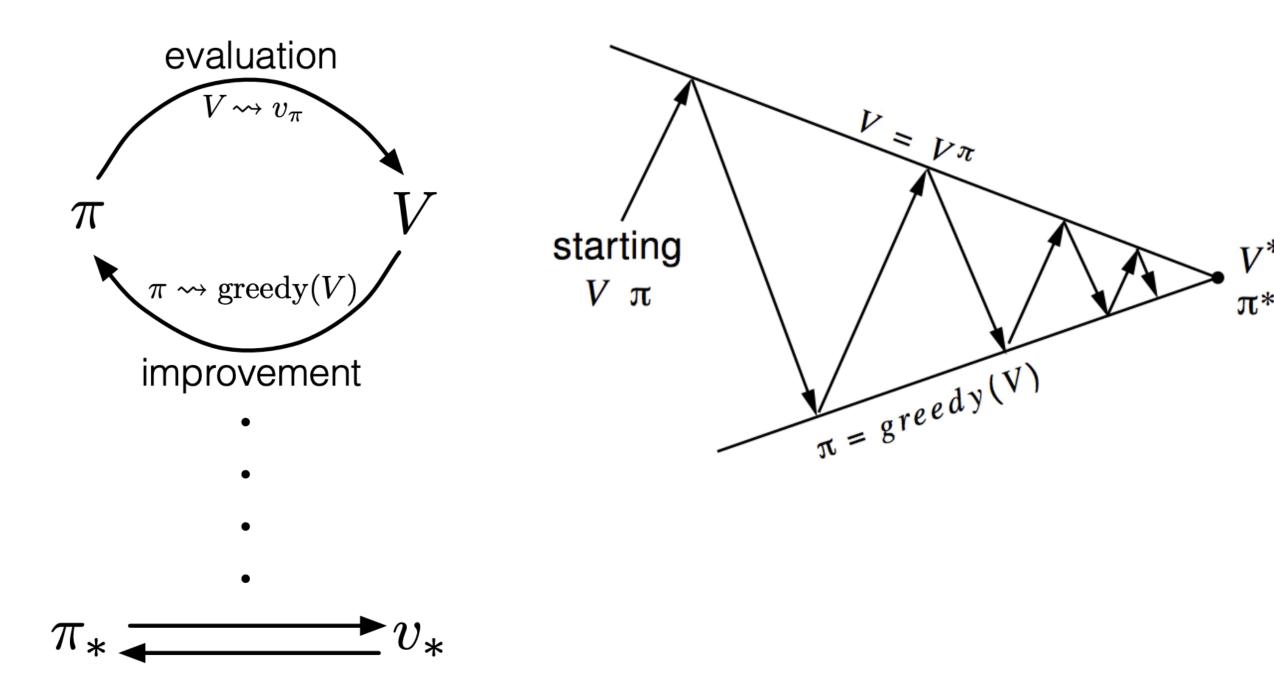
• **Bootstrapping:** define the update through an estimate

- DP bootstraps

5/22/2023



• For control: GPI



Problem 1:

Greedy policy improvement over V(x) requires a model of the MDP!

$$\pi_{k+1}(x) = \arg \max_{u} \left(R(x, u) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T\left(x_{t+1} \mid x_t, u_t\right) V_{k+1} \right)$$

On the other hand, greedy policy improvement over Q(x, u)does not

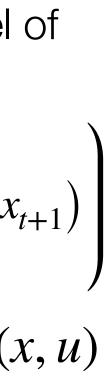
$$\pi_{k+1}(x) = \arg\max_{u} Q(x, u)$$

Problem 2:

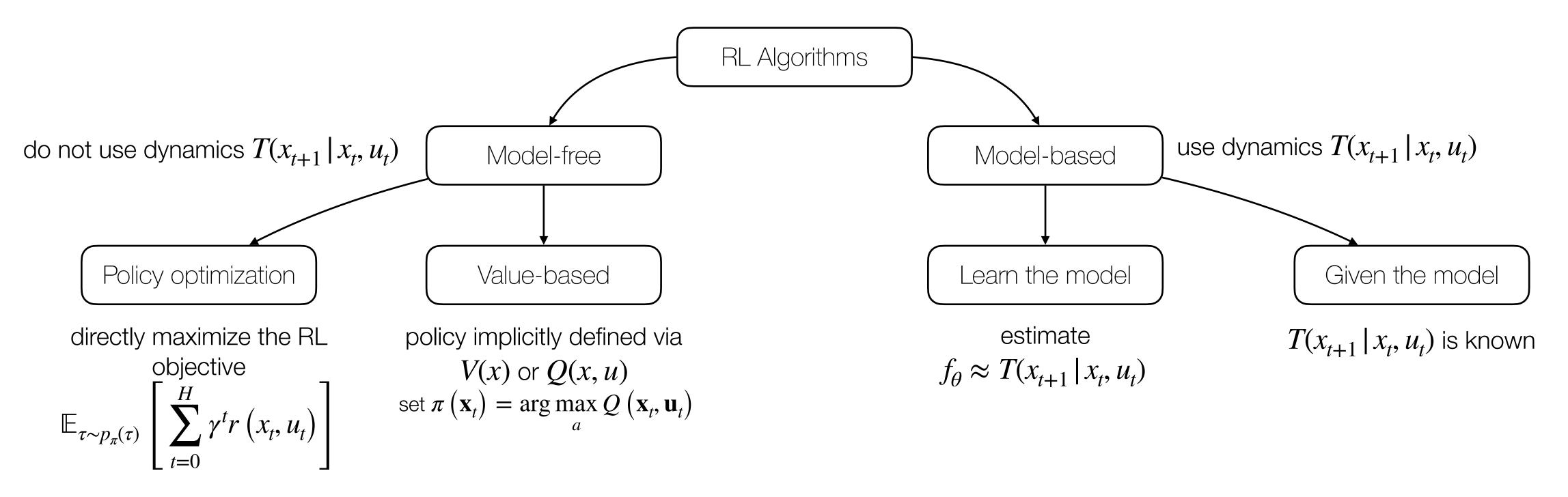
Exploration! To estimate state-action values through samples, every state-action pair needs to be visited

- With probability 1ϵ , choose the greedy action
- With probability ϵ , choose a random action
- Ensures that all *m* actions are tried with non-zero probability

$$\pi(u \mid x) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon & \text{if } u^* = \underset{u \in \mathcal{U}}{\operatorname{argmax}} Q(x, u) \\ \frac{\epsilon}{m} & \text{otherwise} \end{cases}$$



A taxonomy of RL



Outline

Tabular methods

- On-policy & Off-policy
 - SARSA
 - Q-learning

Value function approximation

Deep (Value-based) RL Methods & Applications

Temporal-Difference Control

- TD learning has several advantages over MC
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our GPI scheme
 - Apply TD to estimate Q(x, u)
 - Use ϵ -greedy policy improvement
 - Update every time-step

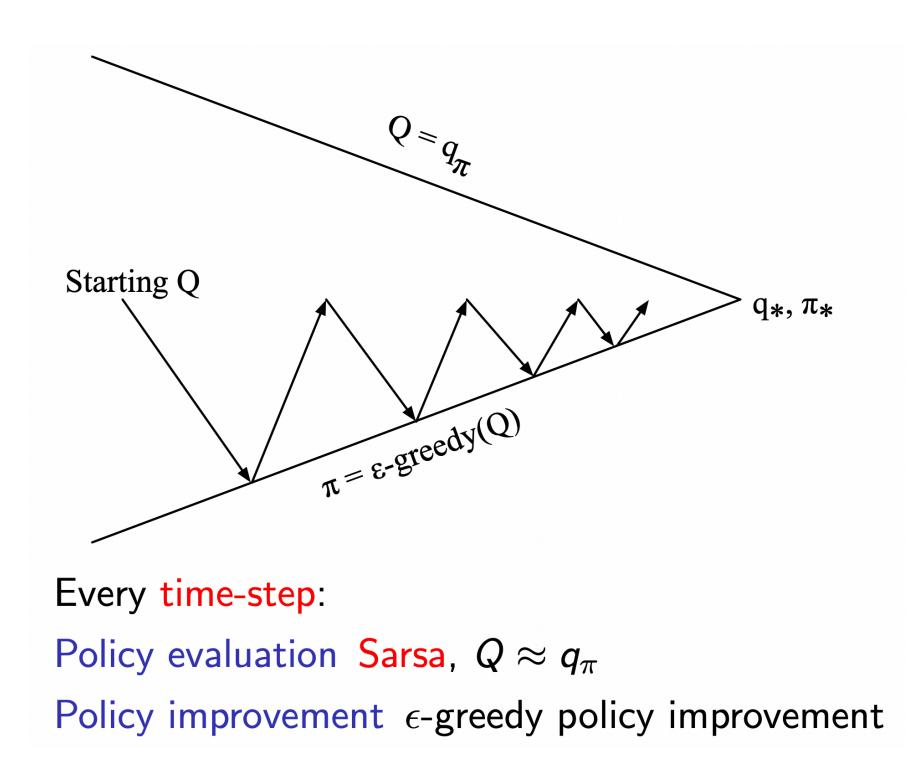
Updating action-value functions with Sarsa

the next through the following update rule

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q \left(x_{t+1}, u_{t+1} \right) - Q(x_t, u_t) \right) \qquad \text{Temporal-Difference backup}$$
$$\hat{V}(x_t) \leftarrow \hat{V}(x_t) + \alpha \left(\frac{R_t}{R_t} + \gamma \hat{V} \left(x_{t+1} \right) - \hat{V} \right)$$

• In RL literature, $(x_t, u_t, r_t, x_{t+1}, u_{t+1})$ is often expressed as $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$: hence the name

• Uses every element of the quintuple of events, $(x_t, u_t, r_t, x_{t+1}, u_{t+1})$, that make up a transition from one state-action pair to



Sarsa algorithm

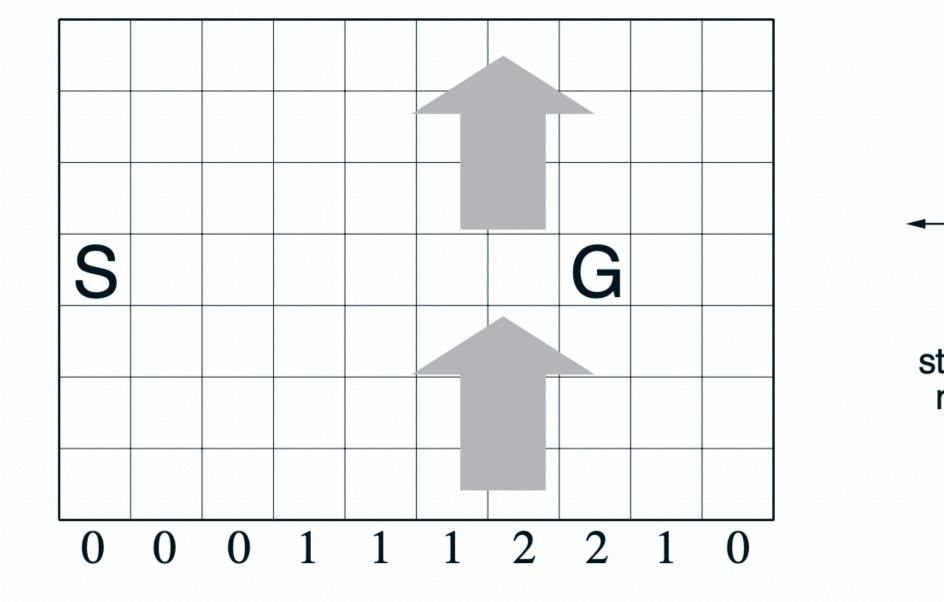
Initialize $Q(x, u), \forall x \in X, \forall u \in U$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$ Repeat (for each episode): Initialize x_t Choose u_t from x_t using policy derived from Q (e.g., ϵ -greedy) Repeat (for each step of episode): Take action u_t , observe r_t , x_{t+1} Choose u_{t+1} from x_{t+1} using policy derived from Q (e.g., ϵ -greedy) $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q \left(x_{t+1}, u_{t+1} \right) - Q(x_t, u_t) \right)$ $x_t \leftarrow x_{t+1}; u_t \leftarrow u_{t+1}$ until x_t is terminal

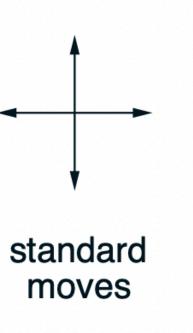
Sarsa algorithm for ?-policy control

Initialize $Q(x, u), \forall x \in X, \forall u \in U$, arbitrarily, and Q(terminal-state, \cdot) = 0 Repeat (for each episode): Initialize x_t Choose u_t from x_t using policy derived from Q (e.g., ϵ -greedy) Repeat (for each step of episode): Take action u_t , observe r_t, x_{t+1} Choose u_{t+1} from u_{t+1} using policy derived from Q (e.g., ϵ -greedy) $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q (x_{t+1}, u_{t+1}) - Q(x_t, u_t)\right)$ $x_t \leftarrow x_{t+1}; u_t \leftarrow u_{t+1}$ until x_t is terminal

On-policy: evaluate or improve the policy that is used to make decisions **Off-policy**: evaluate or improve a policy different from that used to generate the data

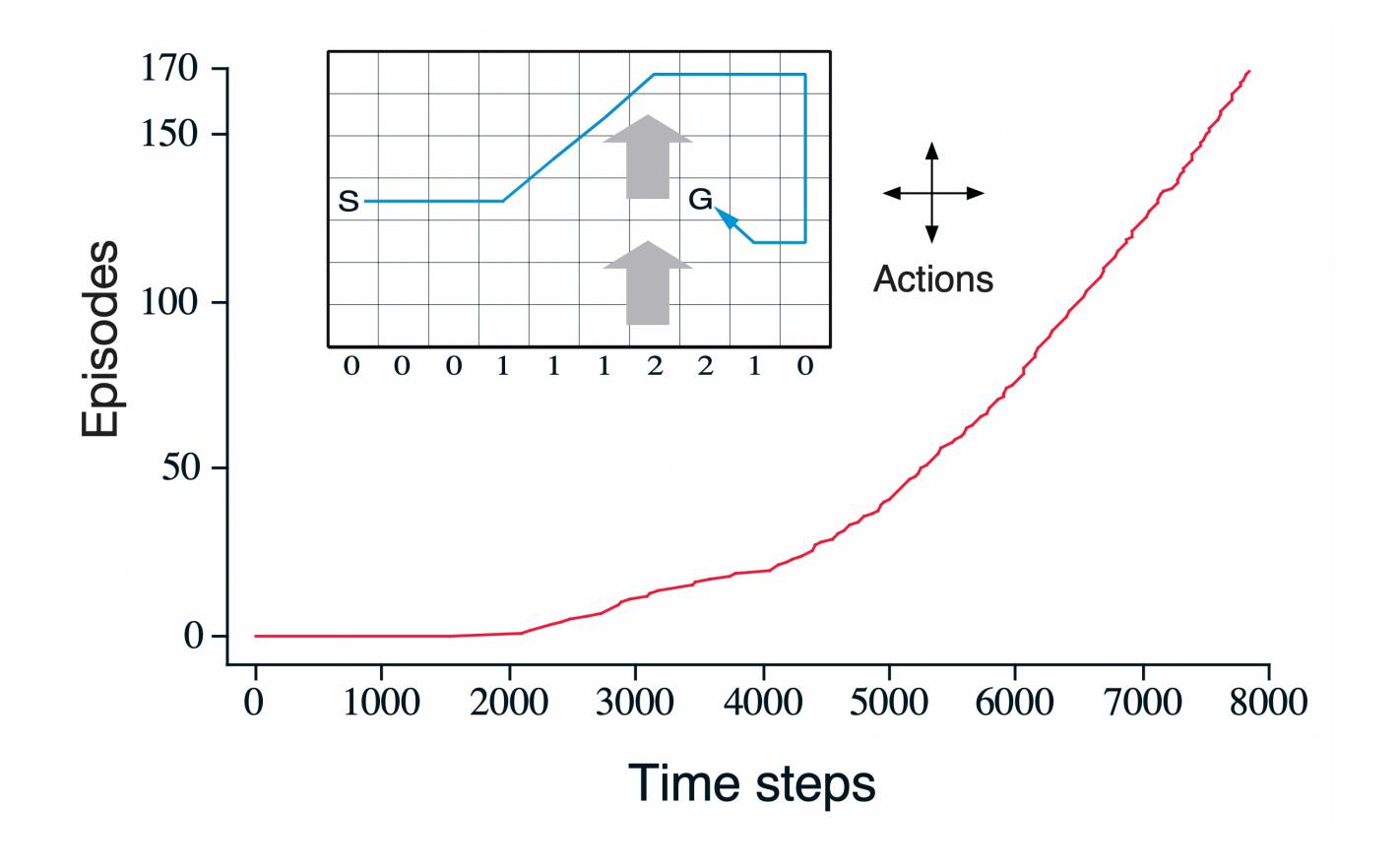
Windy Gridworld example





- Reward -1 until goal is reached
- *\epsilon = 0.1*
- $\alpha = 0.5$
- $\gamma = 1$

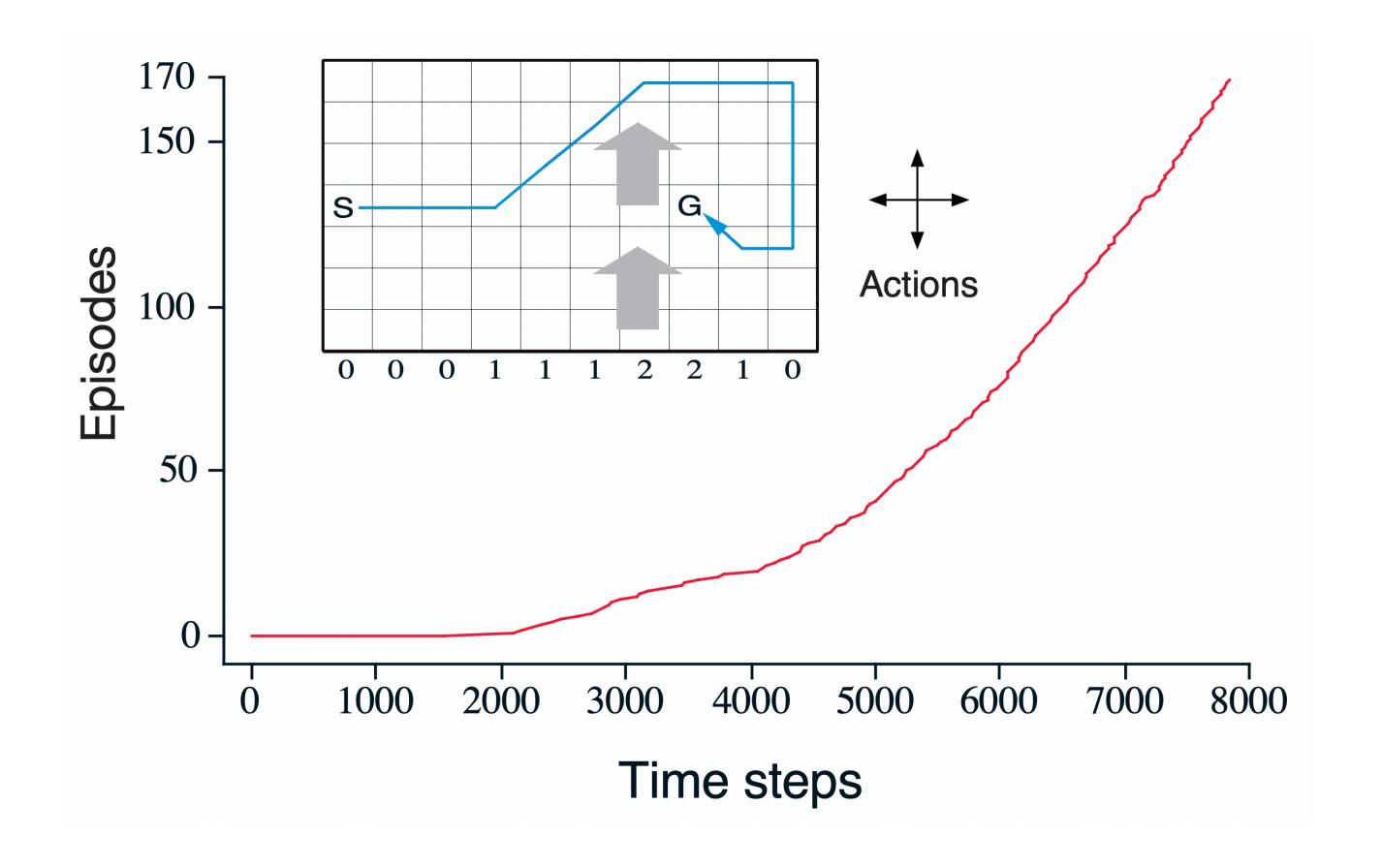
Windy Gridworld example



Question:

Would MC methods easily apply to this problem? And why?

Windy Gridworld example



Question:

Would MC methods easily apply to this problem? And why?

No, because termination is not guaranteed for all policies. If a policy was ever found that caused the agent to stay in the same state, then the next episode would never end.

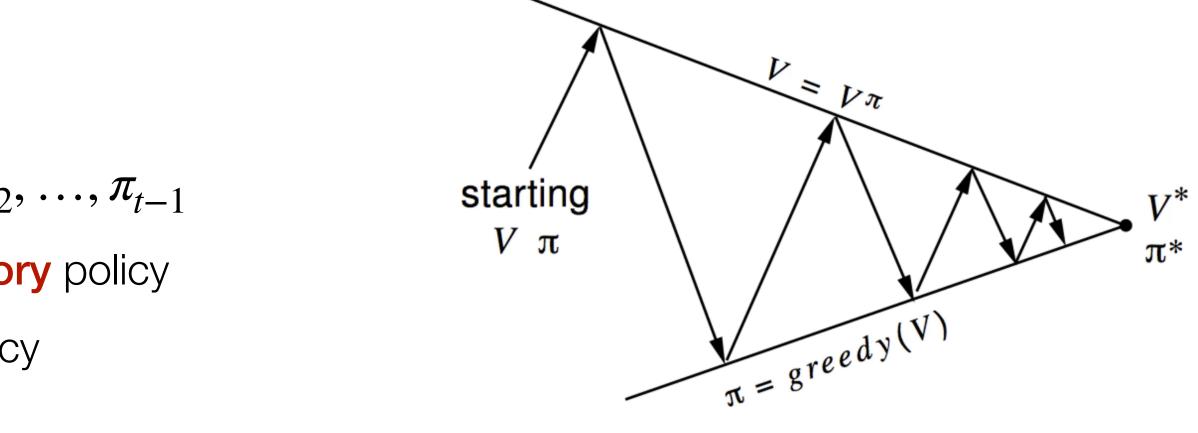
Off-policy learning

• Evaluate target policy $\pi(u \mid x)$ to compute $V_{\pi}(x)$ or $Q_{\pi}(x, u)$ while following behavior policy $\mu(u \mid x)$, i.e.,

Why is this important?

- Learn from observing humans or other agents
- Re-use experience generated from old policies $\pi_1, \pi_2, \ldots, \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about *multiple* policies while following *one* policy

 $\{x_1, u_1, r_1, \dots, x_T\} \sim \mu$, "the data we observe is obtained under policy μ "



Off-policy learning of action-values

- We consider off-policy learning of action-values Q(x, u)
- As in Sarsa, we use the behavior policy μ to obtain $(x_t, u_{t+1}') \sim \pi(u_{t+1}' | x_{t+1})$
- And update Q(x, u) towards value of alternative action

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma Q \left(x_{t+1}, u_{t+1}' \right) - Q(x_t, u_t) \right)$$

• As in Sarsa, we use the behavior policy μ to obtain $(x_t, u_t, r_t, x_{t+1}, u'_{t+1})$, but we consider an alternative successor action

Q-learning

Specifically, in Q-learning

• The target policy π is chosen as the greedy

y policy w.r.t.
$$Q(x, u)$$

 $\pi(x_{t+1}) = \underset{u'_{t+1}}{\operatorname{argmax}} Q\left(x_{t+1}, u'_{t+1}\right)$

• The behavior policy μ is chosen as the ϵ -greedy policy w.r.t. Q(x, u)

Which leads to the following Q-learning target and update:

$$\begin{aligned} r_{t+1} + \gamma Q \left(x_{t+1}, u_{t+1}' \right) \\ = r_{t+1} + \gamma Q \left(x_{t+1}, \operatorname*{argmax}_{u_{t+1}'} Q \left(x_{t+1}, u_{t+1}' \right) \right) \\ = r_{t+1} + \gamma \max_{u_{t+1}'} Q \left(x_{t+1}, u_{t+1}' \right) \end{aligned}$$

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma \max_{u_{t+1}'} Q\left(x_{t+1}, u_{t+1}' \right) - Q(x_t, u_{t+1}') \right)$$

Q-learning algorithm for off-policy control

Initialize $Q(x, u), \forall x \in X, \forall u \in U$, arbitrarily, and Q(terminal-state, \cdot) = 0 Repeat (for each episode): Initialize x_t Repeat (for each step of episode): Choose u_t from x_t using policy derived from Q (e.g., ϵ -greedy) Take action u_t , observe r_t , x_{t+1} $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r_t + \gamma \right)$ \mathbf{N} until x_t is terminal

Theorem

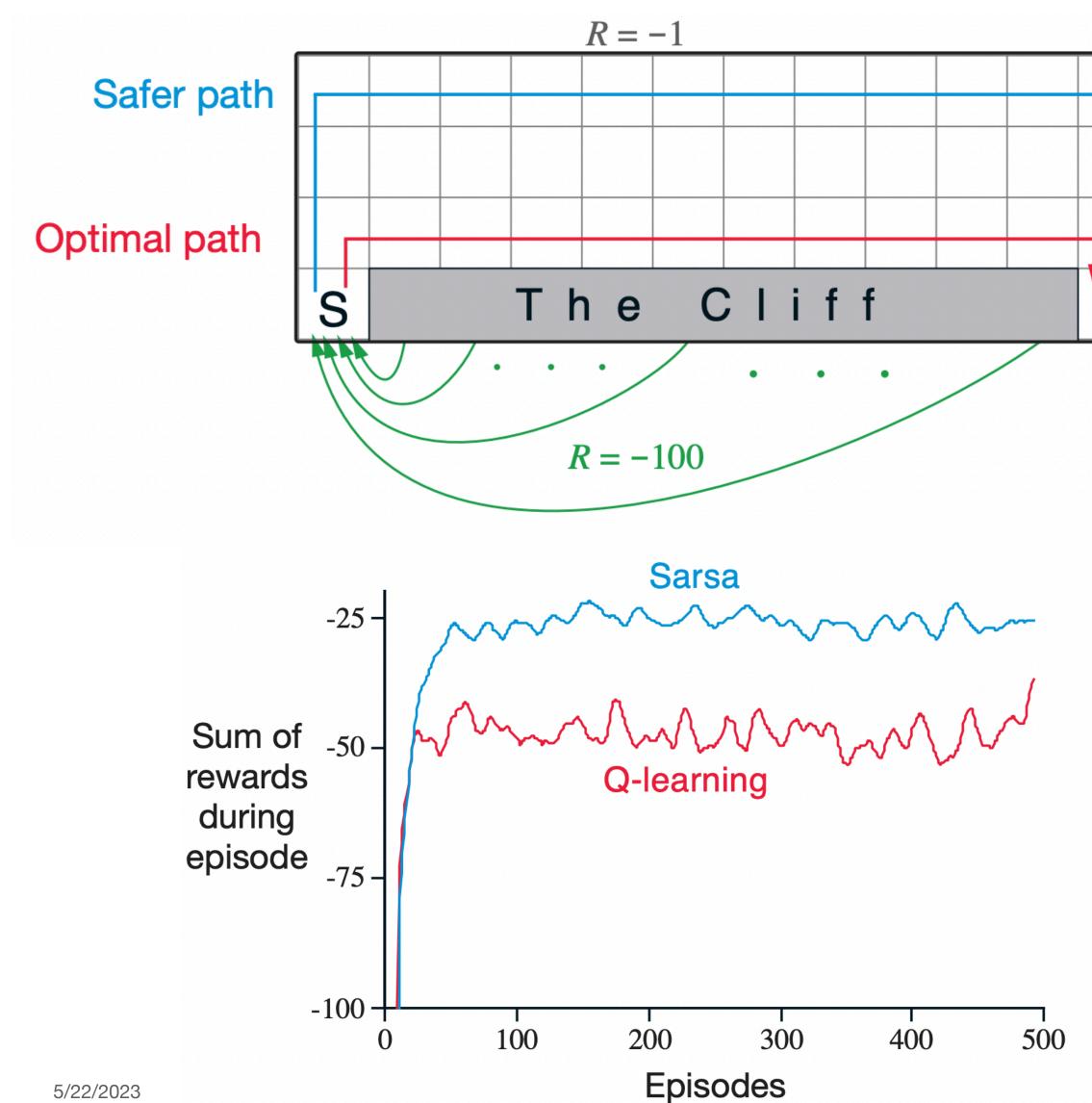
 $Q(s,a)
ightarrow q_*(s,a)$

$$\max_{u'_{t+1}} Q\left(x_{t+1}, u'_{t+1}\right) - Q(x_t, u_t)\right)$$

Q-learning control converges to the optimal action-value function,

AA203 | Lecture 15

Differences between Sarsa and Q-learning

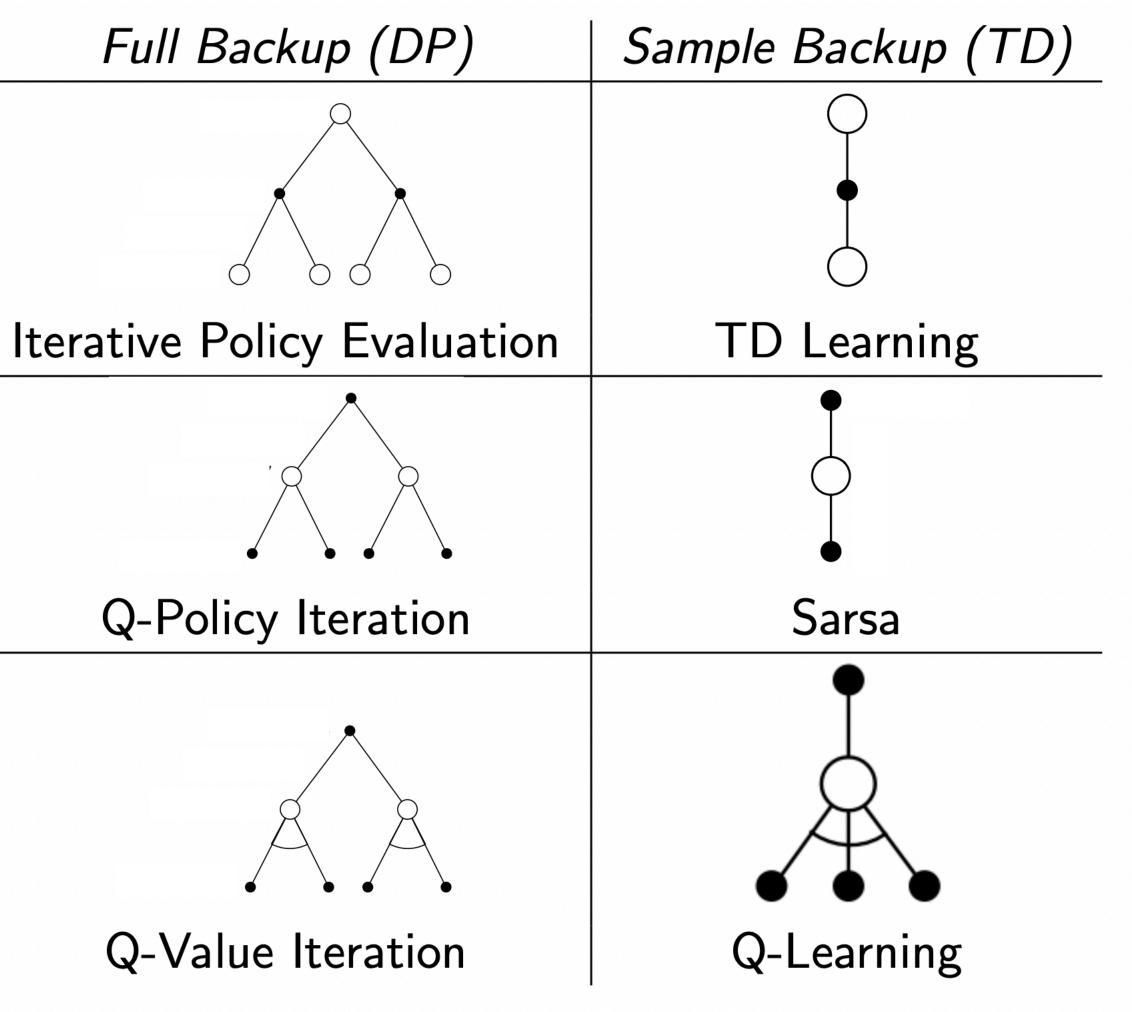


- Reward -1 until goal is reached, -100 if on "The Cliff"
- *ε* = 0.1
- $\alpha = 0.5$
- $\gamma = 1$

- Sarsa converges to the **optimal** *e*-greedy policy
- Q-learning converges to the optimal policy π^{\ast} / value function Q^{\ast}

Relationship between DP and TD

Bellman Expectation Equation for $V_{\pi}(x)$ Bellman Expectation Equation for $Q_{\pi}(x, u)$ **Bellman Optimality** Equation for $Q^*(x, u)$



Outline

Tabular methods

- On-policy & Off-policy
 - SARSA
 - Q-learning

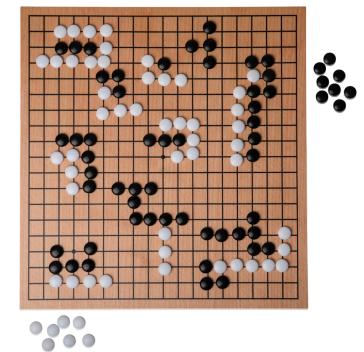
Value function approximation

Deep (Value-based) RL Methods & Applications

Solving large-scale problems with RL

Reinforcement learning can be used to solve large problems, e.g.,

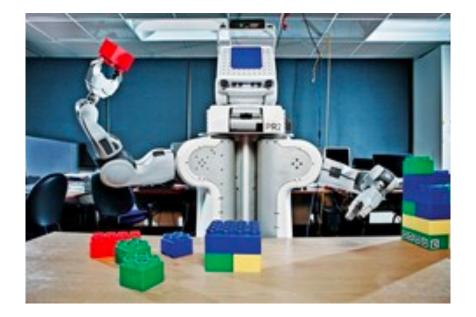




Backgammon: 10^{20} states

How can we scale the methods for model-free RL we developed over the last lectures?

Go: 10^{170} states



All those problems where we have a continuous state space

Value function approximation

- So far we used **lookup tables** to represent value functions:
 - One entry for every state x in V(x)
 - One entry for every state-action pair (x, u) in Q(x, u)
- In large MDPs, lookup table might be prohibitive. For two main reasons:
 - Memory: too many actions/states to store

Solution:

• Estimate the value function through function approximation, i.e., define a parametric function with parameters heta

$$\hat{Q}_{\theta}(x)$$

 \hat{V}_{θ}

 \rightarrow Represent the value function compactly (depends only on parameters θ) \rightarrow Generalize across states (avoid having to visit the entire state-action space by generalizing from seen to unseen states)

• Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

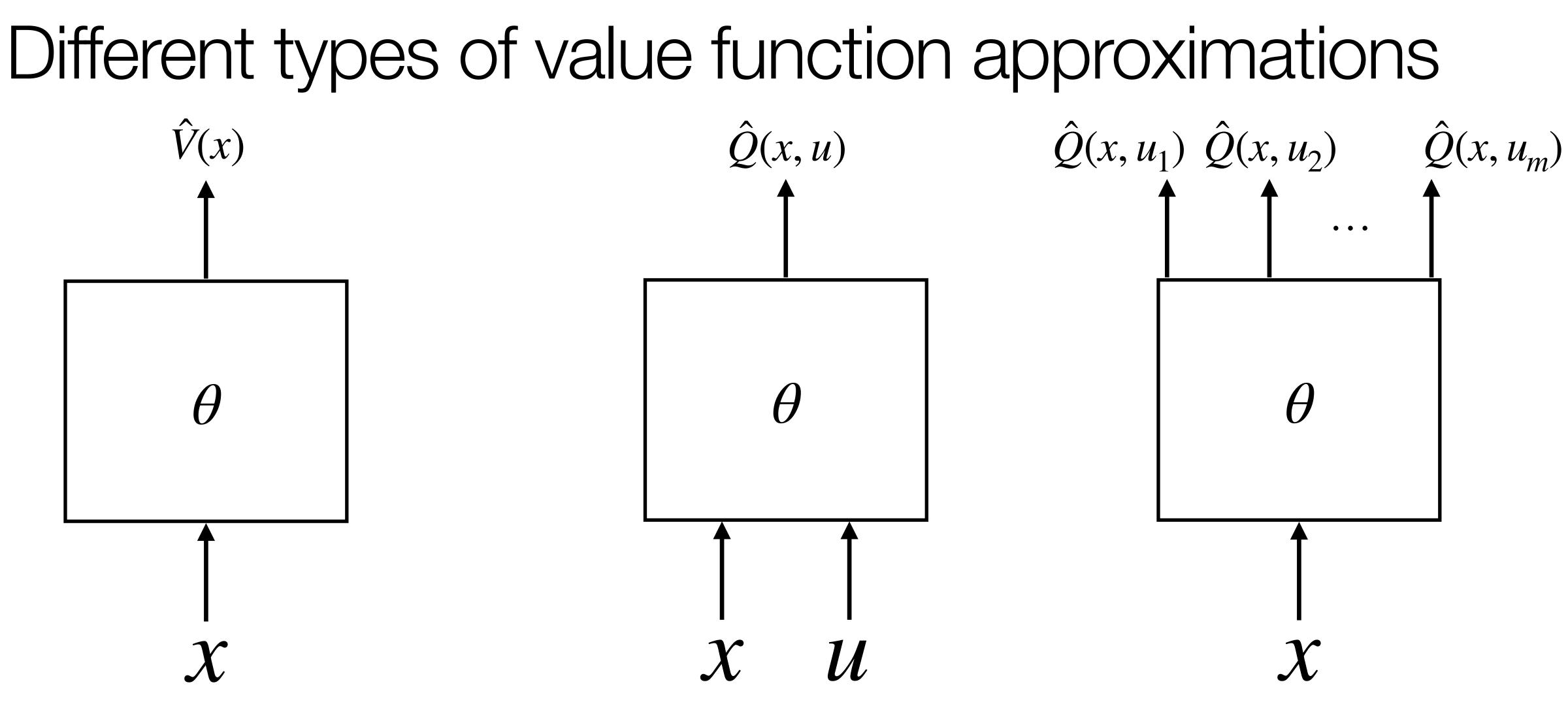
 $(x, u) \approx Q(x, u)$

 $Q(x) \approx V(x)$

$\hat{V}(x)$ Ĥ

There are many possible function approximators

• Linear regression, Neural network, Random forest, Nearest neighbor, etc.



AA203 | Lecture 15

Approximating value fn. by (stochastic) gradient descent

Goal: find the parameter vector θ that minimizes the mean-squared error between the estimated value $\hat{V}_{\theta}(x)$ and the true value $V_{\pi}(x)$

 $J(\theta) = \mathbb{E}$

Gradient descent converges to a local minimum

Stochastic GD samples the gradient

$$\Delta \theta = \alpha \left(V_{\pi}(x) - \hat{V}_{\theta}(x) \right) \nabla_{\theta} \hat{V}_{\theta}(x)$$

$$_{\pi}\left[V_{\pi}(x) - \hat{V}_{\theta}(x)\right]$$

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_{\theta} J(\theta)$$

$$= \alpha \mathbb{E}_{\pi} \left[\left(V_{\pi}(x) - \hat{V}_{\theta}(x) \right) \nabla_{\theta} \hat{V}_{\theta}(x) \right]$$

AA203 | Lecture 15

Approximating value fn. by (stochastic) gradient descent

In the previous slide, we assumed to know the true value function $V_{\pi} \rightarrow$ in RL there is no supervisor, only reward

In practice, we use a *target* for V_{π}

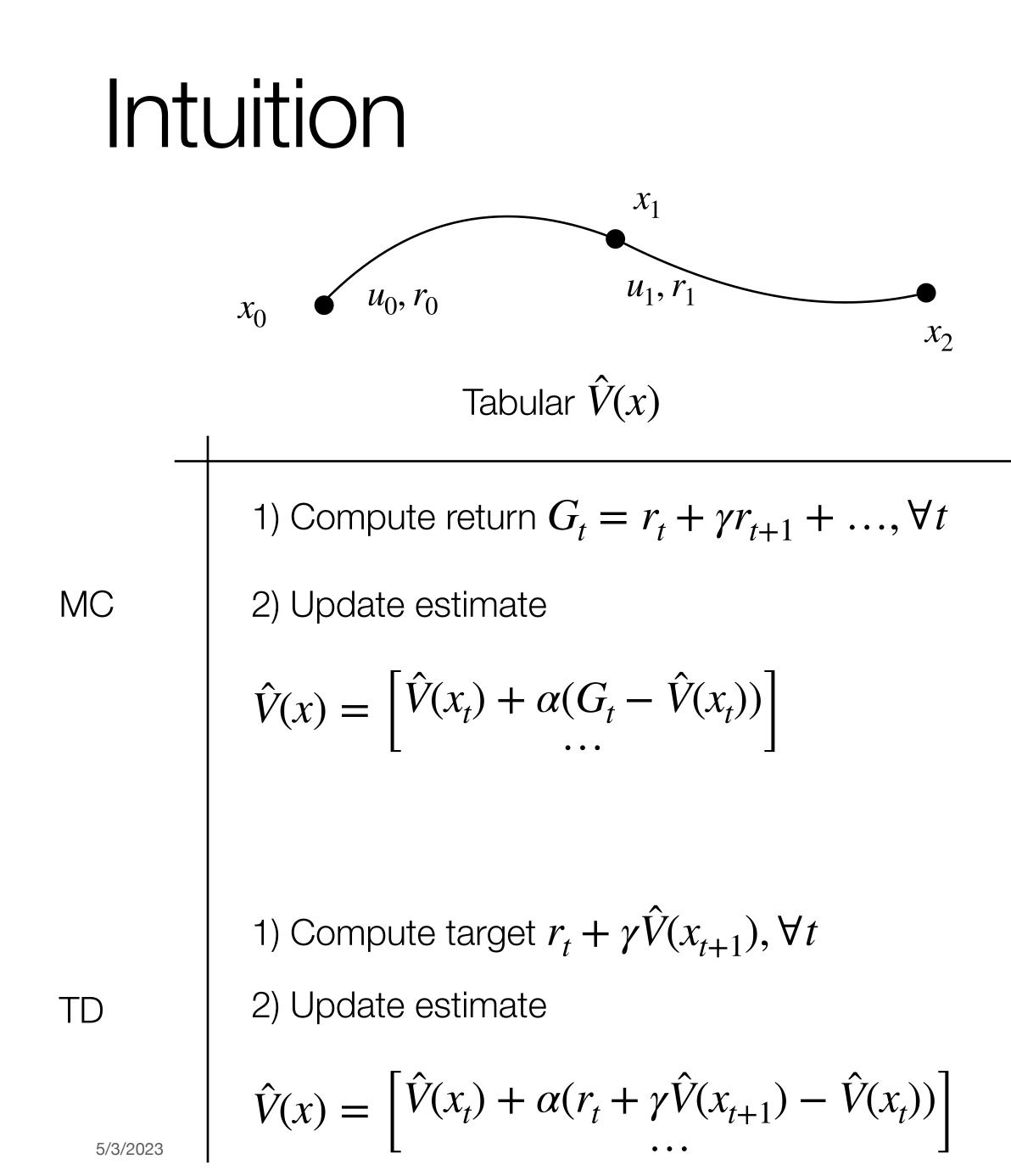
• Monte-Carlo: the target is the return

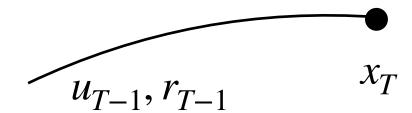
 $\Delta \theta = \alpha \left(\mathbf{G}_t - \hat{V}_{\theta}(x_t) \right) \nabla_{\theta} \hat{V}_{\theta}(x_t)$

• Temporal-Difference: the target is the TD target

$$\Delta \theta = \alpha \left(r_t + \gamma \hat{V} \right)$$

 $\hat{V}_{\theta}(x_{t+1}) - \hat{V}_{\theta}(x_t) \right) \nabla_{\theta} \hat{V}_{\theta}(x_t)$





Tabular $\hat{V}(x)$

1) Collect dataset $\mathcal{D} = \{(x_t, G_t)\}$

2) Update θ

$$\theta = \theta + \alpha \left(G_t - \hat{V}_{\theta}(x_t) \right) \nabla_{\theta} \hat{V}_{\theta}(x_t)$$

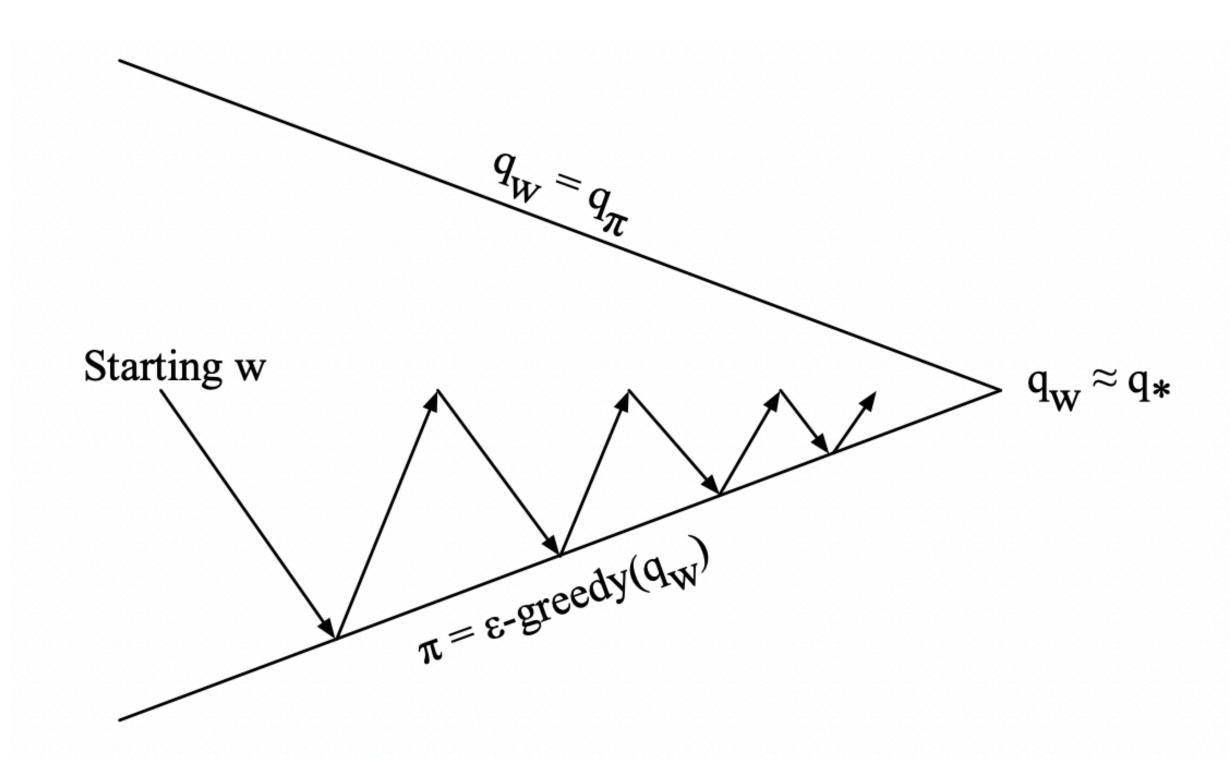
1) Collect dataset $\mathscr{D} = \{(x_t, r_t + \gamma \hat{V}_{\theta}(x_t))\}$ 2) Update estimate

$$\theta = \theta + \alpha \left(r_t + \gamma \hat{V}_{\theta}(x_t) - \hat{V}_{\theta}(x_t) \right) \nabla_{\theta} \hat{V}_{\theta}(x_t)$$

AA203 | Lecture 15

. . .

<u>Control</u> with function approximation



Policy improvement ϵ -greedy policy improvement

Policy evaluation Approximate policy evaluation, $\hat{q}(\cdot, \cdot, \mathbf{w}) \approx q_{\pi}$

Action-value function approximation

Exactly the same intuitions apply when we try to approximate the action value function:

• Minimize the mean-squared error between the estimated value $\hat{Q}_{ heta}(x,u)$ and the true value $Q_{\pi}(x,u)$

$$J(\theta) = \mathbb{E}_{\pi} \left[Q_{\pi}(x, u) - \hat{Q}_{\theta}(x, u) \right]$$

Use stochastic gradient descent to find a local minimum ullet

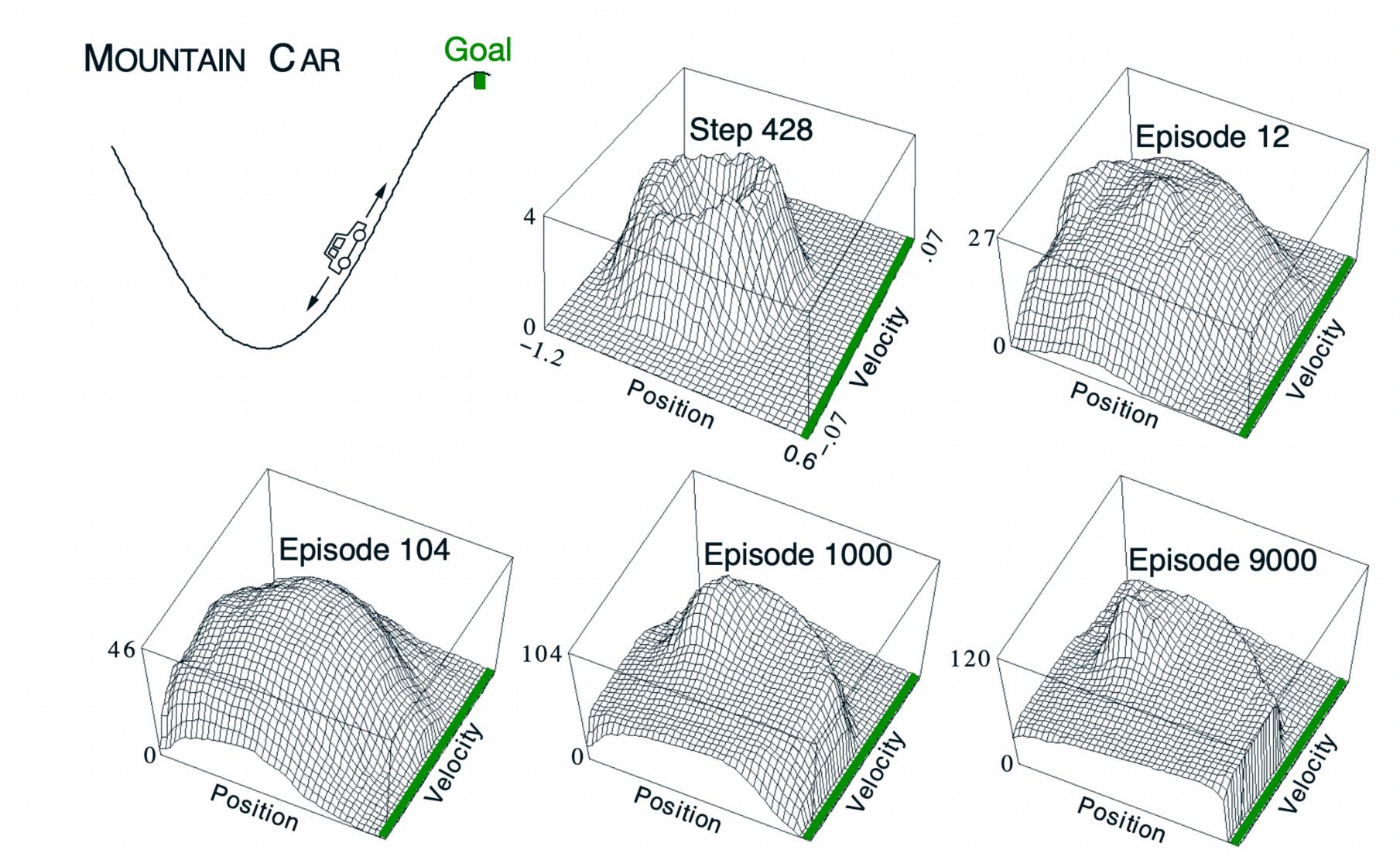
$$\Delta \theta = \alpha \left(Q_{\pi}(x, u) - \hat{Q}_{\theta}(x, u) \right) \nabla_{\theta} \hat{Q}_{\theta}(x, u)$$

Fitted Q-Iteration: update θ via stochastic gradient descent on TD target $\Delta \theta = \alpha \left(r_t + \gamma \max_{u'_{t+1}} Q_\theta \left(x_{t+1} \right) \right)$

$$(x_{t+1}, u_{t+1}') - \hat{Q}_{\theta}(x_t, u_t)) \nabla_{\theta} \hat{Q}_{\theta}(x_t, u_t)$$

AA203 | Lecture 15

Example: Sarsa with fn. approximation

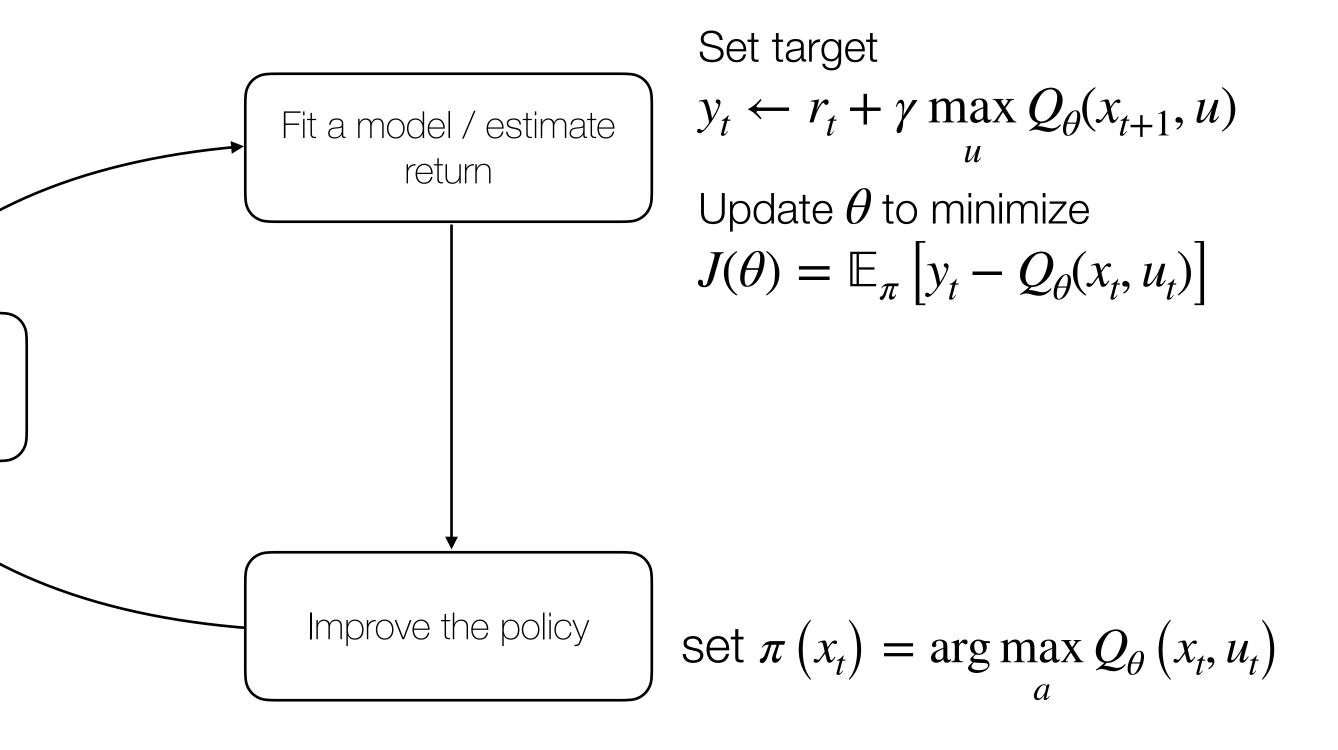


AA203 | Lecture 15

The skeleton of fitted Q-learning

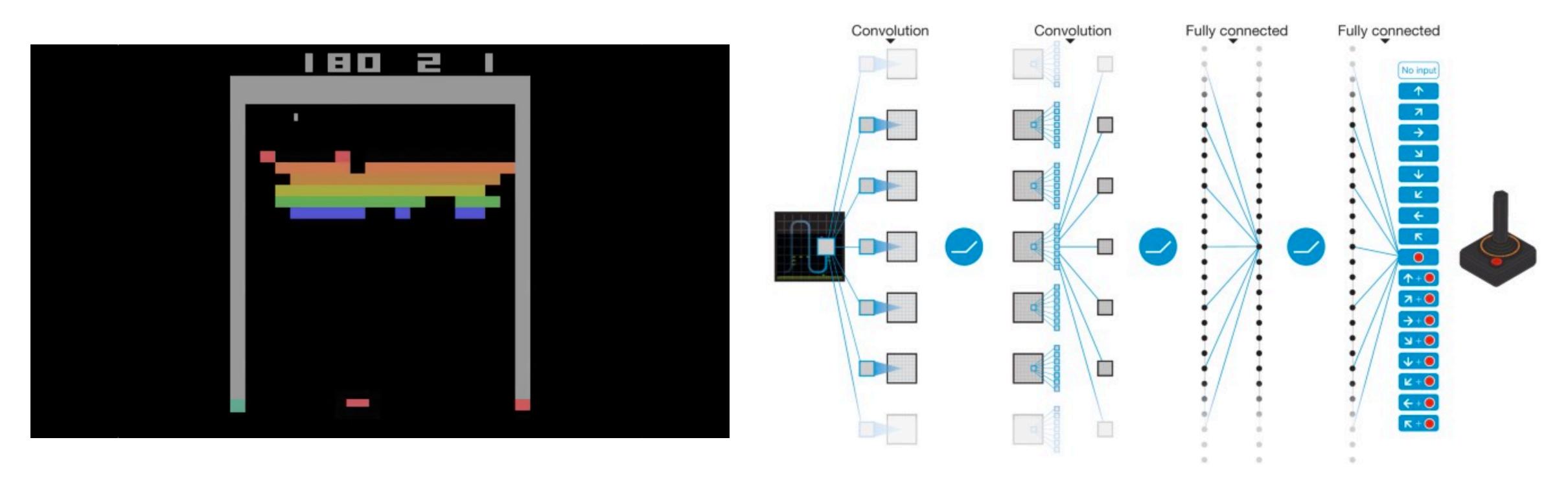
Run the policy and observe (x_t, u_t, r_t, x_{t+1})

Generate samples



Deep Q-Networks (DQN)

One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks



(1) Use **deep neural nets** to represent Q_{θ} in Qlearning

(2) Uses experience replay and fixed Q-targets

Deep Q-Networks (DQN)

(2) Uses experience replay and fixed Q-targets

- issues:
 - Samples within a trajectory are highly correlated \rightarrow makes supervised learning unstable i)
 - ii) \mathcal{U}_{t+1}' changes)

Intuitively:

- Take action u_t according to ϵ -greedy policy
- Store transition (x_t, u_t, r_t, x_{t+1}) in replay memory \mathcal{D}
- Sample batch of transitions $\{(x_t, u_t, r_t, x_{t+1})_i\}_{i=1}^B$ from \mathscr{D} (**Experience replay decorrelates data**)
- Compute Q-learning targets w.r.t. old, fixed parameters ϕ
- Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

$$J(\theta) = \mathbb{E}_{(x_t, u_t, r_t, x_{t+1}) \sim \mathcal{D}} \left[r_t + \gamma \max_{u} Q_{\phi}(x_{t+1}, u) - \hat{Q}_{\theta}(x_t, u_t) \right]$$

• These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two

The target $r_t + \gamma \max Q_{\theta}(x_{t+1}, u'_{t+1})$ is a moving target (i.e., as we update θ , the target of our regression also

AA203 | Lecture 15

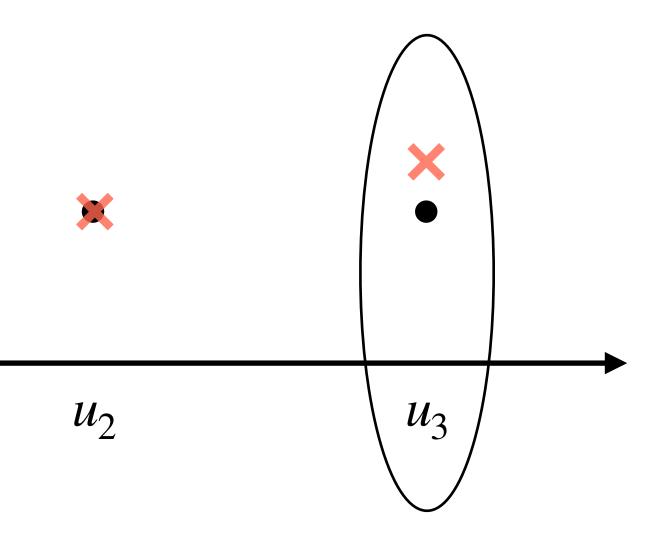
Maximization bias

- In the algorithms we covered so far, a maximum over es value
 - $\max_{u} \hat{Q}_{\theta}(x_t, u)$
- This can lead to a significant positive bias. For example:

$$\hat{Q}_{\theta}(\bar{x}_t, u_t) \land \\ \mathbf{x} \\ \mathbf{u}_1$$

• In the algorithms we covered so far, a maximum over estimated values is used implicitly as an estimate of the maximum

$$u_t) \approx \max_u Q_\pi(x_t, u_t)$$



Double Q-learning

- Several possible solutions; in general, want to avoid using max of estimates as estimate of max
- Double Q-learning [van Hasselt, NeurIPS 2010]: use two
 - Use one estimate to determine the maximizing action
 - And the other to provide the estimate of its value $Q_2($
 - This estimate will be unbiased
- Alternative approach: maintain two independent q-networks, always use $min(Q_1, Q_2)$ [Fujimoto et al, ICML 2018]

independent estimates
$$Q_1, Q_2$$

in $u^* = \arg \max_u Q_1(x, u)$
 $(x, u^*) = Q_2(x, \arg \max_u Q_1(x, u))$

Next time

• Model-free RL: policy optimization methods

References

- Mnih et al. *Playing Atari with Deep Reinforcement Learning*. 2013
- van Hasselt et al. *Double Q-learning*. NeurIPS 2010
- Fujimoto et al. Addressing Function Approximation Error in Actor-Critic Methods. ICML 2018

